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Abstract: This paper is focused on the assessment of a multi-sensor approach to improve the overall
characterization of sparkling wines (cava wines). Multi-sensor, low-level data fusion can provide
more comprehensive and more accurate vision of results compared with the study of simpler data
sets from individual techniques. Data from different instrumental platforms were combined in an
enriched matrix, integrating information from spectroscopic (UV/Vis and FTIR), chromatographic,
and other techniques. Sparkling wines belonging to different classes, which differed in the grape
varieties, coupages, and wine-making processes, were analyzed to determine organic acids (e.g.,
tartaric, lactic, malic, and acetic acids), pH, total acidity, polyphenols, total antioxidant capacity,
ethanol, or reducing sugars. The resulting compositional values were treated chemometrically for a
more efficient recovery of the underlaying information. In this regard, exploratory methods such
as principal component analysis showed that phenolic compounds were dependent on varietal and
blending issues while organic acids were more affected by fermentation features. The analysis of the
multi-sensor data set provided a more comprehensive description of cavas according to grape classes,
blends, and vinification processes. Hierarchical Cluster Analysis (HCA) allowed specific groups of
samples to be distinguished, featuring malolactic fermentation and the chardonnay and red grape
classes. Partial Least Squares-Discriminant Analysis (PLS-DA) also classified samples according
to the type of grape varieties and fermentations. Bar charts and complementary statistic test were
performed to better define the differences among the studied samples based on the most significant
markers of each cava wine type. As a conclusion, catechin, gallic, gentisic, caftaric, caffeic, malic, and
lactic acids were the most remarkable descriptors that contributed to their discrimination based on
varietal, blending, and oenological factors.

Keywords: data fusion; multi-parametric matrix; phenolic compounds; organic acids; sparkling cava
wines; grape varieties; wine-making process; chemometric methods

1. Introduction

Cava is a type of sparkling wine with Protected Designation of Origin (PDO), which is
elaborated according to the Champenoise method based on a second fermentation in bot-
tle [1–3]. Nowadays, more than 200 million liters of cava are yearly produced in Spain, thus
becoming the most international type of Spanish wine in terms of turnover. Grape varieties
for cava production mainly comprise the classical white varieties of Macabeo, Xarel·lo, and
Parellada, which provide freshness, fruity and floral aromas, and an equilibrated acidity
to the future wines. Although monovarietal cavas are sometimes produced, these three
varieties are often combined using different percentages according to the enologist recom-
mendations. In the last decades, however, some typical French grapes such Chardonnay
and Pinot Noir have been introduced to potentiate other fruity flavors [1,4]. Chardonnay
grape is increasingly popular, providing a high acidity and a good aromatic potency while
Pinot Noir is used to produce rosé cavas after a short period of must maceration with husks.
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Briefly, the wine-making procedure starts with the production of base wines by regular
alcoholic fermentation, with an alcoholic degree in the range ca. 9.9% to 11% v/v, under
controlled conditions in stainless steel tanks [1–3]. At this stage, malolactic fermentation
(MLF) can also be applied to reduce the acid notes from malic acid while conferring
creamier and softer attributes. After this step, monovarietal wines or blends designed
according to the enologist experience are bottled and a small volume of tirage liqueur
(mixture of yeast, sugar, and wine) is added to trigger the second fermentation. This
process increases the ethanol content up to 11.5–12% v/v, and, even more important, it
is responsible for the CO2 production, which eventually will lead to the characteristic
bubbles of the sparkling wine [5]. Cava is then aged for a minimum of 9 months before its
commercialization. The yeast autolysis occurring during the aging period will release a
great range of complex molecules that will influence on the quality of sparkling wines [6].
The last step consists of the addition of dosage liqueur to refill the wine lost during the
disgorgement and to adjust the sweetness of the product to the desired values. Depending
on the total sugar content, various cava types can be defined, from brut nature with less
than 3 g L−1 to sweet cava with more than 50 g L−1 [1].

Sparkling wines are rich matrices containing a wide range of components, including
proteins, organic acids, biogenic amines, polyphenols, minerals, phenolic acids, and volatile
organic compounds (VOCs). Apart from their remarkable influence on chemical and sen-
sorial attributes, these molecules have been widely used as descriptors of wine features
and quality to deal with characterization and authentication issues [7–10]. These topics
stir up the interest of the scientific community and consumers because of their economic
and social implications. In authentication, the analytical issue deals with the identifica-
tion/assignation of a given sample as genuine or fraud according to up- or down-regulated
levels of some markers [11].

Focusing on the type of descriptors considered in this paper, phenolic compounds, in-
cluding phenolic acids, flavonoids, and other minor classes, have been extensively used for
the characterization and authentication of a wide range of wines and sparkling wines [7,11].
Some illustrative examples found in the literature are commented as follows. For instance,
polyphenols were used to carry out a classification of Spanish wines according to geograph-
ical areas and PDOs based on the information generated by liquid chromatography (HPLC)
with UV/Vis and fluorescence (FLD) detection [12]. Various characteristic markers of each
class were tentatively identified by liquid chromatography coupled to mass spectrometry
(LC-MS). Izquierdo-Llopart et al. proposed the characterization of cava wines elaborated
from various grape varieties (including monovarietal and blended sparkling wines) using
the compositional profiles of phenolic species determined by HPLC-UV [13]. Samples were
successfully discriminated according to varietal features and coupages using chemometric
methods such as principal component analysis (PCA). In a later work, phenolic profiles
were exploited to build classification models using partial least squares-discriminant analy-
sis (PLS-DA) from which Chardonnay or Blanc de Noirs classes could be identified [14].
González-Lázaro and coworkers evaluated the effects of wine-making practices on the
phenolic composition, sensory properties, and foam features of red sparkling wines [15].
Authors concluded that cold maceration prior to fermentation was suitable to modulate
anthocyanin contents of base wines. Sartor et al. also studied the influence of oenologi-
cal practices on the polyphenolic content of rosé sparkling wines [16]. In another paper,
Stefenon et al. evaluated the modulation of the phenolic composition and antioxidant
activity of sparkling wines depending on the aging on lees [17]. Global phenolic contents
are also valuable indexes of cava features and quality. This information was often gained
from spectroscopic determinations of antioxidant power or radical scavenging capacity.
Methods such as Folin–Ciocalteu (FC) and Trolox equivalent antioxidant capacity (TEAC)
were used to estimate the total polyphenol concentration as well as reducing or antiradical
power [16–19].

