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Abstract: A non-invasive, small, and fast device is needed for food freshness monitoring, as cur-
rent techniques do not meet these criteria. In this study, a resistive sensor composed of a single
semiconductor nanowire was used at different temperatures, combining the responses and process-
ing them with multivariate statistical analysis techniques. The sensor, very sensitive to ammonia
and total volatile basic nitrogen, proved to be able to distinguish samples of fish (marble trout,
Salmo trutta marmoratus) and meat (pork, Sus scrofa domesticus), both stored at room temperature and
4 °C in the refrigerator. Once separated, the fish and meat samples were classified by the degree of
freshness/degradation with two different classifiers. The sensor classified the samples (trout and
pork) correctly in 95.2% of cases. The degree of freshness was correctly assessed in 90.5% of cases.
Considering only the errors with repercussions (when a fresh sample was evaluated as degraded,
or a degraded sample was evaluated as edible) the accuracy increased to 95.2%. Considering the size
(less than a square millimeter) and the speed (less than a minute), this type of sensor could be used
to monitor food production and distribution chains.

Keywords: metal oxide; gas sensor; resistive sensor; single nanowire; machine learning; electronic
nose; food spoilage; food freshness

1. Introduction

Food safety is important nowadays, especially when it comes to fresh food. Fresh foods
are healthier but are also more prone to rapid degradation. This has important reper-
cussions both in terms of food losses along the distribution chain and on the health of
consumers and therefore on the health system [1,2]. The modern development of longer
distribution chains is not suitable for this type of food, as it extends the time that passes
before the consumer has the product at home and therefore increases the possibility of
degradation [3]. Fish and meat products are fresh products that represent optimal growth
media for a large variety of spoiling microorganisms. The metabolic activity of these
microbes can lead to the production of ammonia, biogenic amines, nitrogen compounds,
alcohols, ketones, aldehydes, esters, gases (CO,), etc. responsible for unpleasant odors [4].
For this reason, the number of microorganisms present for each gram of sample is used as a
reference value when evaluating the degradation of a product and is called the total viable
count (TVC). Since after fishing or slaughter the microorganisms reproduce, and their
number increases greatly as they spread to the various tissues [5], the TVC measurement
can be considered a standard [6].

Fortunately, the volatiles produced by the microorganisms can also be used to assess
the degradation status of the product in a non-invasive way. An instrument capable of
detecting these volatiles can give a rough estimate of the number of microorganisms on the
meat or fish, therefore of its state of freshness/degradation [7,8]. A sufficiently sensitive
device would be able to detect these volatiles at a very initial state, when the proliferation of
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microorganisms has not yet degraded the product. In this way, it could be used to monitor
the quality of the product along its distribution chain, from production to sale to the final
consumer. A group of volatile molecules widely used to measure the degradation of meat
and fish is the so-called total volatile basic nitrogen (TVB-N). The main components of
this group are trimethylamine (CH3)3N (TMA), dimethylamine (CH3),INH (DMA), and
ammonia NHj [9].

There are already tools capable of accurately analyzing these volatile compounds:
they extract, separate, and identify them with chromatographic techniques and mass
spectrometry [10]. This type of technique can identify every single compound present in
the headspace so that it can be linked to the metabolic processes of spoilage microorganisms.
Unfortunately, the other side of the coin is the complexity, size, and cost of this equipment,
but above all, the time taken by highly qualified personnel. For this reason, it is not possible
to use these techniques on a large scale, to monitor products along the production and
distribution chain. For this purpose, it is necessary to develop sensors that are fast and
inexpensive so that they can be used extensively. Resistive gas sensors based on metal oxide
nanowires are a strong candidate, as they are tiny, simple, and inexpensive [11,12]. The
mechanism is based on the chemical reactions that occur on the surface of the nanowires,
where the volatile molecules react by releasing or absorbing electrons and thus influencing
the resistance of the sensor. It has already been shown that such sensors can detect
ammonia TVB-N at very low concentrations and thus evaluate the freshness of mackerel
fish [13]. Unfortunately, a resistive sensor gives a one-dimensional response that cannot
have selectivity and can therefore only be calibrated and used for a single food product at
a time.

