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Abstract: A novel pyridylhydrazone-tethered BODIPY (BODIPY-PH) was synthesized, fully char-
acterized via nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopic (FTIR),
and single-crystal X-ray diffraction (SC-XRD) techniques, and developed for the selective detection
of Fe3+ through fluorescent enhancement process. This derivative showed 1:1 binding with Fe3+ in
an acetonitrile-water mixture (1:9 v/v) with the binding constant (K) of 5.4 × 104 M−1 and the limit
of detection of 0.58 µM. The Fe3+ complexation reaction has been proved to be a reversible process
and could be effectively repeated up to three cycles. The electronic properties of BODIPY-PH and its
Fe3+ complex modeled by the density functional theory (DFT) method suggested the presence of
chelation-enhanced fluorescence (CHEF) effect in the Fe3+ binding reaction. The X-ray absorption
spectroscopy (XAS) probed at Fe K-edge confirmed the complex formation between BODIPY-PH and
the Fe3+ in an octahedral geometry. Finally, bioimaging against human embryonic kidney (Hek293)
cell, through confocal fluorescence microscopic technique indicated that the BODIPY-PH displayed
good permeability and low toxicity toward the tested cell lines and showed enhanced fluorescent
signal in the cells incubated with Fe3+ proving its capability for Fe3+ analysis in cellular matrix.

Keywords: BODIPY; ferric ions; fluorescence; bioimaging; pyridyl group

1. Introduction

Iron is one of the most important transition metals due to its vital roles in oxygen
metabolism and electron transfer processes in numerous biological systems [1–4]. It cat-
alyzes oxygen-related reactions in several enzymes and involves in DNA and RNA synthe-
sis [5,6]. However, excessive iron in live cells can induce the generation of reactive oxygen
species (ROS) leading to cellular toxicity. This phenomenon has been linked to serious
neurological disorders, such as Alzheimer’s, Wilson’s, and Parkinson’s disease [7–9]. In
addition, immoderate iron uptake could cause detrimental diseases, including kidneys,
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pancreas, and liver failures as well as certain cancers [10–13]. Therefore, the development
of efficient sensors for iron detections in clinical, environmental, and industrial samples is
highly needed for safety issues.

Nowadays, standard methods for ferric ion (Fe3+) detection rely on sophisticated
instruments, such as atomic absorption spectrometry (AAS) [14], inductively coupled
plasma mass spectroscopy (ICP-MS) [15], and inductively coupled plasma-atomic emission
spectrometry (ICP-AES) [16]. These techniques are expensive, time-consuming, and not
suitable for both on-site and cellular analysis. On the other hand, fluorescence technique
cooperating with appropriate molecular sensors or carbon dots is a simple and cost-effective
detection method and it can be applicable for the detections in field tests, cellular samples,
as well as on paper substrates [17–21].

As part of our continuing interest in the development of boron-based imaging
agents [22–24], we decided to synthesize a novel fluorescence compound based on boron
difluoride dipyrromethene (BODIPY) and functionalize it with a pyridylhydrazone (PH)
unit acting as a metal-binding site (Figure 1). Although the capability of PH unit in
Fe3+ complexation has been demonstrated in pyrene-based compounds (I), the sensing
properties of the PH-functionalized fluorescent probe toward ferric ions have not been sys-
tematically reported elsewhere [25]. Apart from metal binding, the PH moiety is involved
in reaction-based fluorescence turn-on sensor for Au3+ ions and hypochlorous acid (HOCl)
in BODIPY (II) and rhodamine (III) backbones, respectively (Figure 1) [26,27]. Herein, we
reported the synthesis of pyridylhydrazone-tethered BODIPY compound (BODIPY-PH)
and its systematic sensing properties toward ferric ions in aqueous solutions using UV-
Vis/fluorescence spectroscopic, nuclear magnetic resonance (NMR), Fourier transform
infrared spectroscopic (FTIR), and X-ray absorption spectroscopic (XAS) techniques. The
latter technique was operated through high-energy synchrotron radiation which can give
in-depth details on metal coordination environment. Furthermore, fluorescence imaging
experiments have been carried out in living Hek293 cells to prove the biocompatibility
and capability in mapping Fe3+ concentrations in the cellular matrix of the synthesized
compound.
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Figure 1. Structures of pyridylhydrazone-based fluorescent sensors in the literature and the BOD-
IPY-PH in this work. 

2. Experimental Section 
2.1. Materials and Instruments 

The aldehyde-functionalized BODIPY (BODIPY-CHO) shown in Scheme 1 was syn-
thesized according to the reported procedures [28,29]. 2-Hydrazinopyridine, Dess–Martin 
periodinane, 2,3-dichloro-5,6-dicyanoquinone (DDQ), 2,4-dimethylpyrrole, and glacial 

Figure 1. Structures of pyridylhydrazone-based fluorescent sensors in the literature and the BODIPY-
PH in this work.