Regarding organic acids, they are oenologically prominent as quality indexes, provid-
ing information on taste attributes, overall wine equilibrium, or spoilage. Their evolution
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on the wine-making steps results in valuable source of information to track the produc-
tion progress and to assess the quality of the final product. In this regard, for instance,
tartaric acid is often considered a positive parameter that will condition the further aging
process while gluconic and acetic acids are markers of grape or wine spoilage, respectively.
Despite the great technological relevance of organic acids, compared to polyphenols and
other wine components (e.g., VOCs or elemental composition), they have been scarcely
exploited for discrimination, classification, and authentication purposes. Some papers
deal with chemometric classifications of wines according to grape varieties, coupages and
oenological practices [20], or geographical origins [21], using concentrations of organic
acids determined by HPLC-UV/Vis. In another case, the information from organic acids
has been complemented with the polyphenolic and elemental composition to try to extract
more global conclusions [22].

This idea of combining information from different sources, instrumental techniques, or
sensors as a way to improve the overall description of the system has been exploited under
the so-called data fusion approach. This topic has been reviewed in excellent publications,
which emphasize the chemometric challenges as well as the undeniable capacity for the
assessment of food quality and the detection of frauds [23–25]. In this regard, electronic
tongues or noses have appeared in analytical scenario as greatly powerful devices for
dealing with characterization, classification, and authentication purposes [26,27]. These
approaches take advantage of the cross selectivities exhibited by the different matrix
components towards the different sensors. As an illustrative example, cava samples have
been successfully classified according to the aging period using an array of differently
modified graphite–epoxy electrodes [28]. In another application, Cetó and coworkers
developed an array of four biosensors as a bioelectronic tongue to assess the phenolic
levels of rosé cava wines [29]. Regarding data fusion with e-devices, Men et al. joined e-
tongue and e-nose techniques to deal with the best beer flavor modeling using multivariate
analysis. Results showed that the overall description improved via multi-sensor data
fusion [30].

Focusing on the combination of chromatographic data with other instrumental sources,
Arslan et al. pointed out that during the last 20 years the combination of several techniques,
such as near infrared (NIR), mid infrared (MIR), Raman, nuclear magnetic resonance
(NMR), fluorescence, and UV/vis spectroscopies, chromatographic techniques, MS, and
electroanalytical and optical sensors, together with chemometric tools have been exten-
sively used to assess the characteristics of alcoholic beverages [31]. Gaena et al. proposed
the simultaneous analysis of phenolic and elemental composition to discriminate among
Romanian wines according to geographical origin and variety [32]. Di Eligio and coworkers
combined Fourier transform (FT)-NIR and (FT)IR spectroscopy for determination of sugars,
alcohols, and phenolic compounds in red wines [33]. Data were treated by PCA and LDA
to predict the fermentation stage from initial to final phase. Samples belonging to a partic-
ular fermentation step could be correctly classified and the main compositional changes
during alcoholic fermentation were assessed. In another paper, a methodology based on
multiparametric methods such as FTIR and voltammetric e-tongues were exploited to
obtain parameters related to the phenolic content of red wines. In this case, data were
treated by PCA to classify samples according to their phenolic content, and PLS provided
high correlation coefficients in the prediction of phenolic levels [34]. Other interesting
cases to characterize alcoholic beverages including wines, beers, and spirits relying on data
fusion are summarized in Table 1.
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Table 1. Applications of data fusion approaches to the characterization of alcoholic beverages.

Sample Instrumental
Techniques Fusion Level Chemometric

Methods Comments Ref.

Beer e-nose Low GA, SVM Classification rate > 80% [30]

Spanish red wines
e-nose, MIR,
UV/Vis (TPI,

Folin-Ciocalteu)
Low PCA, PLS Phenolic content estimations [34]

Grappa (Italian
grape marc spirit) NIR, MIR Low

PLS-DA with
multi-block
strategies

Authentication, 100% classification
rate [35]

Wine vinegars NIR, MIR, EEM,
NMR Low, mid PCA, PARAFAC,

MCR, PLS-DA
Classification of Jerez, Huelva and

Montilla-Moriles PDOs [36]

Lambrusco wines HPLC, EEM, NMR Mid PCA, PARAFAC,
MCR

PDO varietal classification of
Salamino di Santa Croce,

Grasparossa di Castelvetro, Sorbara
[37]

Italian craft beer thermogravimetry,
MID, NIR, UV, Vis Low, mid SIMCA, PLS-DA

Authentication of high quality
‘Reale’ beer. Classification rate >

75%
[38]

Mexican Tequila MID Low PCA, SIMCA,
PLS-DA

Discrimination among ‘agave’ and
mixed Tequila [39]

Grappa (Italian
grape marc spirit) GC-MS, NIR, MIR Low PLS-DA Discrimination among grappa GI

and other spirits [40]

Wines CE-DAD, EEM Multi-level PLS-DA, NPLS-DA

Geographical and grape variety
classification. high-level strategy
provides the best classification

results

[41]

