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Abstract: Odour emissions are a global issue that needs to be controlled to prevent negative impacts.
Instrumental odour monitoring systems (IOMS) are an intelligent technology that can be applied
to continuously assess annoyance and thus avoid complaints. However, gaps to be improved in
terms of accuracy in deciphering information, especially in the implementation of the mathematical
model, are still being researched, especially in environmental odour monitoring applications. This
research presents and discusses the implementation of traditional and innovative parametric and
non-parametric prediction techniques for the elaboration of an effective odour quantification mon-
itoring model (OQMM), with the aim of optimizing the accuracy of the measurements. Artificial
neural network (ANN), multivariate adaptive regression splines (MARSpline), partial least square
(PLS), multiple linear regression (MLR) and response surface regression (RSR) are implemented and
compared for prediction of odour concentrations using an advanced IOMS. Experimental analyses
are carried out by using real environmental odour samples collected from a municipal solid waste
treatment plant. Results highlight the strengths and weaknesses of the analysed models and their
accuracy in terms of environmental odour concentration prediction. The ANN application allows us
to obtain the most accurate results among the investigated techniques. This paper provides useful
information to select the appropriate computational tool to process the signals from sensors, in order
to improve the reliability and stability of the measurements and create a robust prediction model.

Keywords: signal processing; electronic nose; air quality monitoring; environmental modelling;
municipal solid waste

1. Introduction

Odour emissions from industrial sources in ambient air can be a significant problem
for the exposed populations because they create an unpleasant environment as well as phys-
ical and psychological disorders [1–4], which leads to public nuisance and complaints [5–8].
The presence of unpleasant odours is associated with the perception of a health risk [9,10].
Therefore, the control of odour emissions, starting from the characterisation, is a key issue
in order to minimize the presence in ambient air and, thus, guarantee a suitable environ-
mental quality [11–14]. Nowadays, environmental odour characterisation is conducted
by analytical, sensorial and combined analytical-sensorial methods [4,15,16]. Analytical
techniques employed mainly laboratory equipment (e.g., GC-MS, colorimetric method,
catalytic, infrared and electrochemical sensors, differential optical absorption spectroscopy,
fluorescence spectrometry) [1,4]. These techniques are able to detect single or multiple
gaseous compounds which can be presumed as odour tracers, and quantifies them in terms
of ppm or mg m−3. On the other hand, sensorial techniques are methods in which odours
are identified using the human nose [4,17]. Among the sensorial methods, Dynamic Olfac-
tometry (DO) regulated by the EN13725: 2003, currently under review by the WG2 of the
CEN/TC264 “Air quality”, is mostly used in Europe. The DO measures the odour concen-
tration in terms of European Odour Unit per Cubic Meter (OUE m−3) [18,19]. Meanwhile,
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combined methods (e.g., sensorial-analytical) are those with the highest potential for future
development in the field of environmental odour measurement [15,20–24], especially with
the application of instrumental odour monitoring systems (IOMS) [15,25–27]. According
to the definition given by the CEN/TC264/WG41 [15,28,29], IOMSs are intelligent tools
allowing continuous monitoring and providing results in terms of odour classes and pre-
diction of odour concentration, with units of measurement that can be correlated with that
of dynamic olfactometry [4,29–31]. IOMS belong to a specific category of systems generally
known as electronic noses (E.Noses) successfully applied in various fields, such as rapid-
sensing, real-time characterisation and quick evaluation of product quality (i.e., aroma
compounds monitoring, food contamination, etc.) [13,32–34]. Furthermore, other novel
applications included in the field of medicine are VOC-biomarkers and disease diagnosis
through exhaled breath analysis [14,35–38]. In IOMS, the compounds detected by gas
sensors [39–42] and transduced into electrical signals (e.g., kΩ, volts, etc.) are statistically
analysed using mathematical programmes, in order to elaborate specific Odour Monitoring
Models (OMM) for both classification and quantification applications [29,43].