To overcome this problem, here, the responses obtained by the sensor at different
working temperatures are combined and processed with multivariate statistical analysis
techniques (principal component analysis (PCA)) and machine learning algorithms (sup-
port vector machine (SVM)) [14]. In this way, the sensor is able to distinguish different
products (specifically marble trout and pork) with a first classifier and then independently
evaluate, by means of two different classifiers, the degradation status of meat and fish.
The distinction between meat and fish occurs correctly in 95.2% of cases, with only one
misclassification per food. The degree of freshness/degradation of the sample is correctly
indicated in 85.7% of cases for trout and in 95.2% of cases for pork. If the classification as
edible/inedible is only considered, the classification is correct in 95.2% of cases for both
types of food.

2. Materials and Methods
2.1. Synthesis of SnO, Nanowires

Initially, a layer of tin oxide nanowires (SnO;) was grown by means of chemical
vapor deposition (CVD) in a horizontal tube of quartz placed inside an oven (Lindberg
Blue M, Thermo Fisher Scientific, Waltham, MA, USA). The nanowires were grown using
an alumina boat filled with pure tin monoxide, placed in the center of the furnace, at
its maximum temperature as the evaporation source. The nanostructures were grown
on a silicon substrate of about 1 x 1 cm?, deposited with a thin gold film (about 5 nm
thick) acting as a catalyst, and positioned 1 cm from the alumina boat. The quartz tube
was pumped down to 1072 mbar and then purged with high purity argon (99.999%)
three times, and finally, the system was pumped to limit the pressure. The temperature
was then increased from 26 °C (room temperature) to 850 °C at a rate of 25 °C/min, and the
oven was held at 850 °C for five minutes. The growth of the nanowires began by injecting
an oxygen flow of 0.35 standard cubic centimeters (sccm) into the system. The growth of
the nanostructures following the vapor-liquid-solid (VLS) mechanism [15] lasted 30 min,
then the system was shut down and allowed to cool. At the end of the growth process, the
substrate showed an evident soft and homogeneous white film.
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2.2. Nanowires Characterization

The morphology of the metal oxide nanowires was investigated by scanning electron
microscopy (SEM) with a Hitachi S-4800 (Tokyo, Japan) and by transmission electron
microscopy (TEM) using a JEM-100CX (JEOL, Tokyo, Japan) operating at 90 kV. The
structure of the SnO, nanowires was characterized by X-ray diffraction (XRD) using a
Philips Xpert Pro (Malvern Panalytical, Malvern, UK) diffractometer working at 40 kV
with CuKo radiation.

2.3. Sensor Fabrication

A piece of a substrate with grown SnO; nanowires was then treated under ultrasounds
in dimethylformamide (DMF) for two seconds. Some drops of the resulting dispersion
were spread on an entire Si/SiO, wafer while spinning it at 6000 rpm, in order to optimize
the nanowire density. A Ti/Pt (10/250 nm) two-dimensional array composed of square
electrodes was deposited on top of the dispersed nanowires using sputtering and UV
lithography on the whole wafer. Titanium was used as an adhesion layer in this case, but
this choice must be weighed in light of its influence on the performance of the device [16-18].
By observing the gap between all the pairs of electrodes under an optical microscope and
measuring their resistance, pairs of electrodes bridged by one or more nanowires were
found. Observing the candidates with the best characteristics by means of SEM microscopy,
the pairs were verified in order to choose the single nanowire devices and check their
characteristics (arrangement, length, morphology, diameter, etc.).