Golden rum NMR, HPLC-MS,
GC-MS Low, mid PCA, PLS-DA

classification based on fermentation
barrel, raw material, distillation

method and aging. Classification
rate > 100%

[42]

Rice Wines e-tongue, e-nose Low, mid PCA, LPP, SVM Age evaluation [43]

Beer Vis, NIR, NMR Mid MCR Clustering based on beer style [44]

CE, Capillary Electrophoresis; DAD, Diode-Array Detection; EEF, Excitation-Emission Fluorescence spectroscopy; GA, Genetic Algorithm;
GI, Geographical Indication; GC, Gas Chromatography; MCR, Multivariate Curve Resolution; MIR, Mid-Infrared spectroscopy; MNR,
nuclear magnetic resonance; MS, Mass Spectrometry; NIR, Near Infrared spectroscopy; PARAFAC, Parallel Factor Analysis; PDO, Protected
Designation of Origin; PLS, Partial Least Squares; PLS-DA, Partial Least Squares-Discriminant Analysis; SIMCA, Soft Independent
Modeling of Class Analogies; NPLS-DA, Multi-Way Partial Least Squares-Discriminant Analysis; LPP, Locality Preserving Projections;
SVM, Support Vector Machine; TPI, Total Phenolic Index; UV, Ultraviolet spectroscopy; Vis, Visible spectroscopy.

Apart from the diversity of instrumental techniques available, the fusion level and the
multivariate methods that have been used are given as well. Low-level degree corresponds
to a simple data union without any prior preprocessing of the different individual sets.
As can be seen in Table 1, this approach has been widely used due to its simplicity and
enhanced descriptive performance. In most of the cases herein mentioned, authors remark
on the improvements attained in characterization and classification from data fusion
compared to the independent analysis of each individual data set. For instance, in the case
of rum classification by Belmonte-Sanchez et al., authors achieved acceptable results using
1H-NMR data, although several samples were misclassified. In contrast, 100% classification
rates were accomplished for all proposed categories using low-level data to integrate
1H-NMR, GC–MS, and LC–MS data [43]. In another example, Perez-Beltran and coworkers
proposed a method for the authentication of white tequilas by FTIR and chemometrics. A
multi-block fusion approach combining IR spectra from different baseline corrections was
used to improve the discrimination among pure and mixed tequilas. Results accomplished
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under low-level fusion avoided issues dealing with the selection of the most appropriate
preprocessing procedure [39].

Data resulting from each method can be combined in a more sophisticated way
using mid- or high-level approaches, which involve preliminary comprehensive data
preprocessing to condense the information or make data dimensions compatible [23,25]. In
this way, each data type can be more arranged/treated in a customized mode regardless of
the others. For instance, PCA and other chemometric methods can be used to reduce the
dimensionality of the original spectroscopic or chromatographic variables, from hundreds
or thousands of values into a few of highly descriptive principal components. In a similar
way, multivariate curve resolutions with alternating least squares (MCR-ALS) or parallel
factor analysis (PARAFAC) have been widely used to treat multi-way data, such as data
tensors obtained, for instance, from excitation–emission fluorescence or chromatography
with diode array or mass spectrometry detection [36,37,44]. In these cases, these methods
were used to decompose the original 3D data and extract the concentration profiles of
species together with pure spectral information. Eventually, concentration profiles, PCA
scores, and other types of preprocessed data can by fused to achieve more accurate and
exhaustive interpretation of the sample behavior.

Since the scientific literature relates that multi-sensor data fusion provides excellent
results for samples’ description, this paper aimed at exploring the possibilities of the
approach combining data from different sources to improve the characterization of cava
samples. Descriptors consisting of overall indexes of antioxidant capacity such as FC
and Ferric Reducing Antioxidant Power (FRAP) and acidity and concentrations of target
polyphenols and organic acids were obtained from different sensing techniques including
UV/vis spectroscopy, potentiometry, FTIR, HPLC, and enzymatic sensors. Data values
were arranged in a row-wise augmented data matrix in which each row represents a sample
and each column an analyte/sensor according to a low-level fusion approach. The resulting
matrix was subsequently treated by chemometric methods such as PCA for a preliminary
description of wine features and bar charts to reveal the most significant markers of each
wine type. Hierarchical cluster analysis (HCA) provided dendrograms, grouping samples
into Blanc de Noirs, rosé, and white wines. PLS-DA emphasized the separation of samples
according to the grape variety and oenological processes.

2. Materials and Methods
2.1. Reagents and Solutions

Gallic, homogentisic, protocatechuic, caftaric, gentisic, vanillic, caffeic, syringic, fer-
ulic, and p-coumaric acids, and (+)-catechin, (−)-epicatechin, ethyl gallate, resveratrol and
myricetin were purchased from Sigma-Aldrich (St. Louis, MO, USA). The 6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid (trolox) was from Carbosynth (UK). Pure stock stan-
dard solutions of each phenolic acid were prepared at 5000 mg L−1 in dimethyl sulfoxide
(for analysis, 99.9%, Panreac ApplyChem). Working standard solutions of polyphenols
were prepared in the concentration range of 0.05 to 20 mg L−1 in methanol:water (1:1, v:v).

Tartaric, malic, citric, succinic, fumaric, gluconic, acetic, and lactic acids (analytical
reagent grade, Merck) were used to prepare stock solutions at g L−1 in Milli-Q water. Stan-
dard working solutions were prepared in the range of 1 to 5000 mg L−1 in water/acetonitrile
solution (95/5, v/v, pH 2).

