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Abstract: A commercial and disposable screen-printed carbon electrode (SPCE) has been proposed
for a fast, simple and low-cost determination of Ni(II) at very low concentration levels by differential
pulse adsorptive stripping voltammetry (DPAdSV) in the presence of dimethylglyoxime (DMG) as
complexing agent. In contrast with previously proposed methods, the Ni(II)-DMG complex adsorbs
directly on the screen-printed carbon surface, with no need of mercury, bismuth or antimony coatings.
Well-defined stripping peaks and a linear dependence of the peak area on the concentration of Ni(II)
was achieved in the range from 1.7 to 150 ug L™, with a limit of detection of 0.5 ug L~! using a
deposition time of 120 s. An excellent reproducibility and repeatability with 0.3% (n = 3) and 1.5%
(n = 15) relative standard deviation, respectively, were obtained. In addition, the suitability of the
SPCE as sensing unit has been successfully assessed in a wastewater certificated reference material
with remarkable trueness and very good reproducibility.

Keywords: nickel; dimethylglyoxime; adsorptive stripping voltammetry; carbon screen-printed
electrode; water samples

1. Introduction

Stripping voltametric methods are especially suitable for trace metal analysis in envi-
ronmental samples, due to their exceptional features such as good detection limits, repro-
ducibility and selectivity [1]. It is well known that the performance of a voltametric method
is closely linked to the material of the working electrode. Trace metal ions determination
was traditionally associated with the use of mercury-based electrodes, due to both their high
reproducibility and their wide cathodic window [2]. However, the toxicity and the poor
versatility as sensing devices of mercury electrodes have been argued as relevant drawbacks;
as a result, in the last few years, their use has been progressively decreasing.

Accordingly, in the last two decades, the number of works devoted to the development
of sensors with similar electrochemical performance than that exhibited by mercury elec-
trodes has increased rapidly. In addition to the essential requirement of being less toxic, the
new electrodes had to be more versatile as sensors than mercury and with a large quantity
of supports and modifiers available [3-5]. In this sense, the boom of the screen-printed
electrodes (SPEs) as a versatile and low-cost option to traditional solid electrodes has con-
tributed in a very positive way to the development of sensors that are able to work either
submerged into a solution, in a unique drop or coupled to a flow system. SPEs can be used
either in its bare form or as a support for a large variety of modifications. In addition, their
disposability, low-cost and reproducible character allow the substitution of every device
after some measurements by a new unit with comparable performance, thus avoiding the
periodic and tedious polishing and cleaning protocols of traditional solid electrodes. In this
way, taking advantage of the above-mentioned specific features, sensors based on SPEs are
very appropriate for continuous monitoring, sample screening and on-site analysis [6-8].
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On the other hand, it is well reported the potential effects that heavy metals may cause
on both human health and environment. Heavy metals enter the surroundings by natural
ways and through anthropogenic activities. Indeed, it should be noted that heavy metals
are closely linked to water since they can be easily collected in surface or groundwater.
While it is true that some of these metals may remain in the water, it is also known that
some others can come out and gather on accessible surfaces like plants. Therefore, heavy
metals can enter the body via food or drinking water, being particularly hazardous because
they tend to bioaccumulate. The build-up of heavy metals can produce malfunctions in
the kidneys, liver, the circulatory system and the movement of nerve signals. Some heavy
metals may be also involved in the development of several cancers [9,10].

Heavy metals most frequently found in wastewater include arsenic, nickel, chromium,
cadmium, copper, lead and zinc, representing all of them an important risk for human health
and natural ecosystems [11]. Particularly, nickel is a frequent industrial pollutant that can
be found in wastewater around industrial parks with concentrations at times achieving
the low millimolar range [12]. Nickel is usually found in the Ni(0) or Ni(Il) state because
of the stability of these species in water [13]. Various sources of Ni(Il) include industry,
electroplating, tobacco, primarily refining and welding since nickel is frequently used to
produce industrial machines components, electronics, jewellery, stainless steel kitchen utensils,
dental or orthopedic implants, coins and magnets. High levels of nickel can also be found in
spinach, legumes, nuts and lettuce, as well as in cocoa powder and baking powder [14]. Nuts
and cocoa may have nickel levels as high as 3 and 10 ppm, respectively. In a market basket
survey completed in the United States, the highest average levels of nickel in p1g/100 g were
found in nuts (128.2), legumes (55), sweeteners (31.6), grains and grain products (26.2) and
mixed dishes and soups (25.3) [15]. Nickel is a potential immunotoxic and immunomodulatory
agent apart from its action as an allergen in humans. Moreover, nickel toxicity to humans has
obtained serious attention due to its carcinogenic action [16-18]. In this regard, the United
States Environmental Protection Agency (EPA) recommends that the nickel levels in drinking
water do not exceed 0.1 mg L. In view of the statements above, it is critical to develop
suitable methods that make possible the on-site determination and monitoring of nickel at
low concentrations.

