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Abstract: Herein, a simple, economical and low temperature synthesis of leaf-shaped CuO nanosheets
is reported. As-synthesized CuO was examined through different techniques including field emis-
sion scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), transmission
electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), fourier trans-
form infrared spectroscopic (FTIR) and Raman spectroscopy to ascertain the purity, crystal phase,
morphology, vibrational, optical and diffraction features. FESEM and TEM images revealed a thin
leaf-like morphology for CuO nanosheets. An interplanar distance of ~0.25 nm corresponding to the
(110) diffraction plane of the monoclinic phase of the CuO was revealed from the HRTEM images
XRD analysis indicated a monoclinic tenorite crystalline phase of the synthesized CuO nanosheets.
The average crystallite size for leaf-shaped CuO nanosheets was found to be 14.28 nm. Furthermore,
a chemo-resistive-type gas sensor based on leaf-shaped CuO nanosheets was fabricated to effectively
and selectively detect H2S gas. The fabricated sensor showed maximum gas response at an optimized
temperature of 300 ◦C towards 200 ppm H2S gas. The corresponding response and recovery times
were 97 s and 100 s, respectively. The leaf-shaped CuO nanosheets-based gas sensor also exhibited
excellent selectivity towards H2S gas as compared to other analyte gases including NH3, CH3OH,
CH3CH2OH, CO and H2. Finally, we have proposed a gas sensing mechanism based upon the
formation of chemo-resistive CuO nanosheets.

Keywords: leaf-shaped; nanosheets; CuO; gas sensor; H2S

1. Introduction

Recently, detecting hazardous substances and continuously monitoring the air pollu-
tants, toxic gases and volatile organic gases have become the key to create a safe and healthy
environment for society. Vehicular and other industrial activities are adding a variety of
harmful toxic gases tremendously to the environment daily. Continuous exposure to such
gases is the cause of serious health related problems in humans [1,2]. One such harmful
gas is hydrogen sulfide (H2S) which is highly corrosive, inflammable, and explosive, thus
an extremely hazardous gas. Exposure to low concentrations of H2S gas may cause a sore
throat, coughing, skin itching, eye irritation and inflammation and irritation in the respi-
ratory track, etc. [3,4]. In contrast, exposure to high concentrations (>100 ppm) may lead
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to olfactory nerve paralysis, loss of consciousness, myocardial damage and Alzheimer’s
disease. H2S exposure above 300 ppm may cause the sudden collapse of the cardiovascular
system, damage to the human lungs and central nervous system [5–7].

A plethora of different analytical methods including conductometric [8], spectro-
scopic [9], micro-cantilever [10], gas chromatography [11], surface plasmon resonance [12],
surface acoustic [13], field-emission transistors [14], microwave, [15] and chemo-resistive
sensors based on nano-sized semiconductor metal oxides that have emerged as potential
gas sensor materials and have been exhaustively investigated for variety of hazardous toxic
gases [16,17]. Recently, many metals oxide-based gas sensors based on a chemo-resistive
technique have been reported for H2S gas sensing and monitoring. Qiao et al. [18] reported
Mo-doped BiVO4 were with high sensitivity, selectivity, fast response towards 20 ppm
H2S at optimized temperature of 150 ◦C. Li et al. [19] analyzed the effect of integrating
p-type and n-type semiconductor for H2S by synthesizing metal-organic frameworks-
derived bamboo-like CuO/In2O3 heterostructure. Flower-like structures composed of
vertical aligned ZnO nanorods showed a high response and selectivity for H2S at room
temperature [20]. Hydrothermally synthesized pure ZnO and Cu-doped ZnO nanostruc-
tures decorated with reduced graphene oxide were compared for their H2S gas sensing
behavior by Shewale et al. [21] and it was concluded that Cu doping and rGO inclusion,
resulted in improved sensing parameters. CuFe2O4 nanoparticles prepared through sol-gel
auto-combustion method, showed excellent sensitivity towards 25 ppm H2S at 80 ◦C [22].