Formic acid (>96%, Merck KGaA, Darmstadt, Germany), phosphoric acid (85% w/w,
Merck), acetonitrile (UHPLC PAI-ACS SuperGradient, Panreac, Castellar de Valles, Barcelona,
Spain), methanol (UHPLC-Supergradient, Panreac ApplyChem), and water (Elix3, Milli-
pore, Bedford, MA, USA) were used to prepare the mobile phases of the chromatographic
methods.

Reagents to be used for the spectrophotometric indexes were Folin–Ciocalteu (FC com-
mercial reagent solution, Panreac ApplyChem), Fe(III) chloride (analytical reagent grade,
Merck), 2,4,6-tripyridyl-S-triazine (TPTZ, 98%, Alfa Aesar, Germany), and hydrochloric
acid (37% m/m, Merck). FRAP reagent was prepared by mixing 20 mmol L−1 Fe(III),
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10 mmol L−1 TPTZ (containing 50 mmol L−1 HCl), and 50 mmol L−1 formic acid solution
in the ratio 1:2:10 (v:v:v).

Commercial reagent kits to be used for the enzymatic determination of L-malic acid,
acetic acid, D-gluconic acid, and L-lactic acid were purchased from TDI (Gavà, Spain). All
of these kits were ready to use except for acetic acid, which needed a previous preparation
according to the manufacturer specifications.

2.2. Samples

Cava samples, kindly provided by Raventós Codorníu Group, corresponded to white
and rosé cavas (vintage of 2016) produced in Penedès and Costers del Segre regions (both
from Catalonia, Spain). Additional details are given in Table 2.

Table 2. Composition of the studied cava blends.

Class/Blend Composition Number of Samples

C 1 100% Macabeu, Xarel·lo, Parellada 5
G 2 100% Chardonnay 5
I 3 100% Blanc de Noirs 5
P 100% Pinot Noir 5
W 100% Blanc de Noirs 5
A 70% Chardonnay/30% Macabeu, Xarel·lo, Parellada 5

K 2 70% Chardonnay/30% Macabeu, Xarel·lo, Parellada 5
E 85% Macabeu, Xarel·lo, Parellada/15% Chardonnay 5
S 50% Macabeu, Xarel·lo/50% Chardonnay 5
T 70% Pinot Noir/30% Chardonnay 5
V 25% Pinot noir/50% Garnatxa negra/25% Trepat 5

1 The combination of Macabeu, Xarel·lo, and Parellada wines is the traditional coupage of Catalan Cavas, and this
blend is here considered as a single class. 2 Blend G and K: 15–30 months of aging period; 9–15 months of aging
period for the other blends. 3 Not subjected to MLF (malolactic fermentation).

Samples were filtered through a nylon membrane (nylon syringe filters, 13 mm and
0.45 µm pore size, Filter-Lab®, Filtros Anoia, Sant Pere de Riudebitlles, Spain) prior to
analysis. To minimize the possible influence of the analyte adsorption on the filter, the
initial portion of filtrate (about 1 mL) was discarded while the following 1.5 mL were
collected in an injection vial and were stored at 4 ◦C until the analyses. In these conditions,
samples were stable for, at least, 2 weeks. A quality control (QC) solution was prepared
mixing 50 µL of each cava sample. The QC was used to evaluate the reproducibility of the
analytical methods and the significance of the PCA models. Cava samples were analyzed
randomly, and the QC was repeatedly measured every 10 samples.

2.3. Instruments and Laboratory Equipment

The chromatographic system was composed of an Agilent Series 1100 HPLC Chro-
matograph (Agilent Technologies, Palo Alto, CA, USA) equipped with a quaternary pump
(G1311A), a degasser (G1322A), an automatic injection system (G1392A), and a diode array
detector (G1315B). The instrument was controlled with the Agilent ChemStation for LC 3D
(Rev. A. 10.02) software (also used for data acquisition and processing).

Spectroscopic indexes were determined with a UV/Vis/NIR Lambda 19 Spectropho-
tometer (Perkin Elmer, Waltham, MA, USA) using QS quartz cuvettes of 10-mm optical
path (Hellma Analytics, Jena, Germany).

Fourier-transform infrared spectroscopy (FTIR) measurements were carried out using
a Foss FT2 WineScanTM (Foss, Hilleroed, Denmark) equipped with an ASX-260 autosam-
pler. FTIR spectra were recorded from 2500 to 7785 nm, acquiring absorbance values every
5 nm. Foss software was used for control and data processing and was equipped with the
chemometric tool PLS-regression.

L-malic, L-lactic, acetic, and D-gluconic acids were determined enzymatically using a
multiparametric analyzer Miura 200 UV- method (TDI, Gavà, Barcelona, Spain). Miura 200
software was used for instrument control and data processing.
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Potentiometric analysis was carried out using a pH-meter GLP 21 (Crison, Alella,
Barcelona, Spain) equipped by a pH electrode 5021T (Hach, Loveland, CO, USA) with a
large cylindrical pH glass membrane, an encapsulated Ag/AgCl reference system, and a
built-in Pt temperature sensor for the automatic temperature compensation.

2.4. Methods
2.4.1. Phenolic Profiling by HPLC

Concentrations of target phenolic acids and flavonoids were determined by HPLC-UV
according to a previously validated method [45]. Briefly, compounds were separated by
reversed-phase mode using core-shell column (Kinetex, 100 mm × 4.6 mm I.D., 2.6 µm
particle size from Phenomenex, Torrance, CA, USA). Analytes were separated by an elution
gradient program created with 0.1% formic acid aqueous solution and methanol as the
components of the mobile phase. The flow rate was 1 mL min−1 and the injection volume
was 10 µL. Chromatograms were acquired at various wavelengths, namely, 280 nm to
monitor benzoic acids and flavanols, 310 nm for cinnamic acids and stilbenes, and 370 nm
for flavonols.