The voltametric determination of Ni(II) at the very low concentrations found in natural
water samples involves the use of preconcentration methods. In the years dominated by
mercury electrodes, it was clear that, unlike Pb(II)- or Cd(II)-ions, the preconcentration of
Ni(II) could not be done by anodic stripping voltammetry (ASV) since reduced Ni atoms are
poorly soluble in mercury. A solution to this problem was found with a “classical” method
of adsorptive stripping voltammetry (AdSV) with dimethylglyoxime (DMG) [19,20]. In
this method, Ni(II) is complexed by DMG in solution and the resulting Ni(DMG), complex
adsorbs and accumulates onto the surface of the mercury electrode, where Ni(Il) can be
further reduced by means of a cathodic scan. In this way, an enhanced reduction signal
is obtained. When mercury electrodes started to become obsolete, alternative approaches
were required with new electrode materials. In this regard, two basic strategies are found
in the literature: (i) using AdSV with DMG again but replacing the mercury surface
with bismuth or antimony coatings which can reasonably reproduce its most relevant
characteristics [21-34]; and (ii) using stripping techniques with modified electrodes based
on DMG which incorporate the ligand to the electrode and not to the solution [35-42]. In
both cases, either the classical glassy carbon electrodes or the screen-printed electrodes
were used as a support for the corresponding modifications.

Thus, to the best of our knowledge, on the search for an alternative to mercury, the
determination of Ni(II) has mainly been studied using modified electrodes, neglecting the
possibilities of bare electrodes. While it is true that conventional solid electrodes, usually
based on carbon (carbon paste or glassy carbon), but also based on gold, silver or platinum,
are less toxic and more versatile as sensing units than mercury-based electrodes, they have
the disadvantage of having a lower reproducibility and need to be properly cleaned and
polished before each determination. However, most of the drawbacks of non-modified
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solid electrodes can be overcome using SPEs as sensing devices because of their above-
mentioned specific characteristics. Moreover, today, many disposable SPEs from different
materials are available on the market at very affordable prices. There is no doubt that the
possibility of using an electrode that does not require any modification procedure before
being used would certainly simplify and make faster the determination of Ni(Il), since the
stage related to the preparation of the electrode, which in some cases is quite laborious and
time consuming, would be completely avoided.

Hence, in this work, screen-printed carbon electrode (SPCE) and screen-printed gold
electrode (SPAUE) have been selected as two of the most economical, simple, reproducible
and popular commercial screen-printed electrodes, and have been applied to the determi-
nation of Ni(Il) at trace levels by AdSV using DMG as complexing agent. While SPAuE has
not proved to be a valid sensor for the determination of Ni(II), excellent preliminary results
were achieved with SPCE. Thus, SPCE was analytically characterized and applied for the
determination of Ni(Il) in a certified wastewater sample, as an example of its suitability for
a fast, simple and low-cost analysis of Ni(Il) in samples of environmental interest.

2. Materials and Methods
2.1. Chemicals

All chemicals were of analytical grade. Stock standard solutions of Ni(Il) at 10 mg L%,
1 mg L~! and 100 ug L~! were prepared in ultrapure water from 1000 mg L~! atomic
absorption standard purchased from Alfa Aesar (Ward Hill, MA, USA). Atomic absorption
standard solutions of Fe(III), PA(II), Pt(II) and Co(II), 1000 mg L1, were supplied by Merck
(Darmstadt, Germany).

A 0.1 mol L~ stock solution of dimethylglyoxime (DMG) was prepared in ethanol
96% and 0.1 mol L~! ammonia/ammonium solution at pH 9.2 served as a buffer.

Wastewater certificated reference material (SPS-WW?2) was purchased from Spectra-
pure Standards (Manglerud, Norway).

The water used through the experiments was purified via Milli-Q plus 185 system
(Millipore, Burlington, MA, USA).