2. Experimental Section
2.1. Materials and Instruments

The aldehyde-functionalized BODIPY (BODIPY-CHO) shown in Scheme 1 was syn-
thesized according to the reported procedures [28,29]. 2-Hydrazinopyridine, Dess–Martin
periodinane, 2,3-dichloro-5,6-dicyanoquinone (DDQ), 2,4-dimethylpyrrole, and glacial
acetic acid were purchased from Tokyo Chemical Industry (TCI), Tokyo, Japan; boron
trifluoride diethyl etherate purified by redistillation, and 4-(hydroxymethyl)benzaldehyde
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dimethyl acetal were purchased from Sigma-Aldrich, St. Louis, MO, USA; ethanol (ACS
grade) was purchased from Honeywell, Charlotte, NC, USA. Standard buffer solutions pH
1 to 12 were purchased from Merck, Darmstadt, Germany (glycine/NaCl/HCl for pH 1, Cit-
ric acid/NaOH/HCl for pH 2–6, Na2HPO4/KH2PO4 for pH 7, boric acid/KCl/NaOH for
pH 8–11, Na3PO4/NaOH for pH 12). All chemicals were used without further purification.
Electrospray mass spectra were obtained from a Bruker micrOTOF spectrometer (Bruker,
Billerica, MA, USA). NMR spectra were recorded on a Bruker Avance 500 MHz NMR
spectrometer (Bruker, Billerica, MA, USA) at ambient temperature. Chemical shifts are
given in ppm and are referenced to residual 1H and 13C solvent signals. Fourier transform
infrared spectroscopy (FTIR) spectra were acquired from an IRTracer-100 spectrophotome-
ter (SHIMADZU, Kyoto, Japan). The crystallographic measurement was performed using
a Bruker D8 Venture diffractometer (Bruker, Billerica, MA, USA). UV-VIS absorption and
fluorescence spectra were acquired from a Cary Series UV-Vis-NIR spectrophotometer
(Agilent Tech, Santa Clara, CA, USA) and a Perkin Elmer LS55 fluorescence spectrometer
(PerkinElmer, Waltham, MA, USA), respectively.
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Scheme 1. The synthesis of BODPY-PH.

2.2. Synthetic Procedures

Synthesis of (E)-5,5-difluoro-1,3,7,9-tetramethyl-10-(4-((2-(pyridin-2-yl)hydrazono)methyl)
phenyl)-5H-dipyrrolo [1,2-c:2′,1′-f][1–3]diazaborinin-4-ium-5-uide (BODIPY-PH). BODIPY-
CHO (438 mg, 1.24 mmol) and 2-hydrazinopyridine (160 mg, 1.49 mmol) were dissolved in
ethanol (10 mL). A few drops of glacial acetic acid were then added to the mixture. The
reaction mixture was refluxed at 90 ◦C for 4 h. After solvent evaporation, the red solid
was obtained. The solid was then washed with DI water (2 × 30 mL), filtered, and dried
under reduced pressure. The BODIPY-PH was obtained in 58.2% yield (75.5 mg). 1H NMR
(500 MHz, DMSO) δ 10.98 (s, 1H), 8.08 (d, J = 4.2 Hz, 1H), 8.06 (s, 1H), 7.80 (d, J = 8.0 Hz,
2H), 7.61 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.4 Hz, 1H), 6.74 (t, 1H),
6.15 (s, 2H), 2.42 (s, 6H), 1.37 (s, 6H). 13C NMR (126 MHz, DMSO) δ 157.38, 155.38, 148.23,
143.14, 142.09, 138.40, 138.20, 136.71, 134.23, 131.08, 128.73, 127.06, 121.86, 115.67, 106.89.
HRMS (ESI), m/z calcd for C25H24BF2N5 [M + H]+, 444.2170; found, 444.2165.

2.3. Crystallographic Measurements

A single crystal of BODPY-PH was grown by slow diffusion of pentane vapor into its
solution in tetrahydrofuran for 5 days. The diffraction spots were collected on a Bruker
D8 Venture diffractometer controlled by APEX3 software [30]. Absorption correction
was carried out by the multi-scan method using SADABS [31]. Cell refinement and data
reduction were carried out by SAINT [30]. The structure solution was performed on Olex2
software [32] using the intrinsic phasing method of SHELXT package [33]. The structure
after structure solution process was then refined on F2 by a full-matrix least-squares
method using the SHELXL program package [34]. All non-hydrogen atoms were treated
anisotropically, while the N-bound H (N4) atom was located in a difference map, and their
positions were freely refined. The C-bound H atoms were placed in idealized positions
(C—H = 0.95–1.00 Å depending on hybridization) and refined as riding atoms. The solvent
mask command was employed in order to remove the contribution of the electron scattering
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from the disordered solvents [32]. The constraint Uiso(H) = 1.2Ueq(carrier) was applied
in all cases. The software package used to prepare molecular graphics and materials for
publication was Mercury [35].

2.4. General Details for UV-Vis and Fluorescence Measurements

Preparation of the stock solutions: The stock solutions of BODIPY-PH compounds
was prepared by dissolving 20 mg of BODIPY-PH with 50 mL of acetonitrile in standard
volumetric flasks (0.9 mM). The stock solution of Fe(NO3)3.9H2O was prepared by dis-
solving 50 mg of Fe(NO3)3.9H2O with 25 mL water in standard volumetric flasks (5 mM).
UV-Vis and fluorescence measurements were performed by taking appropriate amount of
these stock solutions.

UV-Vis absorption measurement: The suitable amount of stock solution of BODIPY-
PH was added to acetonitrile:water (1:9) solution (3 mL) in a 3.5 mL quartz cuvette (final
concentration = 10 µM). The UV-Vis absorption spectra were recorded before and after
15 min incubation time upon addition of appropriate amounts of Fe(NO3)3.9H2O.