2.4.2. FC Assay

Antioxidant activities according to the FC method were estimated, as explained
elsewhere [46]. The FC procedure consisted of mixing 1 mL of water and 250 µL of FC
reagent in an amber glass vial. After 8 min, 250 µL of sample/standard, 75 µL of 7.5% w:v
sodium carbonate, and water (up to a final volume of 5 mL) were added to the vial to get
concentrations in the range of 0.2 to 5 mg L−1 gallic acid. The reaction was developed for
2 h and the absorbance was then recorded at 765 nm using the blank of reagents as the
reference. Results were expressed in mg kg−1 gallic acid.

2.4.3. FRAP Assay

The FRAP method was developed according to reference [46] by mixing 300 µL of
FRAP reagent and appropriate volumes of each sample/standards. The reacting solution
was diluted up to a final volume of 2.5 mL with Milli-Q water. The calibration was carried
out in the range 0.2 to 5 mg L−1 Trolox and the absorbance was measured at 595 nm in
front of the reagent blank after 5 min of reaction. Concentration results were expressed in
mg kg−1 Trolox.

2.4.4. Organic Acid Profiling by HPLC

Concentrations of each individual organic acid were determined by HPLC using
a method optimized and validated elsewhere [20]. Compounds were separated in a
C18 polar analytical column (Zorbax SB-Aq 4.6 mm ID × 150 mm, 5 µm particle size,
Agilent Technologies) under an isocratic elution mode. The mobile phase was acidified
water/acetonitrile solution (95/5, v/v adjusted to pH 2 with phosphoric acid). The flow
rate was 1 mL min−1 and the injection volume was 10 µL. Chromatograms were recorded
at 210 nm.

2.4.5. The pH

Values of pH of cava samples were measured with the combined pH electrode previ-
ously calibrated with standards of pH 4.0 and 7.0.

2.4.6. Total Acidity

The total acidity was determined by acid-base titration using 0.1 M sodium hydroxide
as the reagent. The end point was obtained potentiometrically when the pH of the sample
solution was 7.
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2.4.7. Enzymatic Determination of Organic Acids

L-malic, L-lactic, acetic, and D-gluconic acids were also determined by enzymatic
methodology according to the specifications of the commercial kits. Three µL for L-malic,
L-lactic, and acetic acids and 4 µL for D-gluconic acid were injected into the system. The
incubation time was 636 s, and the detection wavelength was 340 nm.

The determination of acetic acid relied on its reaction, using acetyl-CoA synthase,
with coenzyme A in the presence of adenosine-5′-triphosphate producing acetyl-CoA, the
reaction of acetic acid. Then, citrate synthase catalyzed the reaction of acetyl-CoA and
oxaloacetate to form citrate. Oxaloacetate, consumed in this reaction, was formed from
L-malic acid in the presence of malate dehydrogenase. NAD+ was reduced to NADH with
the corresponding increase in absorbance directly dependent on the concentration of acetic
acid.

L-malic acid determination relied on the oxidation of L-malic acid to oxaloacetate,
catalyzed by L-malate dehydrogenase, with concomitant reduction of NAD+. The increase
in absorbance due to NADH formation was proportional to the concentration of L-malic
acid in the sample.

L-lactic acid was determined in a similar way, using L-lactate dehydrogenase to
catalyze the oxidation of L-lactic acid to pyruvate with the concomitant reduction of
NAD+. Again, the increase in absorbance due to NADH was proportional to L-lactic acid
concentration in the sample.

D-gluconic acid was determined by reaction, catalyzed D-gluconate kinase, with
adenosine-5′-triphosphate, producing D-gluconate-6-phospate. Subsequently, D-gluconate-
6-phophate dehydrogenase and NADP+ were used to form ribulose-5-phosphate. The
reduction of NADP+ to NADPH was responsible for the measured absorbance, which was
proportional to the concentration of D-gluconic acid in the sample.

2.4.8. Fourier-Transform Infrared Spectroscopy

Total reducing sugars, pH, acetic acid, total acidity, malic acid, lactic acid, and alcohol
degree were determined by FTIR. The injection volume was 15 mL and the stop time was
2 min per analysis. Spectra were recorded from 2500 to 7785 nm in steps of 5 nm. Sensing
values of each FTIR parameter were obtained from the standard software of the instrument,
operating according to predefined calibration models given by the manufacturer.

2.5. Data Analysis

Multivariate methods such as Principal Component Analysis (PCA), Hierarchical Cluster
Analysis (HCA), and Partial Least Squares Discriminant Analysis (PLS-DA) were used for
sample characterization according to a multi-sensor approach based on low-level data fusion.
Multivariate statistics and ANOVA were also applied for data exploration using Microsoft
Excel. In the multi-sensor approach, the data matrix of responses, also referred to as X-matrix,
was arranged by row-wise augmentation. Each row corresponded to a given sample and
each column to the concentration of a target compound from a given method. As a result,
dimensions of the whole data fusion matrix were 60 samples × 37 variables—55 cava wines
+ 5 quality controls (QCs) analyzed every 10 samples. For HCA and PLS-DA, there were
55 samples × 37 variables, since QCs were excluded. Additionally, other submatrices were
also analyzed, such as those dealing with phenolic and organic acid data, separately. Hence,
the matrix dimensions were 60 samples × 16 variables for polyphenols and 60 samples ×
21 variables for organic acids.