2.2. Apparatus

For differential pulse adsorptive stripping voltammetric (DPAdSV) measurements an
Autolab System PGSTAT12 (EcoChemie, Utrecht, The Netherlands) connected to a VA Stand
663 (Metrohm, Herisau, Switzerland) was used. GPES software version 4.9 (EcoChemie)
was employed for data acquisition.

A carbon screen-printed electrode (SPCE, ref. 110) or a gold screen-printed electrode
(SPAUE, ref. 220AT) purchased from Metrohm DropSens (Oviedo, Spain) were served
as working electrode (4 mm diameter), which was attached by means of a flexible cable
(ref. CAC, Metrohm DropSens) to the Autolab System. These electrodes were used as
acquired since no previous treatment is needed. Ag/AgCl/KCl (3 mol L~1), to which all
potentials are referred, supplied by Metrohm (Switzerland) was employed as a reference
electrode and as auxiliary electrode it was used the one included in the screen-printed unit.
Considering that a reasonable volume of sample was analyzed, the included reference
electrode was not used to ensure a better accuracy and for a longer durability of the devices.

For pH measurements a Crison micro pH 2000 was employed.

2.3. Voltammetric Measurements

Ni(II) calibration curves at SPCE were performed by means of AdSV by adding small
volumes of the Ni(Il) stock standard solutions into the electrochemical cell containing
20 mL of 0.1 mol L~! ammonia/ammonium buffer solution at pH9.2and 5 x 1072 mol
L~! DMG. AdSV measurements were carried out by applying a deposition potential (Eq)
of —0.7 V during a deposition time (tq) of 120 s with stirring and after a rest period (t;)
of 5 s without stirringthe AdSV curves were recorded in the potential range from —0.7 to
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—1.3 V. A pulse times of 50 ms, a pulse amplitude of 100 mV and a step potential of 5 mV
were used.

The analysis of the certified wastewater sample using a SCPE was performed by
the standard addition calibration method. The AdSV measurements started by putting
in the cell a volume of the wastewater sample in 0.1 mol L~! ammonia/ammonium
buffer solution (dilution factor 1:500) at pH 9.2 and 5 x 107° mol L~! DMG and the
voltammogram was recorded. Then, five aliquots of Ni(II) stock standard solution were
added and the respective AdSV curves were recorded.

Three scans are made for each new unit in buffer solution before taking reliable
measurements to equilibrate de SPEs. Moreover, for the purpose of ensuring the elimination
of the remaining bound Ni(II)-DMG complex from the working SPCE surface, in both Ni(II)
calibration curves and analysis of the certified wastewater sample, a conditioning potential
(Econd) of —1.3 V for 30 s was applied before each measurement. All experiments were
carried out without any oxygen elimination and at room temperature (20 °C).

3. Results and Discussion
3.1. Differential Pulse Adsorptive Stripping Voltammetry of Ni(Il)

Looking for the best analytical response of both SPCE and SPAuE in connection with
Ni(II) determination, two key electrochemical parameters such as the deposition potential
(Eq) and the deposition time (tq) were initially assessed by AdSV.

DPAdSV measurements of a solution containing 10 pg L~ Ni(Il) at pH 9.2 and
5 x 107> mol L~! DMG were done at several E4 and t4 values varying from —0.6 V to
—1.0 V and from 30 s to 240 s, respectively, searching for a compromise between both the
analytical response and the time of analysis. A well-defined Ni(Il) peak close to —1.1 V
that proportionally increased with t4 until 120 s was obtained using a SPCE (Figure S1).
For longer t4 a diminution of peak area was progressively observed. Therefore, the highest
analytical response was achieved applying a Eq of —0.7 V and a tq of 120 s as a good
agreement between the analytical response and the analysis time. However, when a SPAuE
was used, the characteristic Ni(II) peak was not observed either in any of the E4 values
tested or tq applied. Instead, a background signal was found whose current dramatically
increased as the potential was getting more negative (Figure 1), surely due to the H
discharge. Indeed, gas bubbles were detected on the electrode surface at the most negative
potentials. In view of these results, the use of a SPAuUE was discarded as a sensing unit for
the DPASV determination of Ni(II) and, from here on out, SPCE was used.