Among the various chemo-resistive metal oxides, cupric oxide (CuO) poses interest-
ing properties like a p-type semiconducting nature, a narrow band gap (1.2 eV in bulk),
high charge carrier concentrations, superior physical and chemical properties, ease of
synthesis, versatile morphologies controlled through reaction conditions, reagent concen-
tration and selectivity of synthetic method [23,24]. CuO nano/microstructures such as
flower-shaped [25], nanoneedles [26], nanorods [27], nanowires [28], and nanosheets [29]
have been synthesized utilizing hydrothermal, sol-gel, coprecipitation, electrospinning
techniques. Owing to these versatile features, CuO nanostructures have been explored
for numerous highly toxic volatile organic compounds and gases like ammonia [30], ace-
tone [31], alcohols [32], liquified petroleum gas [33], carbon monoxide [34], sulphur diox-
ide [35], nitrogen dioxide [36] and many more. A detailed literature survey revealed that
the two-dimensional CuO nanomaterials are rarely reported for the sensing of H2S gas.

Herein, we are reporting a simple, economic and low temperature synthesis of leaf-
shaped CuO nanosheets. As-synthesized CuO was examined through different techniques
to confirm its formation, purity, crystal phase, morphology, vibrational, optical and diffrac-
tion features. A chemo-resistive type gas sensor based on leaf-shaped CuO nanosheets
was fabricated to effectively and selectively detect H2S gas. The sensor parameters were
analyzed under varying degree of the operating temperatures and concentrations. Finally,
a gas sensing mechanism was also proposed.

2. Materials and Methods
2.1. Synthesis of Leaf-Shaped CuO Nanosheets

Leaf-shaped CuO nanosheets were grown by a low temperature solution process. In
a typical synthesis, 2 mmol of Copper (II) nitrate trihydrate (Cu(NO3)2·3H2O) was first
dissolved in 50 mL of deionized (DI) water under vigorous stirring for 1h. Separately
10 mmoL sodium hydroxide (NaOH) was freshly prepared in 20 mL DI water. Then NaOH
solution was introduced to the Cu precursor solution under stirring until the pH of solution
was reached to 11. Afterward, the reaction mixture was put into scotch Durant bottle and
strongly tight the cover of the bottle. The Scotch Durant bottle was placed in an oven
and maintained the temperature at 70 ◦C for 24 h. After completion of the reaction, the
precipitate was washed several times with distilled water and ethanol repeatedly to remove
the complexes and other impurities. Lastly, the desired product was dried at 80 ◦C to
obtain CuO powder. Figure 1 depicts the typical schematic for the synthesis of leaf-shaped
CuO nanosheets.
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Figure 1. Schematic to synthesize leaf-shaped CuO nanosheets.

2.2. Characterization of Leaf-Shaped CuO Nanosheets

Field emission scanning electron microscopy (FESEM, JEOL-JSM-7600F, Boston, MA,
USA) associated with energy dispersive spectroscopy (EDS) and transmission electron mi-
croscopy (TEM, JEOL-JEM-2100F; Boston, MA, USA) associated with high-resolution TEM
(HRTEM) were utilized to examine the detailed structural, elemental, compositional, and
morphological features of the hydrothermally synthesized leaf-shaped CuO nanosheets.
X-ray diffractometer (XRD, PANanalytical Xpert Pro., Davis, CA, USA) studies were per-
formed using Cu-Kα radiation (λ = 1.542 Å) for analyzing the crystal phases and size for
the synthesized CuO. Fourier transform infrared spectroscopic (FTIR, Perkin Elmer-FTIR
Spectrum-100; Markham, ON, Canada ) technique, through KBr palletization, along with
Raman spectroscopy (Perkin Elmer-Raman Station-400 series, Markham, ON, Canada)
were used to study the vibrational properties. The photoluminescence spectra (PL) were
analyzed by the FP-6500 (JASCO, Easton, MD, USA) fluorometer using CuO suspension in
ethanol solvent.

2.3. Fabrication of H2S Gas Sensor Based on Leaf-Shaped CuO Nanosheets

A slurry was made, by mixing leaf-shaped CuO nanosheets with diethanolamine and
ethanol, and coated on the surfaces of ceramic tube to obtain thick films. The gas sensing
characteristics were examined by computer-controlled gas sensing analysis system. The
details of the gas sensing system are presented elsewhere [16]. The test chamber volume
is 4 L. During the sensing measurements, the heating system adjusts the temperature
directly. When the resistance of the sensors became stable, the dynamic gas distribution
system injected the target gas into the chamber. The sensors’ resistance then changed,
and the test chamber was opened when the resistance returned to normal, and the gas
sensors would recover to origin states. The gas sensor response was defined as the ratio of
device resistance in the presence of testing gas (Rg) and in air (Ra) at the same temperature
(Equation (1)).