In both applications, the mathematical models can be developed by partitioning the
entire collected sampling dataset into disjointed subsets, such as training and preliminary
internal validation. Generally, k-fold cross validation is used, by which the dataset is
divided into k (k = 10) parts (e.g., 90% training and 10% validation) [44–46]. In the OMM
classification, the observed data are grouped into a set of sub-populations which represent
the investigated categories [29,47], and are validated by simulating new a set of data that
will fall in the correct group/category. Meanwhile, in the OMM quantification, the odour
concentration values measured with dynamic olfactometry are attributed to the values of
the various acquired samples, and divided into the different investigated odour classes [18].
For each investigated odour class, a quantification OMM is developed by applying para-
metric and non-parametric pattern-recognition techniques [15,48,49]. Parametric methods
presumed that the data are linearly behaving and/or normally distributed in such a way
that when plotted, they possessed symmetrical bell-shaped graphs or “Gaussian distribu-
tion”, while non-parametric methods have data distribution that are free and/or do not
rely on assumptions about the data pattern distribution [29,44,48]. No univocal and unique
selection of the various existing pattern recognition techniques is present in the technical
scientific literature, with reference to the different fields of application. Szulczynski et al.
(2017) [50] and Lokuge et al. (2018) [51] demonstrated artificial neural network (ANN) and
multivariate adaptive regression splines (MARSpline’s) capability in implicitly detecting
a non-linear relationship between dependent and independent variables. The studies
revealed that these non-parametric techniques are useful in mapping relationships to large
datasets, when there is no prior knowledge of the data behaviour. Meanwhile, Ojha et al.
(2018) [52] and Dahlen et al. (2000) [53] highlight that partial least square (PLS) is efficient as
a regression tool and as a dimension reduction technique (e.g., compression of the number
of input variables). On the other hand, some studies performed feature extraction (i.e., ex-
traction from original response curve, curve fitting, transform domains, etc.) in which
the redundant signals can be removed, thus increasing the rate of calculation [29,45,48,54].
Different papers have utilised traditional parametric statistical models (i.e., multiple linear
regression (MLR), partial least square (PLS), principal component analysis (PCA), etc.) due
to their convenience in implementation, but the characteristic of the dataset has not taken
into consideration if these models are appropriate or if there are other techniques qualified
for the application [25,46,55–59]. The above considerations therefore highlight how easily
a distorted conclusion can be reached if the wrong technique is used. Many efforts have
been devoted to the analysis of specific prediction techniques [52,53,60]; however, after
conducting a thorough research and evaluation of the literature, no papers performed
actual experiments to investigate and compare different forecasting algorithms with respect
to environmental odour concentration measurements.

The research presents and discusses the application of different prediction techniques
in an advanced IOMS for environmental odour quantification monitoring, with the aim
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to investigate and compare the prediction performance and optimize the accuracy and
reliability of the measurements. Traditional and alternative non-parametric (i.e., artifi-
cial neural network (ANN), multivariate adaptive regression splines (MARSpline)) and
parametric (i.e., partial least square (PLS), multiple linear regression (MLR) and response
surface regression (RSR)) techniques are investigated and argued. Laboratory experimental
analyses are carried out by using real environmental odour samples.

2. Material and Methods
2.1. Odour Samples

Environmental odorous air samples were collected from the delivery phase of the
municipal organic fraction at a real municipal solid waste treatment plant (Salerno, Italy).
The “lung technique” were used for the sampling, withdrawing the odorous air using
a vacuum pump into a 15-L Nalophan bag. A daily frequency sampling campaign for
seven days was conducted to represent the weekly trend of the emissions. Four different
weeks, one in each season, were investigated, to consider the seasonal variation over
an annual period. A total of 28 on-site samples were collected over an annual period.
Each sample representative of the emission was then diluted to depict the environmental
conditions at the receptor level. Dilution was prepared for all collected real samples at the
emissions, obtaining a known target quantity from samples with varying concentration
levels, obtaining an additional 62 samples. Ambient air samples to consider as an odour
threshold for 0.00 OUE m−3 were also collected in an area around the plant, at a distance
such as to be odourless, and considered as baseline reference (e.g., lowest possible detection
limit). A total of 92 samples thus constituted the entire sampling dataset considered.

2.2. Analytical Methods
2.2.1. Dynamic Olfactometry

All collected samples were analysed by Dynamic Olfactometer, according to EN13725:
2003, at the Olfactometric Laboratory of the Sanitary Environmental Engineering Division
(SEED) of the University of Salerno, to determine the odour concentrations in terms of
OUE m−3. A TO8 olfactometer (ECOMA GMBH-D) was employed. The odour concentrations
of the diluted odour samples were calculated in an analytical manner by considering the
dilution factor and the odour concentration value measured at the on-site collected samples.