After selecting the optimal electrochemical conditions, the repeatability and repro-
ducibility of the SPCE were evaluated. Table 1 summarizes the reproducibility and repeata-
bility values found for the determination of Ni(II) on SPCE. Repeatability was computed
using the same SPCE device for five and fifteen repetitive DPAdSV measurements, respec-
tively, performed in a solution containing 20 pg L~! of Ni(Il) in ammonia/ammonium
buffer solution at pH 9.2 and 5 x 1075 mol L~! DMG following the above-established
conditions. A highly stable response along 15 consecutive measurements with a relative
standard deviation (RSD) of 1.5% was obtained, proving the excellent response repeata-
bility of SPCE. Reproducibility was calculated from the slope corresponding to the linear
range of three independent calibration curves carried out from 0.5 to 150 pg L~! using three
different SPCE units. The reproducibility among SPCE units was also outstanding, with
RSD values of 0.3%. These repeatability and reproducibility values are better than those
achieved for ex-situ antimony film screen-printed carbon electrode and ex-situ bismuth
film screen-printed carbon electrode associated to the Ni(II) voltametric stripping peak [34].
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Figure 1. Differential pulse adsorptive stripping voltammograms of 10 ug L~! Ni(II) recorded on
carbon screen-printed electrode, SPCE, (black lines) and gold screen-printed electrode, SPAUE, (red
lines) in 0.1 mol L~! ammonia/ammonium buffer solution (pH 9.2) and 5 x 1075 mol L~! DMG
applying a Eq of —0.7 V and a tq of 120 s. Blank signals in dashed lines.

Table 1. Calibration data for the Ni(II) determination on SPCE at ammonium/ammonia buffer pH
9.2 applying an E4 of —0.7 V and a tq of 120 s. Standard deviations are denoted by parenthesis.

Sensitivity (a.u. pg=1L) 1.007 (0.002)
R? 0.9998
Linear range (ug L ha 1.7-150
LOD (ug L1 0.5
Reproducibility (from slopes, n = 3, %) 0.3
Repeatability (at 20 ug L=, n=5,%) 04
Repeatability (at 20 ug L=, n = 15, %) 15

2 LOQ was considered as the lowest value of the linear range.
g

The analytical performance evaluation was conducted by means of DPAASV calibra-
tion of Ni(II) metal ion performed in triplicate (a new SPCE unit was used in each replicate).
Linear calibration curves were carried out at the optimized conditions by analyzing thirteen
Ni(II) concentrations increasing from 0.5 to 150 ug L~!. As it can be seen in Figure 2a,
a well-shaped Ni(II) voltametric stripping peak close to —1.1 V that increases with the Ni(II)
concentration was obtained. As shown in Table 1 and Figure 2b, good linear responses of
peak area vs. Ni(II) concentration was attained.

On the other hand, sensitivity was established from the slope of the calibration curve
and the limit of detection (LOD) and the limit of quantification (LOQ) were computed as
three and ten times, respectively, the standard deviation of the intercept over the slope of
the calibration curves. Table 1 reports the calibration data obtained using a SPCE. LOD
and LOQ were at the level of j1g L1 and a linear response up to 150 pg L~! was achieved.

Typical concentrations of nickel in sediments and soils range from 4 to 80 mg Kg !,
nickel concentrations in surface water and groundwater range between 3 and 10 pug L~!
and in drinking water the average concentration of nickel is between 2 and 4.3 pg L~ [15].
Moreover, as it is stated in the introduction section, the EPA recommends that the nickel
levels in drinking water do not exceed 0.1 mg L~!. Therefore, the reported calibration data
suggest that SPCE could be a fully appropriate sensor for the determination of Ni(II) at
trace levels in environmental samples.



Chemosensors 2021, 9, 94

6 of 12

®

100

50

Area (x108/ a. u.)

0 50 100 150

(a) Crian (ng L1

-10

_30 1 1 Il 1 1 J
-0.7 -0.8 -0.9 -1.0 -1.1 -1.2 -1.3

E )
Figure 2. (a) Adsorptive voltammograms and (b) calibration plots of Ni(II) using a SPCE in 0.1 mol L1

ammonia/ammonium buffer solution (pH 9.2) and 5 x 107> mol L~! dimethylglyoxime (DMG)
applying a E4 of —0.7 V and a tq of 120 s. Blank signal in dashed line. In (b) error bars of the peak areas
are shown.