2.4. Gas Sensor Measurements

A single nanowire sensor was placed on a small heatable plate in a chamber con-
nected to gas flow controllers connected to high purity gas cylinders. The electrodes were
contacted with microprobes connected, through a multimeter (Keithely 2410, Cleveland,
OH, USA), to a data acquisition program (LabView, National Instruments, Austin, TX,
USA). The sensor was initially heat-treated for 8 h at 500 °C in nitrogen while being fed
with 1V, in order to stabilize the structure and its resistance so that they do not change
during the experiments [19]. The sensor showed good ohmic contact between the nanowire
and the metal electrodes and its resistance dropped from 7.5 MOhm at 200 °C down to
122 kOhm at 360 °C. The sensor was initially tested with different ammonia concentrations
(5 to 0.1 ppm) while heated to various temperatures (200-360 °C).

The most common definition in the literature has been used for the sensor response,
that is S = Rair /Rnms, where Ry;r and Rypys are, respectively, the resistance of the sensor in
air and in the presence of ammonia. The speed of the single nanowire sensor is evaluated
using a common definition of response and recovery times: trgsp is the time it takes to reach
90% of the maximum response, and trgc is the time to go down to 90% of the full recovery.
The limit of detection (LoD), that is, the minimum detectable concentration, was calculated
as 3 « N/D, where N is the noise of the sensor signal (its standard deviation) in air, and D
is the derivative of the sensor response as a function of the ammonia concentration.

2.5. Meat and Fish Spoilage Measurement

The two foods (one marble trout and one piece of pork) were cut into cubes weighing
about 20 g from a larger fresh piece, using disposable gloves and autoclaved tools. Each
sample was stored individually, in a glass jar, until the moment of measurement. A part
of the samples was stored at room temperature (about 26 °C) and another part instead in
a refrigerator at a temperature of 4 °C. At each measurement (initially every hour, then
3, 6, and finally 12 h) a sample was placed in the measurement chamber to determine
the response of the gas sensor, and immediately afterward, it was subjected to microbial
analysis, in order to compare the two measurements. The total viable count (TVC) was
assessed using a spread plate method [20] on a plate count agar and agar base (Oxoid
CMO0463 and 0055). The plates were then counted after an incubation time of 48 h at 30 °C.
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2.6. Machine Learning

Since the single response of the resistive sensor is inherently non-selective, the re-
sponses at the five working temperatures were combined to create 5-dimensional points
that could be processed and analyzed with multivariate statistical analysis techniques [21].
The 5D points were used both for visualization via principal component analysis (PCA)
and for classification and quantification with a support vector machine (SVM). The samples
used for PCA are those measured initially, to monitor the degradation of the samples over
time. Subsequently, other samples were randomly measured in order to reach a sufficient
number of data to be divided into two groups: two-thirds for the training group and
one-third for the test group. The SVM was used as a classifier in two successive steps: a
first classifier was used to identify whether the sample is fish or meat (marble trout or
pork), and subsequently, two classifiers were used on the subgroups identified as fish and
meat, in order to evaluate their degree of freshness. All SVM classifiers were always used
with a linear kernel.

3. Results and Discussion
3.1. Nanowires Characterization

The SnO; nanowire forest was initially studied by scanning electron microscopy in
order to investigate the morphology of the nanostructures. The nanowires that make up
the forest, shown in Figure 1a, have diameters around 40-65 nm and are several microns
long. Many of the nanowires shown are blurred due to the charging effect due to their high
electrical resistance.

Figure 1. (a) SEM image of the SnO, nanowires forest; (b) TEM image of a nanowire tip.

The TEM image in Figure 1b shows the tip of a single nanowire on a carbon membrane.
The nanowire is straight and with a constant diameter. The structure of the nanowires was
investigated through X-ray diffraction. All peaks shown in the X-ray pattern of Figure 2
(black, top) can be easily indexed as the tetragonal phase of SnO,, with lattice parameters
of a=b=4.742 and c = 3.186 A, which are in good agreement with the values reported as
reference (JCPDS n. 77-0450, red, bottom).