PCA is perhaps the most versatile chemometric method, being very efficient for ex-
ploratory studies in the field of food analysis. PCA relies on the concentration of the
chemical information contained originally in the X-matrix of responses (here, concentra-
tions of selected species resulting from the different techniques) into a reduced group of
mathematical variables, the so-called principal components (PCs). In this process, subma-
trices of scores (coordinates of the samples) and loadings (eigenvalues) were calculated
to retain the maximum amount of relevant information. The scatter plot of scores, for
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instance, of PC1 vs. PC2, may reveal some patterns, similarities, and differences that might
be attributed to the wine features such as grape varieties, coupages, and some wine-making
practices. Complementarily, the plots of loadings show the distribution of variables (here,
some wine compounds), thus revealing some correlations among variables. In addition,
those significant descriptors or class markers can be identified from the interpretation of
the plot of loadings.

HCA is an unsupervised method that was here carried out under a divisive approach
as it was found that it provided the better discrimination results. HCA seeks to build a
hierarchy of clusters, from top to bottom, by applying a k-means clustering algorithm,
which determines the distance of each object to the centroids and groups the object on the
basis of minimum Euclidean distance. Autoscaling was also applied to the X-matrix as a
preprocessing method. Once all samples were assigned, the corresponding dendrogram
was constructed in which samples with similar characteristics were grouped.

PLS-DA is a supervised classification method based on a set of well-known samples
(calibration or training set) belonging to the (two or more) predefined classes, such as white,
rosé, and Blanc de Noirs. The multi-sensor X-matrix was correlated with the Y-matrix of
class assignation, which was encoded numerically. The classification model was built to
reach the minimum error in the assignation of calibration samples into the corresponding
classes. Cross validation is often used to estimate the optimum number of latent variables
(LVs) to be used. PLS-DA models can be interpreted in a similar way to PCA to try to
find markers of each class. The classification performance can be evaluated by external
validation using a test set.

3. Results
3.1. Phenolic Compounds

Polyphenolic data relied on individual polyphenol concentrations as well as reducing
power indexes. Table S1 summarizes the concentration of polyphenolic compounds and
related indexes, with average values, standard deviations, and maximum and minimum
concentrations. Levels of some abundant analytes, including caftaric, gentisic, vanillic,
gallic, homogentisic, caffeic, syringic, ferulic, and p-coumaric acids, (+)-catechin, and (−)-
epicatechin, were determined by HPLC-UV/vis. Additionally, the overall polyphenolic
concentration and the antioxidant activities were estimated by FC and FRAP spectropho-
tometric methods. In Table S1, RSD% values indicate the variability of concentrations as
a measure of discriminating power of variable, thus suggesting the potential descriptive
capacity of compounds such as protocatechuic, homogentisic, and syringic acids, with RSD
values above 100%.

The resulting data consisted of the X-matrix of responses to be treated by PCA. Concen-
tration values were autoscaled to equalize the contribution of major and minor components
in the description. Results from PCA are summarized in Figure 1. The scatter plot of
scores of PC1 vs. PC2 (Figure 1a) showed three main clusters, which corresponded to
rosé, chardonnay-based, and Macabeu, Xarel.lo, and Parellada combination, on the bottom-
right, top-left, and bottom-left areas, respectively. The scores map indicated that, using
polyphenols and antioxidant indexes as the source of information, the description was
mainly governed by the main varietal constituents of the coupage. QCs appeared in a
compact group in the middle of the scores plot, thus indicating the excellent reproducibility
of chromatographic data as well as the descriptive ability of the model.
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The plot of loadings (Figure 1b) suggested that rosé samples were richer in this type of
analyte (i.e., overall phenolic concentration and antioxidant activities were higher for these
samples). Additionally, compounds such as gallic, ferulic, syringic, homogentisic, and
protocatechuic acids and ethyl gallate were also more abundant in rosé samples. Species
such as caffeic, caftaric, and p-coumaric acids were important in rosé coupages, but their
concentrations were also remarkable in blends with a high percentage of Chardonnay, in
which gentisic acid was especially significant. In contrast, coupages with predominance
of Macabeu, Xarel.lo, and Parellada, in general, displayed poorer overall polyphenol
concentrations but with a higher quantity of (+)-catechin.

The sample behavior regarding other features such as application of MLF and aging
period was scarcely explained by this model, thus indicating that the descriptive ability of
polyphenols in these issues was more limited.

3.2. Organic Acids

Organic acids were determined in different ways, namely, (1) HPLC for tartaric, citric,
succinic, acetic, gluconic, malic, and lactic acids; (2) enzymatic methods for acetic and
specific stereoisomers of D-gluconic, L-malic, and L-lactic acids; and (3) FTIR with multi-
variate calibration for total reducing sugars, alcoholic degree, pH, total acidity, and malic,
lactic, and acetic acids. A data summary for the different classes, including average values,
standard deviations, and maximum and minimum values, is given in Tables S2 and S3.
According to the RSD values, the most discriminant variables were here malic and acid
lactic since their concentrations varied substantially among samples, especially due to the
remarkable influence of the application or not of MLF to the vinification.

Results of organic acids and related parameters were collected in an X-matrix to be
analyzed by PCA. As above, data were autoscaled prior to PCA modelling to provide
similar weights to all the variables. A first PCA model was examined using FTIR data, as
this technique has been successfully used in multiple characterization and authentication
studies. Results depicted in the bi-plot (see Figure S1 in supplementary material section)
indicated that wines not subjected to MLF appeared far away from the rest of the samples.
There was no clear distribution of cavas according to other attributes, although blends with
predominance of Macabeu, Xarel·lo, and Parellada tended to be located on the right side. It
was, thus, concluded that information gained from FTIR was just limited to the occurrence
of MLF and the main descriptors; leading this characterization were malic and lactic acids,
which were negatively correlated. In addition, the varieties of rosé cava tended to have a
slightly higher alcoholic strength.