Fluorescence measurement: The suitable amount of stock solution of BODIPY-PH
was added to acetonitrile:water (1:9) solution (3 mL) in a 3.5 mL quartz cuvette (final
concentration = 10 µM). The fluorescence spectra were recorded before and after 15 min
incubation time upon addition of appropriate amounts of Fe(NO3)3.9H2O, using the
following parameters: excitation wavelength = 475 nm, excitation slit = 10 nm, and emission
slit = 10 nm.

The solvent system, acetonitrile:water = 1:9 v/v, was used for UV-Vis and fluorescence
measurements throughout the manuscript as we aim to compare the Fe3+-sensing perfor-
mance of our probe with the reported BODIPY-based sensor in the literature [36] using the
same solvent system.

2.5. Fluorescence Quantum Yields Calculations

Fluorescence quantum yields of the BODIPY-PH and its iron complex were measured
in acetonitrile-water mixture (1:9 v/v) using fluorescein in 0.1M NaOH solution as a
standard (Qstd = 0.95) and were calculated based on the Equation (1) [37]:

Q = Qstd ×
(Asample

Astd

)
×
(

Istd
Isample

)
×
(

sample

std

)2
(1)

where Q denotes the fluorescence quantum yields, A is the peak area of emission spec-
tra, I stands for absorption intensities at the excitation wavelength, and is the solvent
reflective index.

2.6. Binding Stoichiometry and Binding Constant Determination

The binding stoichiometry of the complexes between BODIPY-PH and ferric ions (Fe3+)
was determined by Job’s plot experiments [38]. The samples for Job’s plot were prepared by
mixing BODIPY-PH with Fe3+ at different ratios of BODIPY-PH over total concentration of
BODIPY-PH and Fe3+ ([BODIPY-PH]/[ BODIPY-PH] + [Fe3+]) in acetonitrile-water solution
(1:9 v/v), while keeping the overall concentration of BODIPY-PH and Fe3+ ([BODIPY-
PH] + [Fe3+]) at 50 µM. The emission intensities of the samples were recorded at 518 nm
(excitation wavelength = 475 nm) and plotted against molar fractions of BODIPY-PH
([BODIPY-PH]/[ BODIPY-PH] + [Fe3+]).

The binding constant values were determined from emission intensities of BODIPY-
PH (10 µM) at 518 nm upon the constant addition of Fe3+ from 1 molar equivalent (10 µM)
to 16 molar equivalent (160 µM) (10 µM increment). The data were fitted to the modified
Benesi-Hildebrand Equation (2) [39]:

1
F− Fmin

=
1

K(Fmax − Fmin)
[
Fe3+

] + 1
Fmax − Fmin

(2)



Chemosensors 2021, 9, 165 5 of 18

where Fmin denotes the emission intensities of BODIPY-based dyes in the absence of ferric
ions, F is the emission intensities of the dyes at intermediate Fe3+ concentrations, Fmax
stands for the emission intensities of the dyes at the complete interaction with ferric ions,
and K is the binding constant values.

2.7. Theoretical Calculations

To understand the geometry of BODIPY-PH and the formation of a complex system
of BODIPY-PH and Fe3+, BH and HLYP function [40] was performed in implicit aqueous
solution using conductor-like polarized continuum model (C-PCM) framework [41,42].
The basis set of 6-311G* was applied for all atoms, except for the Fe atom which the
LANL2DZ effective core potential was applied to describe the Fe core electrons to reduce
computational cost. The electronic properties based on optimized structure of this system
were then explored. The frontier molecular orbitals (FMOs) and HOMO-LUMO energy
diagrams of BODIPY-PH and its Fe3+ complex were also calculated. All calculations were
performed by the Gaussian 16 program package [43].

2.8. X-ray Absorption Spectroscopy (XAS)

To investigate the binding and complexation between the BODIPY-PH ligand and
the Fe3+ ions, the mixture in acetonitrile-water (1:9 v/v) was characterized by employing
X-ray absorption spectroscopy (XAS) in both X-ray absorption near edge structure (XANES)
and extended X-ray absorption fine structure (EXAFS) regions. The XANES and EXAFS
at Fe K-edge were collected at Beamline 1.1W: Multiple X-ray Techniques, Synchrotron
Light Research Institute (SLRI), Thailand. The XAS measurements were simultaneously
conducted in both transmission and fluorescence modes at ambient atmosphere. The Fe
foil was simultaneously measured together with the sample solutions and was further
used as a standard reference for an in-line calibration of the energy shift during the
synchrotron-operating period. The XAS data of the 100 mM solutions of Fe2+ and Fe3+ in
acetonitrile-water (1:9 v/v) were also collected for comparing with the mixture of BODIPY-
PH ligand and the Fe3+ ions. The XANES data were proceeded by using ATHENA software
and were analyzed to examine the oxidation state and chemical speciation of the mixture
between BODIPY-PH ligand and Fe3+ ions with respect to the standards. The EXAFS fitting
was carried out by ARTEMIS software using the DFT-calculated structural model to clarify
the structural information of the binding and complexation between BODIPY-PH ligand
and Fe3+ ions.