There are no phases other than the tetragonal one of SnO,, nor peaks due to impurities
or amorphous contributions, confirming the good crystallinity of the nanowires.
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Figure 2. XRD patterns: top (black): experimental pattern of the SnO, nanowires used to fabricate the
single-nanowire sensor; bottom (red online): reference pattern of tetragonal SnO, (JCPDS 77-0450).

3.2. Ammonia Sensing Performance

The sensing properties of the single nanowire sensor were initially tested by measuring
different concentrations of ammonia, as this volatile is part of the TVB-N, which is a known
marker of meat and fish degradation [22]. Low concentrations were measured, from 5 to
0.1 ppm. The measurements were carried out at five different temperatures, from 200 to
360 °C, in order to subsequently combine the obtained responses and process the data with
multivariate statistical analysis. Figure 3a shows the current as a function of time as the
different ammonia concentrations (indicated by the gray background) is injected into the
measurement chamber. As can be seen, as the ammonia is flowed onto the nanowire, the
current rapidly increases and quickly returns to its base value as the ammonia is evacuated.

As can be seen in Figure 3a, the sensor is very stable after the heat treatment carried
out before the measurements. It can be seen in the figure that both the response and
the recovery become faster as the working temperature of the sensor increases. Average
response times decrease from 48 to 8 s, while average recovery times decrease from 43 to
6 s. Figure 3b shows the response values for the various ammonia concentrations at the
five working temperatures. As can be seen, the response increases with increasing gas
concentration with a slightly less than a linear trend in most cases. The response at the
lowest temperature is the most linear, while the response to the highest temperature is
the one that tends toward saturation. Figure 3c shows a three-dimensional diagram of
the sensor, with the SnO, nanowire (in white) acting as a bridge between the two metal
electrodes (in blue). Figure 3d instead shows a top view SEM image of the nanowire
constituting the sensor. The behavior shown in Figure 3a, with the current increasing as
ammonia is injected, is typical of n-type semiconductors in response to reducing gases.
Tin oxide is in fact a semiconductor in which the charge carriers are electrons, and it is
very sensitive to the atmosphere that surrounds it [23], especially to reducing gases such
as ammonia [24]. When the sensor is exposed to air, the oxygen reacts on the surface of
the SnO; by draining electrons from the nanowire, thus decreasing the current flowing
through it. The ammonia molecules, on the other hand, react with the oxygen absorbed on
the surface, releasing the electrons in the nanowire and thus increasing the current flowing
through it [25,26].

2NH3 +3 07 (ads) > N + 3H,O +3 e~ 1
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The last parameter calculated regarding the ammonia detection performance is the
limit of detection, calculated according to the definition given in Section 2.4. The calculated
value decreases with increasing temperature, from 70 ppb at 200 °C to 18 ppb at 360 °C.
This very low value is important for the sensor to detect the low concentrations present in
the early stages of meat and fish degradation.
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Figure 3. (a) dynamic current at different temperatures during the injection of different ammonia concentrations; (b) sensor
response as a function of gas concentration at different temperatures; (c) three-dimensional model of the single nanowire
sensor; (d) SEM image of the single nanowire sensor.

3.3. Measurements on Marble Trout and Pork Samples

The sensor response and the total viable count measured on marble trout samples
stored at room temperature are plotted in Figure 4a. The response of the sensor at any work-
ing temperature increases over time, as does the microbial count. The total viable count
increases its slope after about 10 hours and reaches the threshold value after about 23 h.
This value, indicated by the dashed horizontal green line, is considered the consumability
limit of the sample in the literature [9,27] and for health regulations [28].



Chemosensors 2021, 9, 249 7 of 12

(a) 24 e { N —

2.2 4

N
o
1

-
@
1

Response
o
N |
Response
TVC (log)

-
'
1

-
N
|

-
o
| -

0 10 20 30 40 50 60 0 10 20 30 40 50 60 70
Time (hours) Time (hours)

Figure 4. (a) Sensor response (colored symbols, left scale) and bacterial population (green spheres, right scale) in marble
trout samples stored at room temperature over a period of 60 h; (b) sensor response (colored symbols, left scale) and
bacterial population (green spheres, right scale) in fresh marble trout stored at in a refrigerator over a period of 72 h.