Gas response =
Rg

Ra
(1)
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3. Results and Discussion
3.1. Characterizations

The surface features, morphology and microstructure of the as-synthesized CuO
nanosheets were characterized by a field emission scanning electron microscope (FESEM)
at resolution scales of 5 µm (Figure 2a), 2 µm (Figure 2b), 1 µm (Figure 2c) and 500 nm
(Figure 2d). All FESEM images revealed a thin leaf-like morphology for CuO nanosheets.
The surfaces of the nanosheets were very smooth but the edges displayed small fringes,
features similar to plant leaves. The average width of the leaf-shaped nanosheets was
~250 nm. However, the length-wise dimensions were quite variable.
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Figure 2. (a,b) Low-magnification, (c,d) high-resolution FESEM images, (e) TEM image and
(f) high-resolution TEM image of hydrothermally synthesized leaf-shaped CuO nanosheets.

More details of the microstructural properties of CuO nanoleaves were further ex-
plored through transmission electron microscopy (TEM; JEOL-JEM-2100F) equipped with
high-resolution TEM (HRTEM). In Figure 2e,f the typical TEM and HRTEM images of a
leaf-shaped CuO nano-sheet, respectively are shown. Thin leaf like morphologies of the
CuO nanosheets, as examined through FESEM images, were confirmed by the TEM image
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(Figure 2e). Similar to the reported literature, the interplanar distance of ~0.25 nm which
corresponds to the (1 1 0) diffraction plane of the monoclinic phase of the CuO was from
the HRTEM images (Figure 2f).

The crystalline phase of hydrothermally synthesized CuO leaf-shaped nanosheets
was analyzed by XRD as shown in Figure 3. Well defined diffraction patterns at 2θ values
32.45◦, 35.45◦, 38.65◦, 46.25◦, 48.75◦, 53.50◦, 58.25◦, 61.50◦, 66.25◦ and 68.00◦ are due to the
lattice planes (110), (111− 002), (111− 002),

(
112

)
, (202), (020), (202), (113),

(
311

)
and (220),

respectively. These diffraction peaks and planes are the characteristics of the monoclinic
tenorite crystalline phase of the CuO. The data is well-matched with the JCPDS 48–1548
card as well as the reported literature. Absence of peaks related to any other crystalline
phase and impurity further indicate the successful synthesis of highly pure monophasic
CuO nanoleaves via facile hydrothermal process.

Chemosensors 2021, 9, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 3. XRD patterns of hydrothermally synthesized leaf-shaped CuO nanosheets. 

Since, for gas sensing applications, the composition and the purity of the gas sensor 

electrode material is of utmost importance, the as-synthesized leaf-shaped CuO 

nanosheets were subjected to elemental composition analysis using EDS attached with the 

FESEM. Figure 4a is representing the EDS spectrum of the leaf-shaped CuO nanosheets 

which shows only the spectral peaks for copper and oxygen elements. This ensured that 

the CuO nanosheets are free of any impurities. 

Structural fingerprinting through Raman spectroscopy is an important qualitative 

technique to analyze the composition, vibrational and scattering properties of the metal 

oxide semiconductors [37]. The primitive cell for the monoclinic tenorite crystalline phase 

of CuO consists of two molecules per unit cell with the space group 𝐶2ℎ
6  [29]. In general, 

there are nine zone-center optical phonon modes for CuO with symmetries 4Au + 5Bu + Ag 

+ 2Bg. However, out of these modes only three phonon modes with symmetries Ag and 

2Bg are Raman active [38]. The typical Raman spectrum for leaf-shaped CuO nanosheets 

consist of three distinct characteristic Raman peaks at 287, 344 and 620 cm−1 (Figure 4b). 

The distinct sharp peak at 287 cm−1 is attributed to Ag phonon mode, whereas less intense 

Raman peaks at 344 and 620 cm−1 are assigned to Bg1and Bg2 modes, respectively. The peaks 

are in good agreement with the Raman peaks reported for urchin like CuO hollow micro-

spheres [39], CuO nanoplates [40] and CuO nanoparticles [41]. 

Figure 4c is representing the well-defined FTIR spectrum for the hydrothermally syn-

thesized CuO nanosheets. FTIR peaks appeared at 523, 587, 1625 and 3427 cm−1 for leaf-

shaped CuO nanosheets. Very sharp vibrational peaks in the fingerprint region i.e., at 523 

and 587 cm−1 may be assigned to the stretching vibrations of the M-O bonds (In this case 

Cu-O bond) [42]. Additional peaks at 1625 cm−1 and a wide FTIR band at 3427 cm−1 may 

be attributed to the bending and stretching vibrations, respectively for the O–H groups of 

physiosorbed H2O molecules on the surface of the leaf-shaped CuO nanosheets [43]. 