2.9. Cell Viability and Imaging Experiments

Cell viability assay: Human embryonic kidney 293 (HEK-293) cells were cultured on a
75 cm2 culture flask in Dulbecco’s modified Eagle medium/high glucose (DMEM/HIGH
GLUCOSE, GE healthcare Life Sciences HyClone Laboratories) supplemented with 10%
fetal bovine serum (FBS, Gibco) and 1% penicillin streptomycin solution 100X (CORNING).
All cells were cultured in a humidified incubator at 37 ◦C with 5% CO2. For cell viability as-
say, HEK-293 cells were seeded into 96-well cell culture plates at density 7 × 103 cells/well
and incubated for 24 h at 37 ◦C under humidified air containing 5% CO2. After that, cell
culture media were replaced with BODIPY-PH in DMEM at various concentrations (0,
5, 10, 20, 30, 40, and 50 µM). After 24 h incubation, the cell viabilities were measured
using MTT assay. The cells were washed with PBS (three times) before being treated
with methylthiazolyldiphenyl-tetrazolium bromide (20 µL, 0.5 mg/mL, Sigma-Aldrich)
for 3 h. Then, culture media were replaced with DMSO and the cell viabilities were deter-
mined through UV-vis absorption of the resulting formazan at wavelength 560 nm using
microplate reader (BMG Labtech/SPECTROstar Nano).

Cell imaging experiments: For confocal imaging, HEK-293 cells were seeded at a
density of 7 × 103 cells per well in 8-well chambered coverglass with non-removable wells
(Nunc Lab-Tek II) and incubated for 24 h at 37 ◦C under 5% CO2. After that, cell culture
media were removed and the cells were pre-treated with a solution of Fe(NO3)3 ·9H2O
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in DMEM with 5% FBS at final concentrations of 10 or 20 µM for 30 min. Afterwards,
the cells were washed three times with PBS before adding solutions of BODIPY-PH in
DMEM with 5% FBS at final concentrations of 5 or 10 µM. After 30 min incubation, the
cells were washed three times with PBS to remove the non-uptake dye before being stained
with 1.0 µM Hoechst 33,342 (Thermo Fisher Scientific) for 10 min. All cells were brought
to image under laser scanning confocal microscope (LSCM, Nikon A1Rsi). BODIPY-PH
was excited by 488 nm laser and Hoechst 33,342 was excited by 405 nm laser. A 60× oil
immersion objective lens was used. Image analysis was performed using ImageJ software,
version 1.52v (developed by Wayne Rasband, National Institutes of Health, Bethesda, MD,
USA) and Java 1.8.0_112 (64-bit) engine.

3. Results and Discussion
3.1. Synthesis, Characterizations, and Crystal Structures of BODIPY-PH

A new pyridylhydrazone-linked BODIPY probe (BODIPY-PH) has been prepared
by simple condensation reaction between the known aldehyde-functionalized BODIPY
(BODIPY-CHO) and 2-hydrazinopyridine as demonstrated in Scheme 1. Its 1H NMR
spectra manifested the anticipated phenyl and pyridyl resonances at the aromatic region
(6–8 ppm) as well as two methyl resonances of the BODIPY backbone (Figure S1, Supple-
mentary Materials). The NH signal of this derivative was distinctly shifted downfield to
around 11 ppm as seen in other pyridylhydrazone derivatives [18]. The observations of the
positive molecular ions by electrospray mass spectrometry at m/z = 444.2165 served as an
additional confirmation for the identity of BODIPY-PH (Figure S3).

Additionally, the structure of BODIPY-PH was confirmed by single crystal X-ray
crystallographic technique. The ORTEP plot showing the molecular structure of BODIPY-
PH is illustrated in Figure 2A, while the corresponding crystal data and the refinement
details are tabulated in Table S1. The compound BODIPY-PH crystallized in P 1 space
group of triclinic crystal structure with Z = 2 possessing the asymmetric unit of a single
BODIPY-PH molecule. From the crystal structure, the non-hydrogen atoms in the BODIPY
moiety, excluding fluorine (C1–C4/C7–C11/N1–N2/B1) are arranged planarly as observed
from the r.m.s. deviation of the C1–C4/C7–C11/N1–N2/B1 mean plane of 0.0377 Å.
The boron atom is the most deviated atom within the BODIPY plane with the deviation
of 0.074 (3) Å as it forms sp3 hybridization (other atoms possess sp2 hybridization). In
addition, the non-hydrogen atoms in the benzene ring adjacent to the BODIPY moiety
(C14–C19) and the benzylidenehydrazinylpyridine (C14–C25/N3–N5) group are located
planarly. The corresponding r.m.s. deviations are 0.0056 Å and 0.0247 Å for the benzene
and benzylidenehydrazinylpyridine groups, respectively. The mean planes of the BODIPY
and benzene rings are roughly perpendicular to each other exhibiting the dihedral angle of
87.70 (9)◦ (Figure 2B).
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The intermolecular interactions within the crystals are displayed in Figure 3 and
listed in Table S2. The N—H· · ·N hydrogen bond is observed in the crystal structure of
BODIPY-PH. The freely refined N—H bond distance is 0.89(2) Å, while the N4—H4· · ·N5
bond angle is 177 (2)◦. The N—H· · ·N hydrogen bonds (red dash lines in Figure 3) linked
two molecules related by an inversion center to a R2

2(8)-loop motif constructed from a
H4—N4—C21—N5—H4—N4—C21—N5 synthon. Moreover, two different C—H· · · F
interactions are observed. The first one (C25—H25· · · F2; magenta dash lines) joins the
BODIPY-PH molecules related by a translational symmetry, while the second one (C15—
H15· · · F1; orange dash lines) links the inversion-related BODIPY-PH molecules. According
to the steric hindrance of the two perpendicular bulky groups, the centroids of aromatic
rings are pushed off. Consequently, the distance between the ring centroids is larger than
4 Å. Hence, no π–π interactions are observed in the crystal structure [44].
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well as the C—H· · · F interactions (orange and magenta dash lines) in the extended structure of BODIPY-PH.