Chemosensors 2021, 9, 200 11 of 18

Results from PCA revealed the most dramatic differences occurred among the cava
class subjected to MLF with respect to the others, with high and low scores on PC1,
respectively. PC2 showed some trends dealing with the abundance of Chardonnay in the
blends. Figure 2 depicts the information gained from PC1 and PC3. The scatter plot of
scores (Figure 2a) showed that samples were grouped in three marked clusters in which,
besides the segregation I class (non MLF), a trend was observed from coupages with 100%
of the three classical varieties (Macabeu, Xarel·lo, and Parellada) to 100% Chardonnay.
Samples with predominance of red grape varieties (classes P, V, and T) were located in close
positions in the upper central area. QCs were located in a compact group in the central
area of the graph, thus proving that the overall model was reliable and robust.
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The study of loadings (Figure 2b) agreed with previous conclusions on organic acids
and, as expected, lactic and malic acids were the respective markers of MLF (or not MLF).
Chardonnay cavas presented the highest acidity with respect to the others but the rosé cavas
were more characterized to present the highest tartaric acid concentrations. Concentrations
of sugars were quite homogeneous for all the samples (brut type) except for the Chardonnay
one (brut nature type).

The information gained from pH and ethanol was quite limited, as all the values
were highly homogeneous, displaying a narrow range of variability, from 2.9 to 3.1 and
11 to 11.9% (v/v), respectively. Values of acetic acid were practically negligible, with
concentrations by FTIR nearly 0.2 g L−1 in all the studied samples.

3.3. Data Fusion

In this part, the two main types of target compounds, namely polyphenols and
organic acids, were simultaneously studied, comparing data from different techniques. This
approach relied on a multi-sensing matrix—simply combined as in a row-wise arrangement
according to a low-level data fusion process—to integrate the information from each
particular subset in a comprehensive model. Hence, the partial insight deduced from the
interpretation of models from a given family or technique could be improved from another
point of view.

Here, a global PCA model was created involving all target compounds (see Figure 3).
Concentrations values were autoscaled prior to PCA treatment to equalize the contribution
of major and minor components in this overall description. In Figure 3a, the scatter plot of
scores of PC1 vs. PC2 showed two main areas corresponding to wines with and without
MLF (left and right sides, respectively). The variability of the experimental data was
assessed from the dispersion of the QCs, which appeared in a compact group in the middle
of the scores plot, thus, proving that the overall model was reliable and robust. After
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the first alcoholic fermentation, MLF was applied to avoid the strong acidity in palate
due to malic acid, in a process to convert the later acid into lactic acid, thus conferring
creamier taste attributes to wine. All the sparkling wines were subjected to MLF except for
coupage I.
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The separation according to PC2 showed two main patterns associated to the vinifica-
tion and type of grape, with red or white grapes on the top and bottom areas, respectively.
Red cava wines are more susceptible to contain high quantities of polyphenols due to
the must maceration with their grape skins; thus, coupages P, V, and T made with red
grapes varieties with a period of maceration displayed high quantities of polyphenols. In
addition, blends W and I, made under vinification of blanc de noirs (i.e., red grapes with
no maceration), appeared in the middle of the model, between white and rosé cava wines.

Figure 2b represents the loadings plot to see in more detail which target compounds
were relevant in each case. Although it is a multiparametric matrix offering global informa-
tion dealing with a wide range of compounds, the separation according to PC1 was clearly
focused on the MLF process, with malic acid and total acidity dominating the right side
of the graph and lactic acid and pH to the left. Regarding the phenolic data, except for
gentisic acid, which was more specific of the white grapes, all individual compounds and
antioxidant indexes appeared in the upper part, in agreement with previous conclusions,
indicating that rosé wines were richer in these species.

Since MLF vs. non-MLF was the principal feature of this overall description, another
PCA model was created, excluding those samples belonging to class I (non-MLF). The
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corresponding results are depicted in Figure 3c,d. In this case, PC1 mainly discriminated
among rose and white wines. This distribution was dependent on the phenolic content,
with the richest samples on the right and the purest on the left. In particular, aged wines
(class K) were grouped apart from other younger wines, mainly because of the lowest
phenolic contents and poorest antioxidant indexes. Hence, polyphenols’ protocatechuic,
caftaric, caffeic, p-coumaric, homogentisic, syringic, gallic, ferulic acids, ethyl gallate and
FC and FRAP indexes predominated in rosé wines. PC2 was able to discriminate among
the different white cavas according to the gradation of Chardonnay in the blends. Then,
monovarietal Chardonnay samples were located at the top, while those composed of
Macabeu, Xarel.lo, and Parellada were at the bottom. In the middle, different groups were
observed, which distributed according to the Chardonnay percentages. This behavior was
led by the composition of some organic acids and polyphenols.

HCA was here applied to obtain complementary information on the analogies and
differences among sample types. A dendrogram based on the K-nearest algorithm is given
in Figure 4. As can be seen, the group of samples belonging to Blanc de Noirs without
MLF was the most dissimilar cluster. Subsequently, the monovarietal Chardonnay and rosé
wines were separated from the main group, which consisted of the rest of white sparkling
wines. Within this group, further fragmentations corresponded to Blanc de Noirs with
MLF and cavas with predominance of Macabeu, Xarel.lo, and Parellada. The remaining
cluster contained different percentages of blends of Chardonnay and Macabeu, Xarel.lo,
and Parellada. This description was essentially in agreement with the aforementioned
results by PCA, although no information on potential descriptors was here available.
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the data.