A similar behavior is observed in Figure 4b, which shows the sensor responses and
the total viable count measured on marble trout samples stored in a refrigerator at 4 °C.
In this case, the curves rise more slowly, and the microbial count reaches the threshold
value after about 66 h. In both cases, the response of the gas sensor at various temperatures
follows the curve of the TVC quite closely. This good correlation, already demonstrated
elsewhere [29], shows that the response of the resistive sensor can be used as an indirect
measure of the microbial count and therefore of the state of degradation of the food sample.

Figure 5a shows the sensor response and total viable count measured on pork samples
stored at room temperature. Additionally, in this case, the curves increase over time,
demonstrating the progressive degradation of the meat. The TVC graph increases the slope
after about 10 hours and reaches the consumability threshold after about 40 h.
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Figure 5. (a) Sensor response (colored symbols, left scale) and bacterial population (green spheres, right scale) in pork
samples stored at room temperature over a period of 60 h; (b) sensor response (colored symbols, left scale) and bacterial
population (green spheres, right scale) in fresh marble trout stored at in a refrigerator over a period of 84 h.
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Principal component 1 (99.4%)

Figure 5b shows the resistive sensor response and TVC of pork samples stored in a
refrigerator at 4 °C. The slope of the curves is low up to about 24 h and then increases, and
the microbial count reaches the threshold after about 80 h.

3.4. Distinction between Meat and Fish

In the previous section, we saw that the response of the resistive gas sensor, at any
working temperature, could be used as an indirect measure of the total viable count, both
on marble trout and pork samples. Unfortunately, the sensor response lends itself to
calibration for only one sample type and could not be used to distinguish different food
samples. For this reason, the responses at five different temperatures were combined and
processed through multivariate statistical analysis. Initially, we used principal component
analysis to visualize the relationship between meat and fish points over time. The aim was
to investigate whether the two foods had two different trends and observe whether the
samples stored at different temperatures differed in any way. The results are shown in
Figure 6, where the top samples are those measured initially (at the beginning of the plots
in Figures 4 and 5), and then the points drop down as time passes.
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Figure 6. Principal component analysis of meat and fish samples over time. Shades of blue (cyan to navy) indicate points
for pork samples, while shades of purple (pink to violet) indicate points for marble trout samples.

The position of the points is given by the PCA of the 5D points obtained by com-

bining the responses collected at various temperatures, while their color reflects the TVC
measurement. Moving down the principal component 1 (vertically), the points become
darker, indicating a higher TVC (legend on the right in the figure) and therefore greater
degradation as time passes, as expected. The two groups of points, relating to fish and meat,
are easily distinguishable, and rather separate from each other. This is a good indication
that they are classifiable. Unfortunately, however, it is not possible to distinguish between
samples stored in the refrigerator and those stored at room temperature.
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Based on these results, a support vector machine was then used to classify the fish
and meat samples. This algorithm first uses a data set to map the five-dimensional space
according to the classes and then compares the new data with the map to classify them.
The results of this classification are shown in the confusion matrix in Table 1.

Table 1. Confusion matrix of the classification between meat and fish using the single nanowire

gas sensor.
True
Sample Pork Trout
Estimated Pork 20 1
Trout 1 20

For both meat and fish, the sensor correctly classified 20 out of 21 samples tested for
95.2% accuracy. The two misclassified points were both related to degraded food samples,
with TVC greater than or close to 8.

3.5. Estimation of the Degree of Freshness of Food

Once the sensor distinguished the samples by type (marble trout or pork), the points
relating to the two foods were processed with two other classifiers based on support vector
machines, one for fish and one for meat. In this case, instead of using the “food type” label
of the training dataset points (as the classifier used previously), the “degree of freshness”
label was used, which was assigned according to the TVC value. The classification results
for the pork samples are shown in the confusion matrix in Table 2.