2.2.2. SeedOA Instrumental Odour Monitoring System

All samples, collected and diluted, were also analysed by an advanced and innovative
Instrumental Odour Monitoring System (IOMS), designed by the Sanitary Environmen-
tal Engineering Division (SEED) Group of the Department of Civil Engineering of the
University of Salerno. The adopted IOMS functional architecture is composed of four
principal units: (a) the sampling unit, (b) the detection system, (c) the data storage and
processing system and (d) the management unit (Figure 1) [61]. The sampling unit includes
a pump for the raw air collection at a flowrate of 300 mL min−1. The detection system
incorporates the code (Chamber for Odour Detection) innovative measurement chamber,
patented by the SEED research group, in which are located 13 metal oxide semiconductor
(MOS) measurement sensors and 3 control sensors [62,63]. The code chamber is cylindrical
in shape, with one internal diffuser and the sensors arranged on two levels, each hosting
8 sensors, such as to reproduce the human nasal apparatus consisting of two nostrils and
a central nasal septum [63]. Moreover, other subparts include temperature and humidity
control and a thermoregulation system, CPU board (Raspberry Pi), HUB i2c board and the
main board, particulate and activated carbon filter, ozone cleaning system and permeation
tube, pumps and manifold with internal solenoid valves for the different management of
gaseous flows, and flexible pipes for the connection between the different components.
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Figure 1. Main functional units of the used Instrumental Odour Monitoring System (IOMS).

The samples were analysed in an “odour–odourless–odour” cycle, with an acquisition
and recovery time of 2 min and a time step of 2 s for value. According to Zarra et al. (2021),
the peak points (last 1-min interval) have been considered in terms of feature extraction,
resulting the most stable and representative [29].

2.3. Odour Quantification Monitoring Models (OQMM) Development

Two different non-parametric (artificial neural network, ANN; multivariate adaptive
regression splines, MARSpline) and three parametric (partial least square, PLS; multiple
linear regression, MLR; response surface regression, RSR) prediction techniques were
investigated and subsequently compared. Each technique has its own unique set of
properties. Table 1 presents the indicator considered as index for the OQMM elaboration
for each investigated technique [18,51,64–71].

Table 1. Prediction techniques evaluation indicators for the OQMM elaboration.

Statistical Category Prediction Technique Indicators

Parametric

Multiple Linear Regression (MLR) Dependent–independent variable
relationship

Partial Least Square (PLS) Ideal number of components

Response Surface Regression
(RSR) Significant variables

Non-parametric
Multivariate Adaptive Regression

Splines (MARSpline) Ideal number of basic functions

Artificial Neural Network (ANN) Ideal number of hidden neurons

In training the OQMMs and assessing the individual prediction accuracy, supervised
learning technique were applied. Applying a k-fold cross-validation procedure (k = 10) to
the 92 acquired samples, 82 samples were used as train data sets, while 10 samples were
used as validation data sets. To ensure the reliability of the results, the validation data
are selected randomly using Microsoft Excel software. Thirty (30) values from each MOS
measurement sensor per sample were recorded in the acquisition time, with a frequency
of one value every two seconds. The matrix composed of the values detected by the
13 measurement sensors for each sample was then associated with the respective value
of the odour concentration measured by dynamic olfactometry. Table 2 summarizes the
experimental dataset for the training and validation phase.
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Table 2. Size of the experimental dataset for each of the 13 MOS measurement sensors.

Description

Number of Observation Points

Training Dataset Validation Dataset OUE m−3

Raw Samples Data Points
(kΩ) Raw Samples Data Points

(kΩ)

Odorous Air 82 2460 10 300 82

2.3.1. ANN

For the ANN experiment, a feed-forward neural network (FFNN) consisting of three
layers (input, hidden and output layer) was applied. Tan-sigmoid was used as a neural
transfer function, while the network was trained using a Bayesian Regularisation algorithm.
The number of neurons in the hidden layer was evaluated between 5–15, in order to avoid
underfitting and/or overfitting [15]. In ANN, the input neurons (x) are connected to each
other with corresponding weight (w) values. The hidden layer (ϕ) connects the input
variables (x) to the target output variable (y) (Figure 2) [64].

Figure 2. Relationship of neural network elements (x—input neurons, ϕ—hidden neurons, y—output neuron).

The incoming signal to each neuron was given by the value of the neuron multiplied
by the weight, obtaining the total sum from other neurons (Equation (1)), and converting
it using the activated function highlighted in the Equations (2) and (3). Meanwhile, the
target output variable was computed in the same manner as the neurons in the hidden
layers (Equation (4)).