3.2. Photophysical Properties toward Ferric Ion Sensing

The photophysical properties of BODIPY-PH (10 µM) were investigated toward ferric
ions in an aqueous solution (acetonitrile-water = 1:9 v/v). Upon constant addition of 1
molar equivalent (10 µM) to 16 molar equivalents (160 µM) of Fe3+ (10 µM increment) to
the 1 molar equivalent (10 µM) of BODIPY-PH, the absorption intensities of the BODIPY
derivative at 500 nm gradually increased while the intensities at 543 nm concurrently
decreased resulting in a color change from pink to orange (Figure 4A). As shown in
Figure 4B, the emission spectra of BODIPY-PH exhibited around a 2.5-fold increase upon
adding ferric ions and the emission maxima at the concentrations of Fe3+ from low to
high displayed a slightly bathochromic shift from 512 nm to 518 nm. Both absorption and
emission intensities remained constant at 10 equivalents of Fe3+ added indicating ferric ion
saturation for BODIPY-PH. In addition, the fluorescence quantum yield of BODIPY-PH was
enhanced from 1.3 (±0.6, n = 3) % to 3.3 (±0.6, n = 3) % after additions of 10 equivalents of
Fe3+. These results confirmed the potential of this pyridylhydrazone-tethered BODIPY as a
fluorescence turn-on chemosensor for Fe3+ in aqueous media.
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Figure 4. Changes in the absorption spectra of BODIPY-PH (A), and emission spectra of BODIPY-PH (B) (excitation
wavelength = 475 nm) with respect to the increasing of Fe3+ equivalents (1–16 equiv.) in acetonitrile-water (1:9 v/v) solutions
(Note that, the final concentration of BODIPY-PH was fixed to be 10 µM).

3.3. Sensing Properties of BODIPY-PH toward Ferric Ions

The selectivity of BODIPY-PH toward various metal cations was investigated by
mixing them with 10 equivalence of Ag+, Al3+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Fe3+,
Hg2+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+, respectively. As demonstrated in Figure 5A,
only the presence of Fe3+ led to a strong green emission for BODIPY-PH suggesting its
high selectivity toward ferric ions. Al3+ and Cr3+ induced a weak green emission due
to their trivalent nature which has been observed in previous works [45–48], while Hg2+

caused a small fluorescence quenching. The interfering effect of the above-mentioned
cations toward Fe3+ sensing was also investigated. As seen in Figure 5B, the co-existence of
Fe3+ and Hg2+ could interfere with the detection of ferric ions in real applications as the
fluorescent quenching was noticeably observed. Based on previous literature, Hg2+ could
potentially bind to pyridyl unit in optical sensor systems [49–51], therefore, Hg2+ and Fe3+

could competitively bind to the pyridylhydrazone unit in BODIPY-PH.
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Figure 5. (A) The fluorescence spectra of BODIPY-PH in the presence of various metal cations (10 equiv.) and the images
BODIPY-PH (10 µM) upon addition of those metal ions. The inset displays bar charts of fluorescent intensities at 518 nm of
BODIPY-PH after additions of metal ions. (B) The fluorescence spectra of BODIPY-PH in the presence of Fe3+ co-existing
with other metal ions and the images BODIPY-PH (10 µM) in the presence of Fe3+ co-presenting with those metal ions. The
inset shows bar charts of fluorescent intensities at 518 nm of BODIPY-PH in the existence of Fe3+ co-presenting with other
metal ions.