Photoluminescence (PL) spectroscopy is usually helpful in predicting the charge car-

rier trapping efficiencies, surface defects as well as the recombination of the e−/h+ pairs in 

a semiconductor metal oxide. PL spectrum of the leaf-shaped CuO nanosheets showed 

20 25 30 35 40 45 50 55 60 65 70

In
te

n
si

ty
 (

A
rb

. 
U

n
it

s)

2q (Degree)

1
1
0

 

1
1

1
-0

0
2

1
1

1
-2

0
0

1
1

2

2
0
2

0
2
0 2
0
2

1
1
3

3
1

1
-0

2
2

2
2
0

Figure 3. XRD patterns of hydrothermally synthesized leaf-shaped CuO nanosheets.

The crystal size (d) of the leaf-shaped CuO with monoclinic crystalline phase was
determined by using Debye-Scherrer equation (Equation (2)).

d =
K λ

β cos θ
(2)

where K is a numerical factor (In this case K = 0.89), β is full width at half maximum
(FWHM) and λ is 0.154 nm. Some of the most intense XRD peaks, as mentioned in
Table 1 were used to calculate the FWHM. The average crystallite size for leaf-shaped CuO
nanosheets was found to be 14.28 nm.
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Table 1. Diffraction parameters for leaf-shaped CuO nanosheets.

Diffraction Planes (hkl) Diffraction Angles (◦) FWHM (β) The Crystallite Size (nm)

(1 1 0) 32.45 0.7597 10.78(
1 1 1− 0 0 2

)
35.45 0.4275 19.31

(111-200) 38.65 0.5713 14.58
(2 0 2) 48.75 0.6051 14.26
(202) 58.25 0.7340 12.26(
1 1 3

)
61.50 0.6320 14.48

Since, for gas sensing applications, the composition and the purity of the gas sensor
electrode material is of utmost importance, the as-synthesized leaf-shaped CuO nanosheets
were subjected to elemental composition analysis using EDS attached with the FESEM.
Figure 4a is representing the EDS spectrum of the leaf-shaped CuO nanosheets which
shows only the spectral peaks for copper and oxygen elements. This ensured that the CuO
nanosheets are free of any impurities.
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Structural fingerprinting through Raman spectroscopy is an important qualitative tech-
nique to analyze the composition, vibrational and scattering properties of the metal oxide
semiconductors [37]. The primitive cell for the monoclinic tenorite crystalline phase of CuO
consists of two molecules per unit cell with the space group C6

2h [29]. In general, there are



Chemosensors 2021, 9, 221 7 of 14

nine zone-center optical phonon modes for CuO with symmetries 4Au + 5Bu + Ag + 2Bg.
However, out of these modes only three phonon modes with symmetries Ag and 2Bg are
Raman active [38]. The typical Raman spectrum for leaf-shaped CuO nanosheets consist of
three distinct characteristic Raman peaks at 287, 344 and 620 cm−1 (Figure 4b). The distinct
sharp peak at 287 cm−1 is attributed to Ag phonon mode, whereas less intense Raman peaks
at 344 and 620 cm−1 are assigned to Bg

1 and Bg
2 modes, respectively. The peaks are in good

agreement with the Raman peaks reported for urchin like CuO hollow microspheres [39],
CuO nanoplates [40] and CuO nanoparticles [41].

Figure 4c is representing the well-defined FTIR spectrum for the hydrothermally
synthesized CuO nanosheets. FTIR peaks appeared at 523, 587, 1625 and 3427 cm−1 for
leaf-shaped CuO nanosheets. Very sharp vibrational peaks in the fingerprint region i.e., at
523 and 587 cm−1 may be assigned to the stretching vibrations of the M-O bonds (In this
case Cu-O bond) [42]. Additional peaks at 1625 cm−1 and a wide FTIR band at 3427 cm−1

may be attributed to the bending and stretching vibrations, respectively for the O–H groups
of physiosorbed H2O molecules on the surface of the leaf-shaped CuO nanosheets [43].