Regarding previous results connected with the voltametric determination of Ni(II)
and, as can be extracted from Table 2, it should be highlighted that (i) the linear range
obtained using a SPCE is much wider and less restricted to lower concentrations than
most of the values obtained using bismuth-based, antimony-based, lead-based or mercury-
based electrodes; (ii) the obtained LODs and LOQs are considerably lower than most of
those provided by modified electrodes based on DMG. Compared to those reported using
bismuth-based, antimony-based and lead-based electrodes, the LOD and LOQ obtained
using a SPCE are of the order or even slightly better depending on the considered electrode.
However, slightly lower LODs were reported when a mercury based- electrode was used as
sensing unit; and (iii) the deposition time (120 s) applied using a SPCE is in the lower range
of the deposition times reported for the voltametric determination of Ni(II), which range
from 30 to 1500 s, depending on the considered electrode. Therefore, the good analytical
performance, together with the fact that SPCEs are non-toxic, low-cost and reproducible
devices that do not require any polishing, cleaning or modification procedure, allows us
to assert that SPCE can be applied for a fast, simple and low-cost stripping voltametric
determination of Ni(II) at very low concentration levels.
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Table 2. Summary of voltametric methods published so far for the determination of nickel.

. Linear Range LOD Deposition
Electrode Technique (ugL-1) (ugLY) Time (s) Ref.
Bismuth film glassy carbon electrode AdSV 0-80 0.8 180 [23]
AdSV
Bismuth film gl bon electrod - . 24
ismuth film glassy carbon electrode CCAdSCP 2-12 0.26 60 [24]
Rotating-disc bismuth-film electrode SWAdSV 1-14 0.1 300 [25]
Exsitu bismuth film microelectrode SWAdCSV 0.2-2 0.09 120 [26]
Sputtered bismuth film electrode SWAdSV 5-40 0.1 90 [27]
Sputtered antimony film electrodes SWAdSV 0-30 0.2 60 [28]
In-situ bismuth film glassy carbon electrode SWAdSV 0.3-3 0.06 120 [29]
In-situ antimony film glassy carbon electrode SWAdSV 2-20 0.11 60 [30]
Solid bismuth vibrating electrode SWAdCSV 0-10 0.6 30 [31]
Macroporous bismuth film screen-printed AdCSV 1-10 0.027 180 [32]
carbon electrode
Renewable b1smuth bulk annular band DPAJSV 0.6-41 018 30 [33]
working electrode
Ex-situ antimony film screen-printed 31-197 0.9
carbon electrode 34
Ex-situ bismuth film screen-printed DPAdSY 120 341
9.8-226 29
carbon electrode
Sputtered bismuth screen-printed electrode 15.6-226 47
Chemically modified el.ec.trode based on DPV 29.2935 29 240 [35]
dimethylglyoxime-containing carbon paste
_ Classy carbon coated with SWAJCSV 18-180 18 240 [36]
dimethylglyoxime-containing polymers
Chelating agent—qulfled Nafion-coated SWASV 0.1-100 01 300 [37]
mercury-film electrode
0.025-6 0.005
Cation exchanger-modified carbon paste electrode a 38
g ifi P AAdSV 6600 0.006 720 + 300 [38]
Carbon paste modlﬁed elec’Frode containing DPV 0.29-293 016 1500 [39]
dimethylglyoxime
Screen—Prlnted electrf)des. moch.ﬁed with DPV 60-500 30 120 [40]
dimethylglyoxime in nafion
Nafion-graphene dimethylglyoxime modified AdCSV 220 15 120 [41]
glassy carbon electrode
Dimethylglyoxime modified 7.6-200° 2.3b
screen-printed electrodes DPAdSV 23.6-200 € 7.1¢ 60 [42]
Hanging mercury drop electrode SWAdSV — 0.003 60-180 [20]
. 0.3-6 0.1 30 )
Hanging mercury drop electrode CSWV 0.06-6 0.01 120 [43]
Hanging mercury drop electrode AdSV 0.3-3 0.06 180 [44]
Hanging mercury drop electrode SWV 0-18 0.07 120 [45]
Screen-printed electrode modified with lead film SWAdSV 5.9-35.2 0.6 60 [46]
P 0.6-2.9 0.2 90
In-situ plate(’:l lead.ﬁlm on carbon fiber SWAJSV 01-6 0.05 240 [47]
working microelectrode
Screen-printed carbon electrode DPAdSV 1.7-150 0.5 120 This work