A study case dealing with a supervised classification of cava samples was carried out
using PLS-DA in which three classes of sparkling wines were defined according to some
natural patterns found from PCA and HCA studies, namely, (1) white cavas, produced from
white grapes (here, Macabeu, Xarel·lo, Parellada, and chardonnay); (2) rosé cavas, produced
mainly from red grapes (pinot noir, garnatxa Negra, and trepat) under rosé vinification
(must maceration with peels for a preestablished time to extract a part of natural coloring
components); a certain percentage of chardonnay was also added to one blend (coupage T),
although the rosé components were always predominant; (3) blanc de noir cavas, produced
from red grapes of pinot noir variety following a white vinification process (i.e., without
must maceration with skins and seeds so coloring component extraction was negligible).

For the classification study, the cava samples were divided into the calibration and
validation sets to build the model and make independent predictions of class membership,
respectively. For that purpose, 60% and 40% of samples were randomly assigned to each
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set. Some representative results of the PLS-DA classification are shown in Figure 5. The
optimum number of latent variables (LVs) to carry out the predictions was estimated
according to cross validation based on Venetian blinds. As can be seen in Figure 5a, 3 LVs
were chosen for modelling the three classes. Figure 5b shows the scatter plot of scores
of LV1 vs. LV2 in which samples belonging to the calibration set were represented with
empty symbols while those included in the validation set were the solid ones. As can be
seen, there was a clear sample discrimination depending on the classes defined for both
training and test sets. The most characteristic variables in this segregation were caftaric,
gallic and caffeic acids, and lactic acid as well as antioxidant indexes for rosé cavas and
malic acid and other organic acids for blanc de noirs, while white ones contained lower
levels of malic acid and most of polyphenols.
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the data fusion approach using phenolic and organic acid values as the data. (a) Root Mean Square Error of Cross Validation
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samples. Red line indicates the classification threshold.

The predictive ability of PLS-DA was first estimated for both calibration and validation
samples. A representative example showing the assignation of white cavas in front of the
other classes is depicted in Figure 5c. The prediction of the rosé and blanc de noir samples
can be found in Figure S2 of the supplementary material. Additionally, sensitivity and
selectivity results are summarized in Table S4. As can be seen, all the calibration samples
were correctly assigned to their respective classes. Excellent prediction results were also
obtained for the validation samples with only one misclassified sample (a white sample
assigned as rosé type).

3.4. Bar Charts

Conclusions drawn by PCA comparing according to the differences in the composition
of target compounds were crosschecked graphically from various bar plots. Figure 6 shows
the five most significant polyphenols found (catechin, gallic, gentisic, caftaric, and caffeic
acids). As pointed out, all coupages had high levels of gentisic acid but coupage G and
S presented the highest amounts since they were elaborated with high percentages of
Chardonnay variety (e.g., 100% and 50%, respectively). Coupage V was highlighted for its
high amount of (+)-catechin. Gallic acid was representative of rosé cavas, and caftaric acid
was representative of rosé and Chardonnay ones.
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see Table 2.

Regarding organic acids and other parameters, all coupages presented similar amounts
of tartaric acid but total acidity was more noticeable in Chardonnay ones. Figure 7 shows
levels of malic and lactic from HPLC profiling were higher than those from enzymatic
and FTIR techniques that were focused on given L or D stereoisomers. Additionally, as
commented above, coupage I was featured by the highest amount of lactic acid and the
lowest of malic acid. ANOVA of two factors with replicates was applied to evaluate
the concentrations’ malic and lactic acids from the different methods. It was found that,
with 95% of statistical confidence, concentrations from the methods differed significantly.
Indeed, values of these acids from these three methods were different due to the fact that
HPLC accounted for both isomers L and D while FTIR and enzymatic procedures only
detected the L isomer.
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4. Conclusions

Results obtained here revealed some trends in the sparkling wine behavior from both
types of target compounds, polyphenols, and organic acids. First, rosé vinifications showed
they highest overall amounts of phenolic acids due to the lixiviation during the maceration
process of grape skins with must. Despite being white varieties, Chardonnay wines were
quite rich in polyphenols. Malic and lactic acids were the most relevant organic acids in
these descriptions and allowed us to discriminate cavas according to the application or not
of malolactic fermentation (MLF).

Conclusions extracted separately from the analyses of each family of analytes could be
visualized together from the simultaneous analyses of all sensing variables based on a low-
level data fusion approach. As a result, concentration values of a wide range of analytes,
including both individual and overall data, were joined in an augmented arrangement to
be further analyzed by chemometric methods. The MLF was again the most remarkable
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feature for sample discrimination. Anyway, once samples not subjected to MLF were
excluded from the analysis, interesting patterns were revealed, which depended on both
phenolic acid and organic acid components. Hence, additional trends such as aging and
percentage of Chardonnay in the blends could be visualized.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemosensors9080200/s1. Table S1: Average, standard deviation, RSD (%), and maximum and
minimum concentrations of polyphenols in the set of samples under study. Standard deviation and
relative standard deviation indicate the variability of concentrations as a measure of discriminating
capacity among samples. Table S2: Average, standard deviation, RSD (%), and maximum and
minimum concentrations of organic acids in the set of samples under study from enzymatic and
HPLC methods. Table S3: Average, standard deviation, RSD (%), and maximum and minimum
values from FTIR, potentiometric, and volumetric methods in the set of samples under study. Table S4:
Summary of classification results by PLS-DA for the assignation of white, blanc de noirs, and rosé
cava samples. Figure S1: PCA results showing the biplot of PC1 vs. PC2 from the study of FTIR data.
Plot of scores (a) and plot of loadings (b). Cava class assignation: see Table 1. Figure S2: Classification
plots from PLS-DA. Sample assignation: triangle = white; square = rosé; circle = blanc de noirs;
empty symbols = calibration samples; solid symbols = validation samples. Red line indicated the
classification threshold.
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