Photoluminescence (PL) spectroscopy is usually helpful in predicting the charge
carrier trapping efficiencies, surface defects as well as the recombination of the e−/h+ pairs
in a semiconductor metal oxide. PL spectrum of the leaf-shaped CuO nanosheets showed
typical green emission within the wavelength range of 400–450 nm (Figure 4d). The broad
nature of the PL spectrum further indicates the presence of the surface defects on CuO
nanosheets [44]. Emission peaks at 414.4 and 431.8 nm are supposed to arises from the
ionized oxygen vacancies resulting in green emission from the surface of the leaf-shaped
CuO nanosheets [45]. The band gap for CuO was calculated from the emission peaks at
414.4 and 431.8 nm using well-known Planck’s equation (Equation (3)). The calculated
band gap was in the range 2.99–2.87 eV which is close to the reported value [45].

Eg =
hc

λmax
(3)

3.2. H2S Gas Sensing Applications of CuO Nanosheets

Semiconductor metal oxides are the key component of the most of the recently studied
gas sensors due to their low-cost synthesis, biocompatibility, ease of sensor fabrication and
excellent gas sensing behavior. Gas sensing parameters of such sensors are controlled by
different factors like operating temperature, gas concentration, composition of the sensor
material, surface modifications, crystal size, and most importantly the nature of the gas
which significantly contributes to the selectivity of the sensor.

One of the most important controlling factors is the operating temperature since it
controls the adsorption 
 desorption equilibrium of the gas and O2 molecules, kinetics
of the redox reactions, and concentration of oxygen vacancies on the surface of the sensor
materials. Herein, the optimized temperature was found to be 300 ◦C for the sensing
of 200 ppm H2S gas through leaf-shaped CuO nanosheets based gas sensor device. The
corresponding gas response was 35.3 at optimized temperature. Low sensor response
below 300 ◦C is due to insufficiently activation of the H2S gas molecules to react with
the surface adsorbed O2 molecules (Figure 5a). As the temperature is increased more O2
molecules are reduced to the oxygenated anionic species which further react with H2S
molecules, thereby increasing gas response. However, beyond optimized temperature, the
increased rate of the desorption of the H2S and O2 molecules decreases the gas response.
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response plots for leaf-shaped CuO nanosheets based H2S gas sensor.

The gas sensor response depends upon the rate of the redox reactions occurring at the
surface of the sensor material, which in turn is directly proportional to the concentration
of the analyte gas. Therefore, the gas responses of the leaf-shaped CuO nanosheets based
gas sensor for low concentrations (10–100 ppm) (Figure 5b) as well as high concentrations
(100–450 ppm) (Figure 5c) of the H2S gas, at an optimized temperature of 300 ◦C, were
recorded. Excellent linearities were observed between the gas response and H2S concentra-
tion with determinant coefficients of 0.99545 and 0.99710 for low and high concentration
ranges, respectively. The real time dynamic response-recovery curves for the fabricated
sensor against different concentrations of the H2S gas ranging from 50–250 ppm at 300 ◦C
are shown in Figure 5d. The gas response steeply increased in the presence of the analyte
gas and as soon as the supply of the gas was interrupted, the gas response returned to the
original baseline value. The behavior was observed for all the chosen H2S concentrations
at optimum temperature. Excellent gas response can be attributed to the unique nanosheet
like morphology for of CuO which provide a large specific surface area for the high extent
of adsorption of O2 and H2S gas molecules.

The repeatability and reusability aspects of the CuO nanosheets based sensor towards
sequential exposure of 200 ppm H2S gas at optimized temperature of 300 ◦C were examined
by analyzing gas responses for successive twelve cycles. The outcomes of the analysis
are shown in Figure 6a. Perfectly matched gas responses for each cycle indicate excellent
response reproducibility of the fabricated H2S gas sensors. The response and recovery
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times are also two important factors in the gas sensor applications. The response (τres) and
recovery time (τrec) relate to the time required by the sensor to attain the 90% steady re-
sponse value and the time required to reach 10% of the initial gas response, respectively [35].
Figure 6b shows the response and recovery curves for leaf-shaped CuO nanosheets based
gas sensor towards 200 ppm of H2S gas at optimized temperature. Response and recovery
times were 97 s and 100 s, respectively.
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Inspired by the excellent gas sensing behavior of the as-fabricated gas sensor, the
selectivity test was also performed (Figure 7). The test shows that the leaf-shaped CuO
nanosheets based gas sensor was more selective towards H2S gas as compared to other
analyte gases including NH3, CH3OH, CH3CH2OH, CO and H2. For 200 ppm concentra-
tions, the gas responses towards H2S observed were 4.84, 3.21, 2.94, 5.19 and 6.30 times
higher than NH3, CH3OH, CH3CH2OH, CO and H2, respectively at 300 ◦C temperature.
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3.3. Proposed Gas Sensing Mechanism