β1...n = ∑(x1w1 + x2w2 . . . xnwn) (1)

ϕ1...n =
2

1 + e−2β1...n − 1, (2)

α1 =
2

1 + e−2ϕ1 ...n − 1, (3)
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y = ∑(α1z1 + α2z2), (4)

2.3.2. MARSPlines

In the MARSPline experiment, the relationship between dependent and independent
variables was established by evaluating the ideal number of basic functions (piecewise
linear segments). The “divide and conquer” strategy was applied [72]. The training data
(space) were divided into segments, and for each of these a specific regression equation was
established at different gradients (slopes). The sum of these individual segments, according
to Equation (5), represents the MARSPline model [60]. In the study, each MARSPline model
was evaluated starting from 10 basic functions, extracting the coefficients and investigating
the most accurate one [51,66].

y = f(X) = β0 + ∑M
m−1βmhm(X), (5)

where:

- β0 = intercept parameter;
- βm = weighted sum of one or more basis functions (hm(X));
- M = sum over the non-constant terms of the model.

2.3.3. MLR

In the MLR experiment, the relationship between the dependent and independent vari-
ables was elaborated by implementing a scatter plot, at the centre of the multi-dimensional
space of data points, in order to find the collinearity of the variables. The linear equation
with the highest correlation (R2) was considered as an optimum MLR model [70]. The
Equation (6) highlights an example of a multiple linear regression model, with n predictor
variables (x1, x2 . . . xn) and a response y:

y = β0 + β1 x1 + β2 x2 . . . βnxn + C, (6)

where:

- C = residual terms of the model and the distribution assumption;
- β0, β1, β2 . . . βn = regression coefficients.

2.3.4. PLS

PLS was implemented in an algorithm with simultaneous principal component anal-
ysis (PCA) and Ordinary Least Square (OLS) regression. In this experiment, the ideal
number of components was evaluated to be between 5–15. PLS reduces the number of
input variables to formulate a new set of components that described the maximum correla-
tion between independent and dependent variables. Its prediction ability lies on a set of
orthogonal factors, namely component scores or latent variables [44,53]. After selecting the
optimal number of components, the loading values and intercepts were extracted to obtain
the prediction equation. Equation (7) highlights a PLS regression model with n predictor
variables (X1, X2 . . . X n) and a target output variable y:

y = β0 + β1 X 1 + β2 X 2 . . . βn Xn + C, (7)

where:

- C = residual terms of the model and the distribution assumption;
- β0, β1, β2 . . . βn = weights/coefficients.

2.3.5. RSR

RSR experiments were carried out by investigating the ideal combinations of the
independent variables in relation to the target output. In this technique, each of the 13 MOS
measurement sensors (as an independent variable) were removed one by one, and the RSR
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equation at the given number of independent variables was tested. The variable/s with
the least influence on the accuracy of the prediction was then determined and eliminated
in order to obtain the optimal RSR model. The linear or square polynomial functions
were used to define the system, exploring the experimental conditions leading to the
optimal situation [67]. The goal was to find the polynomial approximation of the true
nonlinear model closest to the Taylor series expansion in the computation. In response
surface regression, it contains the similar effects of polynomial regression designs to 2nd
degree and 2-way interaction of the variables. It has the characteristics of both polynomial
regression designs and fractional factorial regression designs. Equation (8) reports the
regression equation for a quadratic response surface regression design.

y = β0 + β1 w + β2 w2 + β3 x + β4 x2+ β5 z + β6 z2 + β7 w x + β8 w z + β9 z z, (8)

where:

- w, x, and z are the predictor variables;
- β0 . . . β9 are the coefficients.

2.4. Statistical Analysis

Statistica 10 (Statsoft, Tulsam, OK, USA), MATLAB R2017a (MathWorks, Natick, MA,
USA) and Excel 2013 software (Microsoft, Washington, DC, USA) were applied for data
analysis. The individual accuracy of the investigated OQMMs was evaluated based on
a coefficient of determination (R2) (Equation (9)) and root mean square error (RMSE)
(Equation (10)) analysis.