Table 2. Confusion matrix of classification regarding the state of freshness of pork samples. The
background color represents the extent of the severity of a possible misclassification.

Estimated TVC

Pork (log cfu/g)
<5 5-6 67 7-8 8-9 >9

<5 9
5-6 4

True TVC 67 2

(log cfu/g) 7-8 2
8-9 1 2
>9 1

The sensor classified the degree of freshness of pork samples very well, with an ac-
curacy of 95.2%. Only one sample was classified in the wrong degree of freshness, which
was called pork, while in reality, it was a sample of marble trout. Unfortunately, as can
be seen from the background color of the misclassified sample cell, the error is signifi-
cant, as the sample is considered fresh, while in reality, it is rather degraded. Evidently,
the misclassification in the previous step has strong repercussions on the results of this
classification.

The estimate of the degree of freshness of the marble trout samples is shown in Table 3.
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Table 3. Confusion matrix of classification regarding the state of freshness of marble trout samples.
The background color represents the extent of the severity of a possible misclassification.

Marble Trout ESt(ll?gatcii /;)VC
<5 5-6 67 7-8 8-9 >9

<5 9
5-6 3

True TVC 6-7 2

(log cfu/g) 7-8 1 2 1
8-9
>9 2

It is immediately evident that the classification, in this case, is worse, as three samples
are incorrectly classified, for an accuracy of 85.7%. One of the three misclassified samples
is the one that was incorrectly classified in the previous step and is, therefore, in reality, a
pork sample. While three misclassified samples may appear to be a considerable number,
we have to consider different degrees of severity of the misclassifications. In fact, the only
major error is that which estimates a degraded sample as fresh. In the other two cases,
however, degraded samples were evaluated as even more degraded and therefore were
minimal errors. The severity is highlighted in the table by the background color: a green
background means that fresh samples are still considered fresh, and degraded samples are
considered degraded, even if with different freshness classes (misclassification without
consequences). A yellow background means that a fresh sample is considered degraded
and would therefore lead to food waste. Finally, a red background color means that a
degraded sample is considered fresh, which could lead to food poisoning. Given these
considerations, we can state that the sensor makes 1 important error on the 21 samples
of pork and 1 major error on the 21 samples of marble trout. In both cases, therefore, the
system estimates the freshness of the food with an accuracy of 95.2%. If, on the other
hand, we consider all types of errors, including those without repercussions, then the
system estimates the freshness of pork and marble trout with an accuracy of 95.2 and 85.7%,
respectively. It should be emphasized that these results were obtained from a single trout
and a single piece of pork. We expect that testing samples from more than one animal of
each type, the uncertainty of the measurement may increase. On the other hand, the greater
number of samples would help train the support vector machine better, and this should
improve performance. The balance between these two effects will be evaluated in future
work. In any case, considering the small size and low cost of the device, this performance
indicates that the single nanowire gas sensor may be a candidate as a fast and non-invasive
method of estimating the freshness of meat and fish.

4. Conclusions

A single SnO, nanowire, used as a resistive sensor, allows the evaluation of the fresh-
ness of different foods. By combining the sensor responses at five different temperatures
and processing them with multivariate statistical analysis (PCA) and machine learning
(SVM) techniques, the sensor is able to distinguish between marble trout and pork samples
and to estimate their state of freshness. The sensor recognized the type of sample (meat or
fish) in 95.2% of cases. Furthermore, it recognized the degradation status in 90.5% of cases
(85.7% of cases for trout and 95.2% of cases for pork). Considering that in several cases,
the misclassification had no repercussions, as it considered the degraded samples even
more degraded, the sensor overall recognized whether the sample was edible in 95.2% of
cases. Considering the size (less than a square millimeter), the low cost, the speed, and the
non-invasiveness, the gas sensor is proven to be ideal as a monitoring tool along the meat
and fish production and distribution chain.
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