2 The quantification of nickel takes place after 12 min of accumulation and 5 min of deposition. ? Dimethylglyoxime modified screen-printed
electrode was prepared from nine additions of 25 uL of DMG solution with a rest period of 15 min between additions. ¢ Dimethylglyoxime
modified screen-printed electrode was prepared from three additions of 75 puL of DMG solution with a rest period of 30 min between
additions. AAdSV: anodic adsorptive stripping voltammetry, AdSV: adsorptive stripping voltammetry, AdCSV: Adsorptive cathodic
stripping voltammetry; CCAdSCP: adsorptive stripping constant current chronopotentiometry; CSWV: cathodic square wave voltammetry,
DPAdSV: differential pulse adsorptive stripping voltammetry, DPV: differential pulse voltammetry, SWAdSV: square wave adsorptive
stripping voltammetry; SWV: square wave voltammetry.

3.2. Interference Study

The potential interference of some frequently occurring metal ions such us Co(Il),
Pd(II), Pt(II) and Fe(Ill) in the determination of Ni(Il) by DPAdSV using a SPCE was
assessed. These metal ions could competitively complex with DMG or generate reduction
peaks that overlap with or almost entirely suppress the Ni(II) peak.



Chemosensors 2021, 9, 94

8of 12

1:50
=
w 1:10
=
E 1:5
=
S 12
g
= 1
z 2:1
4:1
10 ppb Ni(II)

Ni(Il):metal ion ratios of 4:1, 2:1, 1:1, 1:2, 1:5, 1:10 and 1:50 were investigated, starting
with a concentration of Ni(II) of 10 pg Lt (Figure 3). As an interference criterion, a
difference between the peak area of the Ni(Il) without and with the presence of the possible
interfering ion higher than 15% was considered. Stripping voltametric measurements
achieved until a 1:5 Ni(II):metal ion ratio indicate that Co(II) and Fe(III) do not interfere
with the Ni(II) peak, whereas Ni(Il):metal ion ratios of 1:10 and 1:50 result in a significant
increase of the Ni(ll) peak area with respect to that without Co(II) or Fe(IlI). Pd(II) also
does not display interference until a 1:2 Ni(II):Pd(II) ratio, whereas a considerable increase
of the Ni(Il) peak area is observed for ratios of 1:5 and 1:10 Ni(II):Pd(II). However, at a
1:50 Ni(II):Pd(II) ratio, the Ni(Il) is practically suppressed. In the case of Pt(II), at a 1:50
Ni(II):Pt(Il) ratio, an increase of the Ni(Il) peak area with respect to that without Pt(II) of
19% was achieved, whereas lower Ni(II):Pt(Il) ratios did not result in interference.

0.0

0.5 1.0 1.5 2.0 2.5
mFe(Ill) mPy(Il) mWPJ(I) mCo(ll)

Normalized area (a. u.)

Figure 3. Effect of different Ni(II): metal ion ratios on the Ni(II) peak area. Co(II), Pd(II), Pt(II) and Fe(Il) were considered as
potential interfering metal ions.

Unlike other previous results achieved using bismuth and antimony-based elec-
trodes [27,34], it can be noted that the use of SPCE as sensing unit does not result in
overlapping AdSV signals between Ni(II) and Co(Il), at least until a 1:5 Ni(Il):Co(II) ratio,
which ensures the successful determination of Ni(Il). This is especially important because
both metals ions usually present very close reduction peaks that hinder the determination
of one of the metals in the presence of the other.

3.3. Analysis of a Wastewater Certified Reference Material by Using a SPCE

The applicability of the DPAdSV method using SPCE was assessed by analyzing Ni(II)
in a wastewater certified reference material. The wastewater sample was not subjected
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to any treatment such as digestion, filtration or preconcentration. The determination of
Ni(II)-ions was carried out by means of the standard addition method. Then, DPAdSV
measurements were performed at the above optimized conditions, including five additions
of Ni(II). The DPAASV determination of Ni(Il), in the wastewater sample, was performed
in triplicate using a new SPCE unit for each replicate. Figure 4a shows a series of DPAdS
voltammograms after standard additions for the determination of Ni(Il) in the wastewater
sample. As in the calibration data, a well-shaped Ni(Il) stripping voltametric peak was
obtained. A good correlation of the DPAdSV measurement carried out using SPCE was
achieved as it is shown in the Ni(II) standard addition calibration plot (Figure 4b). Table 3
reports the Ni(Il) concentration data obtained from the DPAdSV determination of the three
replicates of the certified wastewater sample made using the SPCE. An excellent agreement
was achieved between all the three replicates, as well as with the certified value of Ni(II)
in the wastewater. Moreover, it should be noted that the certified wastewater solution
contains 12 more elements, Al, As, Cd, Co, Cr, Cu, Fe, Mn, P, Pb, V and Zn, at concentration
ratios Ni:element (calculated in grams) of 1:2, 10:1, 50:1, 17:1, 5:1, 2.5:1, 1:1, 2.5:1, 1:1, 10:1;
10:1 and 1.7:1, respectively, without affecting the determination of Ni(II) in the sample.

