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Abstract: The application of BaF2-modified hBN flakes as rapid response and recovery as well as
sensitive chemoresistive sensing device materials for detection of acetone and/or ethanol is pre-
sented in this study. Modification of the hBN flakes was achieved by using the modified polymer
derived ceramics (PDCs) process through the use of 0–10 wt% BaF2 and 5 wt% Li3N. Upon expo-
sure to individual acetone and ethanol vapours, room temperature sensing studies revealed high
LoD values (−144–460 ppmacetone and −134–543 ppmethanol) with extremely compromised sensitivi-
ties of −0.042–0.72 × 10−2 ppm−1

acetone and −0.045–0.19 × 10−2 ppm−1
ethanol for the structurally

improved 5–10 wt% BaF2-modified hBN flakes. Moreover, enhanced sensing for 0–2.5 wt% BaF2-
modified hBN flakes, as shown by the low LoDs (−43–86 ppmacetone and −30–62 ppmethanol) and the
high sensitivities (−1.8–2.1 × 10−2 ppm−1

acetone and −1.5–1.6 × 10−2 ppm−1
ethanol), was attributed

to the presence of defects subsequently providing an abundance of adsorption sites. Overall, the
study demonstrated the importance of structural properties of hBN flakes on their surface chemistry
towards room temperature selective and sensitive detection of VOCs.

Keywords: hBN; acetone; ethanol; chemoresistive sensing; sensitivity; BaF2-modification

1. Introduction

Recent rapid population growth and development of numerous industrial and tech-
nological sectors has led to increased emission of toxic and hazardous gases in the en-
vironment. Among these toxic and hazardous emissions, volatile organic compounds
(VOCs) constitute the highest percentage owing to their significance as solvents and/or
components in chemical, food, and healthcare industries. Acetone and ethanol are amongst
the extensively used industrial VOCs despite their extreme flammability [1,2]. However,
their fumes can be easily inhaled, and prolonged exposure to their vapours can result
in serious health effects to humans and animals at large [3,4]. For instance, as the main
non-methane organic pollutant, acetone concentrations higher than 173 ppm were reported
to be responsible for severe central nervous system damage as well as causing headaches,
fatigue, or narcosis [1]. As a result, threshold detection limit for any acetone gas sensor
to be used for environmental safety and health purposes was set to 250 ppm, with an
assumption of an 8 h exposure time weighted average [1,5,6]. Unlike acetone, the threshold
detection limits of ethanol are relatively higher, being ≤1000 ppm over an 8 h exposure
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time weighted average [4,6,7]. Despite ethanol being a simple aliphatic alcohol and having
significant roles in pharmacology for drug dissolution, in chemical synthesis, as a solvent
and/or constituent compound, and in the food industry, its cytotoxicity is of great con-
cern. This is because ethanol concentration levels above its threshold detection limit were
found to lead to continuous lachrymation and coughing [4,8]. As a result, development
of portable gas sensor devices exhibiting fast response and high sensitivity towards low
concentrations of acetone and/or ethanol vapours is of great importance, both for indoor
and outdoor applications, and has recently gained great prominence.

Over the last few decades, the use of various active materials including semiconduct-
ing metal oxides and nitrides, polymers, ionic membranes, and salts has been extensively
explored for chemoresistive gas sensing devices [9,10]. The most popular groups are the
semiconducting metal oxides and nitrides, as they provide an array of advantages such
as low-power-consumption, flexibility, as well as simple architecture [11–14]. However,
their high operating temperatures (>250 ◦C) and extreme sensitivity to humidity [11–13,15]
hinder their fundamental application as high-performance acetone and/or ethanol sensing
devices. Recently, the successful development and implementation of graphene-based
VOCs sensors brought growing attention towards other members of the layered two-
dimensional (2D) materials family, such as transition metal dichalcogenides (TMDs) and
hexagonal boron nitride (hBN) nanosheets [13,16–20]. More specifically, nanocrystalline
hBN nanosheets offer a route for improving sensitivity of gas sensors due to their high
thermoconductivity, mechanical strength, and chemical stability [21,22]. Additionally, hBN
nanosheets have good adsorption properties due to the partially ionic B–N chemical bonds
and their 2D nature, which subsequently lead to high surface/volume ratio and enable
total exposure of their atoms to the adsorbing gas molecules [23,24], thus rendering them
excellent candidates as active materials in gas-sensing technology. Theoretically and exper-
imentally, gas-sensing performance of hBN nanosheets was predicted for CH4, F2, NO2,
H2, N2, O2, and CO2 [20,25]. However, to the best of our knowledge, their experimental
performance towards VOCs is rather scarce. Therefore, the current study aimed to explore
hBN flakes as promising materials for detecting acetone and ethanol as the commonly
used industrial VOCs. Additionally, the study hopes to provide useful information on the
influence of the physicochemical properties of hBN flakes upon screening with acetone
and ethanol.