The binding stoichiometry of BODIPY-PH-Fe3+ complex was proved by Job’s plot
analysis. As displayed in Figure 6A, the emission intensities at 518 nm were plotted
against molar fractions of BODIPY-PH ([BODIPY-PH]/[ BODIPY-PH] + [Fe3+])) at the
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constant total concentrations of BODIPY-PH and Fe3+ ([BODIPY-PH] + [Fe3+]) of 50 µM.
The maximum emission intensity of this BODIPY derivative was observed at the mole
fractions of 0.5, suggesting 1:1 binding stoichiometry of BODIPY-PH-Fe3+ complex [38].
Next, the association constant (K) for this metal-ligand formation was determined using
Benesi-Hildebrand Equation (2). The linearly fitted plot between 1/(F-Fmin) and 1/[Fe3+]
further confirmed the 1:1 binding ratio between BODIPY-PH and Fe3+ ions (Figure 6B).
Derived from the slope of this plot, the K value was calculated as 5.35 × 104 M−1 which is
comparable with those of BODIPY-based sensor in the literature (Table 1).
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Next, the Fe3+ binding at the pyridylhydrazone (PH) unit was investigated by 1H
NMR spectroscopy. As Fe3+ is paramagnetic ions that can affect relaxation times of proton-
NMR spectra, the NMR resonance frequency of protons close to Fe3+ binding unit could
be altered upon binding [52]. As displayed in Figure 7, the hydrazone proton signal (H4)
at 8.06 ppm completely disappeared and the amine proton resonance (H5) at 10.98 ppm
almost completely disappeared upon the addition of Fe3+. The rest of the proton peaks of
pyridylhydrazone moiety became broader indicating that Fe3+ bound to the PH unit which
is consistent with the previous findings [25,53,54]. In addition, the detections of molecular
ions at m/z = 639.0923 {[(BODIPY-PH-H)Fe(NO3)(DMSO)]+} and 684.0762 {[(BODIPY-PH-
H)Fe(NO3)(DMSO)(EtOH)] from electrospray ionization mass spectra (ESI-MS) confirmed
the existence of iron-BODIPY complex (Figure S4).
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FT-IR spectroscopy was also carried out to confirm the complex formation between
Fe3+ and BODIPY-PH (Figure 8). For the BODIPY-PH spectrum, the characteristic peaks
at 3181, 2978, 2926, 1597, and 1584 cm−1 were assigned to N—H, Cmethyl—H, Cmethyl—H,
C=N, and C=N stretching vibrations, respectively. It was observed that the wavenumbers
of the N—H and C=N peaks were found at the lower frequencies than those values reported
in the literature [55,56], due to the larger conjugation length. After complex formation, the
broad and intense O—H peak at 3231 cm−1 regarding the H2O ligands that coordinated to
the Fe3+ was detected. Moreover, the C=N peaks of the BODIPY-PH-Fe3+ complex were
enlarged and shifted toward the lower wavenumbers (1551, 1524 cm−1) compared to those
of BODIPY-PH. This suggested that the Schiff base nitrogen was likely to coordinate with
the Fe3+ ions [57] which is agreeable with the result from NMR spectroscopic technique.
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BODIPY-PH-Fe3+ (red line).

In addition, the limit of detection (LOD) of BODIPY-PH was calculated from the plots
of the increased fluorescence intensities and the Fe3+ concentrations, as demonstrated in
Figure S5 by using 3σ/m formula, where σ is the standard deviation of fluorescence signals
of the chemosensor without analyte and m is the slopes of the plots. The LOD of BODIPY-
PH was estimated as 0.58 µM, which was slightly higher than that of other reported
BODIPY-based Fe3+ sensors A and B and considerably higher than that of C (Table 1
and the structures of sensors show in Figure 9). However, compared with the reported
rhodamine-based sensors tethered nitrogen-chelating moiety (sensor D, E, F), the LOD of
BODIPY-PH was about 4 to 6-time lower, indicating superior sensitivity toward Fe3+.
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Table 1. Comparison of BODIPY-PH with other reported BODIPY- and rhodamine-based sensors for ferric ion detection.

Sensor Solvent System LOD
(µM)

Binding
Constant (K)

(Binding Mode: Fe3+: Ligand)

Sensing
Mechanism Reference

A Acetonitrile-water
(1:9 v/v) 0.13 1.0 × 104 M−1

(1:1)
Turn-on [36]

B Ethanol 0.14 3.1 × 104 M−1

(1:1)
Turn-on [48]

C water 0.014
K1 = 2.1 × 104 M−1

K2 = 8.8 × 104 M−1

(stepwise 1:1 and 2:1)
Turn-off [58]

D Methanol-water
(1:9 v/v) 2.2 6.9 × 103 M−1

(1:1)
Turn-on [59]

E Acetonitrile-water
(1:1 v/v) 3.5 N.R. Turn-on [60]

F Methanol-water
(4:6 v/v) 3 N.R. Turn-on [61]

BODIPY-PH Acetonitrile-water
(1:9 v/v) 0.58 5.4 × 104 M−1

(1:1)
Turn-on This work

N.R. = Not Report.

The effect of pH toward photophysical properties of BODIPY-PH (10 µM) with and
without the addition of Fe3+ was explored in acetonitrile-standard buffer solution (1:9 v/v)
in the pH range of 1–12. As seen in Figure 10, BODIPY-PH exhibited low fluorescence
signals at a pH range of 5–12, while showed the increased emission intensity with the
decreased pH from 5 to 1. Upon addition of Fe3+ (10 molar equivalents or 100 µM) to
the solution of BODIPY-PH (10 µM) in various pH, the highest fluorescent signal changes
were observed in the pH range from 5 to 7 which could be a suitable pH range for Fe3+

detection in real water samples. The emission intensities of BODIPY-PH in the presence
of Fe3+ decreased at pH > 7 indicating poor stability of BODIPY-PH-Fe3+ complex at high
pH values.
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Figure 10. Fluorescence intensity variation at maximum emission of 518 nm of BODIPY-PH (10 µM)
at media alternation of pH from 1 to 12.