R2 = 1− f(α1)

f(α2)
= 1−

∑
(

x− x
′
)2

∑
(

x−¯
x
)2 (9)

where:

- f(α1) = ∑
(

x− x
′
)2

, is the sum of squared residuals (SSR);

- f(α2) = ∑
(

x− x
′
)2

, is the sum squared total error (SST),

RMSE =

√
∑
(
x− x′

)2

n
(10)

where:

- x represents the predicted data,
- x′ is the actual data;
- x is the mean value of the dataset;
- n is the total number of observations.

The R2 test was used to describe how well the model fits the predicted data. The higher
the R2, the more confidence given to the accuracy of the prediction model. Meanwhile, the
RMSE value was determined in order to analyse the standard deviation of the residuals
(prediction errors).

2.5. Comparison Analysis

The matrix of the different investigated OQMMs is shown in Table 3. The accuracy
per OQMM has been evaluated by means of comparing the R2 and RMSE for a training
and validation dataset.



Chemosensors 2021, 9, 183 8 of 15

Table 3. Matrix of the different elaborated and compared OQMMs.

Statistical
Category

Prediction
Technique

OQMM

Training Validation

R2 RMSE (OUE m−3) R2 RMSE (OUE m−3)

Parametric

PLS OQMM1.1 OQMM2.1

RSR OQMM1.2 OQMM2.2

MLR OQMM1.3 OQMM2.3

Non-
Parametric

ANN OQMM1.4 OQMM2.4

MARSPline OQMM1.5 OQMM2.5

3. Results and Discussions
3.1. Odour Concentration Quantification by Dynamic Olfactometry

Figure 3 highlights the statistical characteristics of all of the investigated real odour
samples measured by dynamic olfactometry in terms of odour concentration (OUE m−3),
using the box and whisker diagram for the overall monitored period.

Figure 3. Boxplot of the odour concentration of the investigated samples.

As shown, the range in terms of odour concentration of the investigated samples is
between 81 OUE m−3 (min) and 5793 OUE m−3 (max), covering a wide variability of values
both for the representation of emissions and of the emissions scenario. The on-site collected
real odorous samples are principally located at the 4th quartile, while the diluted data were
at the 1st–3rd quartile. The overall mean, variance and standard deviation is respectively
equal to 1695 OUE m−3, 9.70 × 105 and 879 OUE m−3.
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3.2. Odour Quantification Monitoring Models (OQMMs)

Figure 4 shows the scatter plot diagram between the measured odour concentration
with DO, and the predicted values with the elaborated OQMM determined by applying
the different parametric and non-parametric prediction techniques, during the training
stage. Meanwhile Figure 5 depicts the scatter plot diagram of the relationship by applying
the validation dataset. In order to express the certainty of the prediction, a 95% confidence
level is applied and presented to all figures.

Figure 4. Scatter plot between the measured odour concentration with DO and the predicted one with the elaborated
OQMMs using Table 4. ((a)—ANN, (b)—MARSPline, (c)—PLS, (d)—RSR and (e)—MLR).
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Table 4. Summary of the quality parameters of the developed model during training and validation.

Statistical
Category

Prediction Technique
for OQMM
Elaboration

Training Validation

R2 RMSE (OUE m−3) R2 RMSE (OUE m−3)

Parametric
PLS 0.92 451 0.92 219

RSR 0.90 487 0.82 348

MLR 0.72 837 0.53 583

Non-
Parametric

ANN 0.97 289 0.95 216

MARSPline 0.83 651 0.87 482

Figure 5. Scatter plot between the measured odour concentration with DO and the predicted one with the elaborated
OQMMs using the different investigated prediction techniques and the validation dataset ((a)—ANN, (b)—MARSPline,
(c)—PLS, (d)—RSR and (e)—MLR)).
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Applying ANN, a strong pattern relationship between input to output in terms of R2

of 0.97 is highlighted by using the training dataset (Figure 4a); this is depicted by the small
number of outliers outside the confidence interval. Similarly, a high correlation (R2: 0.95) is
obtained in the validation stage (Figure 5a). For both stages, a percentage of around 80% of
the data points are located within the confidence interval. Therefore, the predicted results
using ANN are in good agreement with the reference values.

In MARSPline application, results show more spread-out data from the regression
line compared to ANN. MARSPLine is ideal when the predictor variables do not exhibit
a monotone relationship to the dependent variable of interest [51,72]. According to the
“divide and conquer” strategy, the curse of dimensionality from the data has been overcome
when the input space is partitioned. The optimum model in the training stage was found
at 25 basic functions (R2: 0.83) (Figure 4b). At this point, despite the increase in the number
of basic functions, there is a negligible increase in the correlation value; thus, the optimum
MARSPline model is taken into account at this extremity. During the validation of the
model, the amount of spread in the data is also observed in this stage (R2: 0.87) (Figure 5b).