b _
(b) e R2y, = 0.9998
2
< 50
oy
=
z
= 30 F
@
St
<«
;/10;‘
-10 10 10 20 30 40 50

CN.(II) (ng LY
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7~~~
“
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Figure 4. (a) Differential pulse adsorptive stripping voltammograms of Ni(I) in a wastewater sample
using a SPCE in 0.1 mol L~! ammonia/ammonium buffer solution (pH 9.2) and 5 x 10> mol L1
DMG applying a E4 of —0.7 V and a tq of 120 s; (b) Ni(II) standard addition calibration plot. In (b)
error bars of the peak areas are shown.
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Table 3. Total concentrations of Ni(II) determined in a wastewater certified reference material (SPS-
WW?2) by AdSV on SPCE by standard addition calibration method at ammonium/ammonia buffer
pH 9.2 applying an Ed of —0.7 V and a td of 120 s.

c(ugL-1) RSD (%) Relative Error (%)
SPCE 4954.0 0.4 0.9
Certified metal value 5000.0 0.5 —

Looking at the excellent results obtained in the determination of Ni(II) in the wastewa-
ter sample, we can assert that a disposable and commercial screen-printed carbon electrode
can be successfully applied for the AdSV determination of Ni(II) in the presence of dimethyl-
glyoxime as complexing agent in real water samples at very low concentration levels, even
in the presence of other elements at comparable concentrations as Ni(II). Thus, SPCE is an
authentic alternative not only to the most classical mercury and bismuth or antimony-based
electrodes, but also to the modified electrodes based on DMG for the determination of
Ni(Il) in natural samples.

4. Conclusions

In this work, two commercial screen-printed electrodes based on carbon (SPCE) and
gold (SPAuE) were tested as sensing devices for the determination of Ni(Il) by DPAASV in
the presence of DMG as a complexing agent.

The use of SPAUE did not give rise to the typical Ni(Il) peak, being ruled out as
sensing device for the stripping determination of Ni(II). However, when a SPCE is used, a
well-defined Ni(II) stripping peak appears that increases proportionally with both t4 and
Ni(Il) concentration. After the optimization of the electrochemical parameters, calibration
curves applying an Eq of —0.7 V during a tq of 120 s were conducted. LOD and LOQ
at levels of pg L~! and a linearity of up to 150 ug L~! were achieved. Moreover, as can
be inferred from the obtained repeatability values, a SPCE unit can be applied for many
measurements without degradation signals. Thus, it can be concluded that all the analytical
parameters evaluated were similar or even better than those reported in previous studies
for bismuth-based, antimony-based, lead-based or modified electrode-based on DMG.

In addition, SPCE was successfully applied for Ni(Il) determination in a wastewater
sample as a demonstration of its applicability for natural samples analysis, being able to
quantify Ni(II) concentration with very high trueness and excellent reproducibility, inferred
by the relative error = 0.9% and the RSD = 0.4%, respectively.

Thus, the good stability, selectivity, reproducibility, and LOD and LOQ at ug L~ levels
added to the inherent strengths of using screen-printed electrodes, i.e., low-cost, disposable
character, reproducible units ... , and the lack of modification procedures involved make
the SPCE particularly well suited to being implemented in the monitoring of Ni(Il) at
low pg L1 levels in samples of environmental interest.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemosensors9050094 /s1, Figure S1: Differential pulse adsorptive stripping voltammograms
of 10 pg L-1 Ni(II) recorded on SPCE in 0.1 mol L~! ammonia / ammonium buffer solution (pH9.2)
and 5 x 10~° mol L~ DMG applying a Ed of —0.7 V and a td of 30, 60, 90, 120, 180 and 240 s.
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