Then, the reversibility and reusability of BODIPY-PH as proposed in Figure 11A
was systematically investigated by the fluorescence titration of the dye with consecutive
additions of Fe3+ (100 µM) and the common metal ion sequester, ethylenediaminetetraacetic
acid (EDTA) (100 µM). As displayed in Figure 11B, the fluorescence signals reached the
maximum point when BODIPY-PH (10 µM) was saturated by the addition of 10 equiv. of
Fe3+ (100 µM) and quenched upon the further addition of EDTA (100 µM). Nevertheless,
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when another 100 µM of Fe3+ was added to the resulting mixture, the fluorescent intensity
was almost recovered. This off-on-off cycle could be effectively repeated up to three times
confirming the practical regeneration of the BODIPY-PH after ferric ion detection.
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3.4. Theoretical Calculations

To identify the sensing mechanism of the BODIPY-PH toward Fe3+ complexation, we
performed the DFT calculations using BHandHLYP/6-311G* level of theory in the implicit
water solvent and the LANL2DZ basis set for Fe3+. The highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of BODIPY-PH and
BODIPY-PH-Fe3+ complex with the isovalue of 0.02 and their corresponding energy gaps
are illustrated in Figure 12A. The density distributions of HOMO- and LUMO-electrons
on the BODIPY-PH are mainly located on the BODIPY backbone as also observed in
other BODIPY derivatives according to the literature [62–64]. In addition, there are no
π-electrons covered on the pyridylhydrazone moiety which indicates the separation of
the π-conjugated system on the BODIPY core from the one on pyridylhydrazone unit. On
the other hand, the electron density distributions of BODIPY-PH-Fe3+ complex are shifted
from the BODIPY core (in the HOMO) to the phenylene moiety and the Fe3+ binding site
(in the LUMO). This result indicates the increased π-conjugation in the BODIPY-PH-Fe3+

complex and the inhibition of C=N isomerization leading to the fluorescence enhancement
(Figure 12B). These theoretical results confirm the chelation-enhanced fluorescence (CHEF)
effect in BODIPY-PH upon Fe3+ binding as shown in Figure 12B.

3.5. Investigation of the Binding and Complexation between BODIPY-PH Ligand and Fe3+ Ions by
X-ray Absorption Spectroscopy (XAS)

XAS spectra at Fe K-edge were collected in both XANES and EXAFS regions to reveal
the structural information upon binding of Fe3+ ions to the BODIPY-PH ligand (named
as BODIPY-PH-Fe3+). As shown in Figure 13A, the XANES spectrum of BODIPY-PH-
Fe3+ illustrates the rather similar absorption edge and fingerprint feature with that of
the standard solutions of Fe3+ in acetonitrile-water (1:9 v/v) solution. In other words,
the oxidation state of Fe in the BODIPY-PH-Fe3+ remains +3 and the complexation of
BODIPY-PH-Fe3+ may resemble the octahedral geometry as observed in the Fe3+ aqua
complex.
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Figure 13. (A) X-ray absorption near edge structure (XANES) spectra probed at Fe K-edge of the mixture between BODIPY-
PH ligand and Fe3+ (BODIPY-PH-Fe3+) compared to the 100 mM standard solutions of Fe2+ and Fe3+ in acetonitrile-water
(1:9 v/v). (B) Comparison of the extended X-ray absorption fine structure (EXAFS) data of the BODIPY-PH-Fe3+ with respect
to the one of 100 mM standard solutions of Fe3+. (C) The DFT-calculated structural model of BODIPY-PH-Fe3+ used for
EXAFS fitting indicating the neighboring atoms around Fe3+. (D) EXAFS data fitting by employing ARTHEMIS software of
the BODIPY-PH-Fe3+.

Closer inspection into the EXAFS data plotted in R-space (Figure 13B), the amplitude
at the first shell of BODIPY-PH-Fe3+ is relatively lower and the first-shell feature becomes
broader than those of the standard Fe3+ solution. This observation suggests the deviation
from the symmetric octahedral coordination sphere in the Fe3+ aqua complex by means of
the binding of Fe3+ with the BODIPY-PH ligand. Moreover, the radial distance distribution
at the second and the third shell around the Fe3+ in the BODIPY-PH-Fe3+ is different
from the feature of the Fe3+ aqua complex. To identify the structural complexation of
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BODIPY-PH-Fe3+, the structural optimization of the octahedral Fe3+ complex coordinated
with four H2O molecules and two nitrogen (N3 and N5) at the pyridylhydrazone unit
of BODIPY-PH ligand (Figure 13C) was performed by DFT calculation. The EXAFS data
fitting was operated by using this DFT-calculated structure as a model. The well-matching
of the structural model with the experimental data is observed (Figure 13D) showing the
corresponding EXAFS-fitting parameters in Table S3. Noteworthy, the EXAFS data fitting
reveals the complexation of Fe3+ ions with BODIPY-PH ligand in 1:1 ratio and forms the
octahedral coordination geometry with the additional four H2O molecules.

3.6. Cell Imaging Study

To prove the capability of BODIPY-PH for Fe3+ analysis in a cellular matrix, the cell
imaging experiment was investigated in the human embryonic kidney (HEK293) cell line
acting as a cellular model. As an excessive uptake of iron can cause acute kidney injury in
human [65], this work could provide an alternative fluorescence tool to study oxidative
damage of iron toward kidney cells. Based on cell viability assay (Figure S6), BODIPY-PH
is non-toxic to HEK293 cells at concentrations ranging from 5 to 50 µM. So, this BODIPY
concentration range was next employed for the cell culture experiments with and without
Fe3+ ions.