For the OQMM elaboration by PLS application, results show that the ideal number of
components is 10. The accuracy in the training stage, in terms of R2, is defined as equal
to 0.92 (Figure 4c). PLS highlights better efficiency when the dataset does not exhibit
large variances or noisy information [69]. Furthermore, in the investigated case, a strong
correlation at high odour concentrations (>4.00 × 10−3 OUE m−3) proves to be difficult to
establish. Meanwhile, during the validation stage, PLS accuracy in terms of R2 assumes
values comparable to those of ANN (R2: 0.92) (Figure 5c). However, on the basis of the
confidence interval, ANN application seems to be more reliable than PLS.

RSR applications were started by testing all of the input/independent variables
(e.g., 13 MOS sensors) to ascertain which variable/s may have the least impact to the
output. The activity was done to identify prior knowledge of the variable’s interaction.
Subsequently, one, or at most two, variables randomly selected were removed, and the
consequent accuracy was calculated. For the analysed samples, the highest accuracy was
obtained by removing one variable (e.g., one sensor), obtaining at least an R2 equal to 0.90
in the training stage (Figure 4d). Meanwhile, for the validation dataset, a lesser correlation
(R2: 0.82) was determined, demonstrating the technique comparable to that of the technique
MARSpline (Figure 5d).

In MLR application, the lowest relationship between input and output in terms of R2

was highlighted by applying both the training (R2: 0.72) (Figure 4e) and validation (R2: 0.53)
(Figure 5e) datasets. The scattered data points in the figure depicts an unstable system.

3.3. Comparative Analysis

Table 4 summarises and compares the different performances of the investigated
OQMMs during training and validation stages, considering the sensors’ responses as
input/independent variables, and the odour concentration as output/dependent variable.
In particular, the comparison between the performances was carried out by analysing the
relative values, given by the difference between those calculated in terms of R2 and/or
RMSE, obtained by adopting the different prediction techniques. In fact, it should be noted
that the calculated R2 data, in absolute value, could be influenced by the potential reaction
between the constituent substances of the samples [69].

Among the parametric prediction techniques, the data reported in Table 4 show how
the application of PLS leads to the highest performance. This result is probably due to the
ability of PLS to reduce dimensions by transforming and compressing the independent
variables into a few components as new inputs, which makes the computation faster.
While using the RSR, the obtained performance, in comparison to the other investigated
techniques, was lower, especially by applying the validation dataset. RSR can be a tool to
analyse the sensitivity of input variables with respect to their relevance to the target output.
On the other hand, MLR has been shown to be the most sensitive to outliers. MLR does
not appear to achieve satisfactory levels of performance.
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While between the non-parametric prediction techniques, ANN highlighted the best
performance. ANN shows a stronger capability to map non-linear pattern connection
between the input variables to the target output. ANN is more accurate because MAR-
SPLine still ensembles linear function in segmented ways. However, architecting ANN is a
challenging task, because of numerous configurations required thorough investigation and
knowledge (i.e., number of neurons in the hidden layer, appropriate training algorithm,
proper activation function, etc.). Overall, from a prediction accuracy point of view, ANN
provides the best results in terms of the high R2 and low RMSE.

As reported, the results refer to the analysis of odour concentrations carried out using
the dynamic olfactometry as a reference method, in accordance with EN13725: 2003 for the
samples collected at the emission, and the dilution method for these representatives of the
conditions detectable at the receptors level.

4. Conclusions

The Instrumental Odour Monitoring System (IOMS) is a useful tool to continuously
monitor odour emissions from a municipal solid waste treatment plant, and to control their
potential negative impacts on the surrounding area in terms of the predicted OUE m−3.
Thus, the elaboration of OQMM is necessary, by using parametric or non-parametric
mathematical prediction techniques. Among the investigated techniques, ANN (parametric
technique) highlighted the best performance on the basis of R2 and RMSE, while MLR
(non-parametric technique) was the lowest.

This study shows how the choice of the prediction technique affects the accuracy
in terms of environmental odour concentration prediction of an IOMS. This way, the
production of flexible IOMSs that can easily implement different statistical models is
suggested, in order to analyse and identify the best performing model for the specific case
to be analysed.
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