Since CuO is a typical p-type semiconductor metal oxide, its gas-sensing behavior
is attributed to the change in the resistance resulted due to redox reactions occurring
on its surface between the H2S gas molecules and various oxygenated anionic species.
The resistance changes are also resulted by the adsorption 
 desorption equilibrium of
the analyte gases as a function of temperature and the concentration. In the presence
of air ambient conditions, p-type CuO semiconductor ionizes adsorbed O2 molecules
into various anionic species including O−2 , O2−

2 , O2− and O− at optimized temperature
conditions utilizing the conduction band electrons (Equations (4)–(6)). This loss of electrons
from the conduction band forms a positively charged hole accumulation layer.

O2 (g) → O2 (ads) (4)

O2 (g)
eCB
−
→ O−2(ads)

eCB
−
→ O2−

2(ads) (5)

O2 (g)
eCB
−
→ 2O−

(ads)
eCB
−
→ 2O2−

(ads) (6)

Due to the formation of positively charged hole accumulation layer near the surface
of the CuO nanosheets which stimulates a competitive resistance between the highly
insulating resistive core and the hole accumulation layer [29].

The oxidation of the H2S to SO2 and H2O on the surface of the leaf-shaped CuO
nanosheet results in the release of the electrons which are trapped by the positively charged
holes resulting in electron-hole recombination (Equations (7)–(9)). The thickness of the hole
depletion layer is decreased which subsequently enhances the resistance of the leaf-shaped
CuO nanosheets [46] (Figure 8).

H2S + 3 O−
(Adsorbed) → SO2 + H2O + 3 e− (7)

H2S + 3 O2−
(Adsorbed) → SO2 + H2O + 6 e− (8)

e− + h+ → Null (9)
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In order to further justify the novelty of the present work, a comparative analysis
of the gas sensor parameters of the present study is shown in Table 2 and compared to
other reported CuO nanostructures. From the Table 2, it can be inferred that as-synthesized
leaf-shaped CuO nanosheets show the better gas sensing performance as compared to
reported pure CuO nanostructures and composites of CuO.

Table 2. Sensing parameters for various CuO gas sensor materials towards H2S gas.

Sensor Material Conc. Gas
Response Response Time (s) Recovery Time (s) T (◦C) Ref.

CuO nanosheets 2 ppb 320 * 4 9 240 [47]
Porous CuO nanosheet 10 ppb 1.25 # 234 76 RT [48]
rGO/CuO nanofibers 10 ppm 11.7 $ - - 300 [49]

Hierarchically flower-like CuO 1 ppm 2.1 $ 240 1341 RT [50]
CuO–ZnO hollow spheres 5 ppm 13.3 # 270 720 336 [51]

Hierarchical CuO/NiO
nanowall arrays 5 ppm 36.9 $ - 13 133 [52]

CuO/MoS2 film 30 ppm 61 * 26 11 RT [53]
CuO nanosheet monolayer 200 350 * 20 120 250 [54]

Leaf-shaped CuO nanosheets 200 35.3 $ 97 100 300 This work

* Gas response = (Rg−Ra)100
Ra , # Gas response = Ra

Rg , $ Gas response = Rg
Ra .

4. Conclusions

In summary, leaf-shaped CuO nanosheets were prepared through facile low tempera-
ture hydrothermal process and were subsequently characterized. The average width of the
leaf-shaped nanosheets was ~250 nm and the surface were smooth but the edges displayed
small fringes. The H2S gas sensor was fabricated using as-synthesized leaf-shaped CuO
nanosheets. At the optimized temperature conditions, a gas response of 35.3 was observed
for 200 ppm H2S gas. Outstanding linearity between gas response and the concentrations
of the H2S gas were shown at low as well as high concentration ranges. Additionally,
the fabricated sensors also showed good repeatability and selectivity. The excellent gas
response for leaf-shaped CuO nanosheets gas sensors are due to the unique nanosheet-like
morphology for of CuO which provide a large specific surface area for the high extent of
adsorption of O2 and H2S gas molecules. From these findings, it can be presumed that gas
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sensors based on leaf-shaped CuO nanosheets may, in near future, be suitable materials for
the detection of highly toxic gases like H2S.
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