Live cell-imaging experiments incubated with 5 µM and 10 µM of BODIPY-PH were
done in parallel to investigating the effect of dye concentrations toward Fe3+ sensing
and the confocal laser scanning microscopy (CLSM) (images of HEK293 cells of both
experimental sets are demonstrated in Figure S7A and Figure 14A), respectively. After
incubating with ferric ions for 30 min at the twice concentrations of the dye, the HEK293
cells exhibited increased fluorescence signals which was consistent with the corrected
total cell fluorescence (CTCF) bar chart ((Figure S7B) and Figure 14B). Both cell-imaging
experimental sets manifested~1.4-fold fluorescence enhancement (Figure S8) which is
comparable to the fluorescence enhancement of compound A (Figure 9) in HCT-116 cells
upon addition of Fe3+ [36]. Additionally, the TD images confirmed a good viability of
the cells throughout the experiments. These results strongly suggested the capability of
BODIPY-PH for Fe3+ analysis in live cells without any observed cell damages.
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Figure 14. (A) Confocal laser scanning microscopy (CLSM) images of HEK-293 cells. Row i, control HEK-293 cells with no
treatment. Row ii, HEK-293 cells incubated with Fe3+ (20 µM) for 30 min. Row iii, HEK-293 cells incubated with BODIPY-PH
(10 µM) for 30 min. Row iv, HEK-293 cells incubated with Fe3+ (20 µM) for 30 min and subsequently incubated with
BODIPY-PH (10 µM) for another 30 min (For BODIPY-PH: λex = 488 nm, λem = 509 nm, scale bar = 20 µm, TD = transmitted
light differential interference contrast image). All images were collected at the same microscopy settings. (B) Bar chart
showing corrected total cell fluorescence (CTCF) of HEK-293 cells incubated with BODIPY-PH (10 µM) before and after the
addition of Fe3+ (20 µM). Statistical analysis is based on student’s two tailed t-test (* p < 0.05, ** p < 0.01, *** p < 0.001).



Chemosensors 2021, 9, 165 15 of 18

4. Conclusions

In summary, we have synthesized a new BODIPY derivative (BODIPY-PH) containing
pyridylhydrazone moiety acting as a Fe3+ ion-binding site. This compound displayed
fluorescent enhancement response toward ferric ion binding in acetonitrile-water (1:9 v/v)
solution due to the effect from the chelation-enhanced fluorescence (CHEF) process. This
ligand exhibited high selectivity for Fe3+ ions over various metal ions, however, its fluores-
cent sensing ability toward Fe3+ could be interfered by the co-presence of Hg2+. The Job’s
plot and the Benesi-Hildebrand analysis indicated a 1:1 binding mode between Fe3+ and
BODIPY-PH with a binding constant of 5.4 × 104 M−1. The X-ray absorption spectroscopy
(XAS) further confirmed the Fe3+ binding by BODIPY-PH ligand and suggested an asym-
metric octahedral geometry of the resulted BODIPY-PH-Fe3+ complex. The low limit of
detection of 0.58 µM, the Fe3+-sensing capability at neutral pH, and the reversible nature
toward Fe3+ binding suggested the potential of BODIPY-PH for Fe3+ detection in real water
samples. Finally, the fluorescence imaging results in living HEK293 cells indicated that the
BODIPY-PH possesses excellent cell permeability, good biocompatibility, and high stability
under physiological conditions and can be applicable for detecting Fe3+ in living cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemosensors9070165/s1, Figure S1: 1H NMR spectra of BODIPY-PH, Figure S2: 13C NMR
spectra of BODIPY-PH, Figure S3: Mass spectra of BODIPY-PH, Figure S4: Mass spectra of BODIPY-
PH-Fe3+ complexes, Figure S5: Standard calibration curve demonstrating the fluorescence intensity
increments at 518 nm (n = 3) as a function of Fe3+ concentrations incubated with BODIPY-PH (10 µM)
in acetonitrile-water (1:9 v/v), Figure S6: Percent cell viability estimated by MTT proliferation test
versus incubation concentrations of BODIPY-PH. HEK-293 cells were cultured in the presence of
BODIPY-PH (0–50 µM) at 37 oC for 24 h, Figure S7: (A) Confocal laser scanning microscopy (CLSM)
images of HEK-293 cells. Row i, control HEK-293 cells with no treatment. Row ii, HEK-293 cells
incubated with Fe3+ (10 µM) for 30 min. Row iii, HEK-293 cells incubated with BODIPY-PH (5 µM)
for 30 min. Row iv, HEK-293 cells incubated with Fe3+ (10 µM) for 30 min and subsequently incubated
with BODIPY-PH (5 µM) for another 30 min (For BODIPY-PH: λex = 488 nm, λem = 509 nm, scale
bar = 20 µm, TD = transmitted light differential interference contrast image). All images were
collected at the same microscopy settings. (B) Bar chart showing corrected total cell fluorescence
(CTCF) of HEK-293 cells incubated with BODIPY-PH (5 µM) before and after the addition of Fe3+

(10 µM). Statistical analysis is based on student’s two tailed t-test (* p < 0.05, ** p < 0.01, *** p < 0.001),
Figure S8: Bar chart showing the relative corrected total cell fluorescence (CTCF) of HEK-293 cells
incubated with BODIPY-PH (5 and 10 µM) comparing between before and after the addition of Fe3+

(10 and 20 µM), Table S1: Crystal data and structure refinement for BODIPY-PH, Table S2: Geometric
parameters and symmetry operations for intermolecular H-bond interactions (Å,◦), Table S3: EXAFS
fitting data for investigating the structural information of the complexation between BODIPY-PH
ligand and Fe3+ ion.
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