2. Materials and Methods
2.1. Material Synthesis and Sensor Preparation

The hexagonal boron nitride (hBN) nanosheets were synthesised based on the reported
procedure, whereby borazine was used a source for boron and nitrogen atoms, lithium
nitride (Li3N, 99.4%, Alfa Aesar) [26,27], and barium fluoride (BaF2, 99%, Alfa Aesar) [28].
Typically, pure borazine monomer was polymerized at 55 ◦C to generate a colourless liquid
polyborazylene (PBN) [28,29]. Then, 5 wt% Li3N and 0–10 wt% BaF2 [30] were added to
PBN, and the suspension was homogenised for 10 min. The suspension was then heated
to 200 ◦C for 1 h, followed by annealing of the solid-state polymer for 1 h at 1200 ◦C
under inert nitrogen (N2, 98%, Air Liquide, France) atmosphere [31,32]. The samples were
then labelled as pristine hBN as well as 2.5 wt%, 5 wt%, and 10 wt% hBN for samples
obtained after modification with 2.5, 5, and 10 wt% BaF2. Finally, the pristine hBN and
BaF2-modified hBN samples were evaluated for chemical vapour sensing properties by
screening their as-fabricated devices against the polar aprotic (acetone) and the polar protic
(ethanol) analytes (Table S1). For device fabrication, dispersions of 2 mg/mL of the hBN
samples in 4 mg/mL of hexadecyltrimethylammonium bromide (CTAB) were sonicated
for 30 min at 60 ◦C, then at 0 ◦C for a further 30 min [32]. The solutions were then stored at
0 ◦C so as to facilitate precipitation of hydrated crystals [33]. After careful decantation of
the supernatant, −100 µL of the hBN dispersions were drop-casted onto an FR4 substrate
containing interdigitated electrodes (ENIG-Electroless Nickel Immersion Gold, Micropress
S.A.; active area −64 mm2) and dried in an oven at 100 ◦C for 30 min (Scheme 1) [34,35].
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The hBN nanosheets were then screened with the polar aprotic (acetone) and polar protic
analytes (ethanol) for their potential as chemical vapour sensors.
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Scheme 1. Representation of the sensor preparation on the interdigitated electrodes (a–c) and the device measurements chamber.

2.2. Characterisation

Prior to device fabrication, the morphological determination of the hBN samples
was evaluated using the MET Phillips CM120 transmission electron microscope (TEM) at
120 kV after the nanosheets were supported onto a holey carbon mesh on a Cu grid. Their
degree of crystallisation was studied using the HORIBA Jobin-Yvon Labram Evolution
Raman spectrometer at the wavelength of 532 nm. The surface areas of the samples were
investigated from the BELsorpII mini after degassing for 4 h at 100 ◦C and measuring
adsorption and desorption isotherms of ultra-pure N2 gas at 77 K. The chemoresistive
measurements were recorded on an LCR meter (Agilent 4284A), and experiments were
conducted in a glovebox under dry N2 atmosphere.

3. Results
3.1. Structural Analysis

The morphology of the device active materials was investigated using transmission
electron microscopy (TEM), which showed that the hBN samples were mainly overlap-
ping, well-defined, and plate-like nanostructures of 0.89 ± 0.01, 2.9 ± 0.7, 3.3 ± 0.3, and
3.2 ± 0.7 µm in dimension for pristine hBN nanoflakes as well as the modified hBN samples
after modification with 2.5, 5, and 10 wt% of BaF2, respectively (Figure 1). The improve-
ment in hBN nanosheets size upon addition of BaF2 to the pre-ceramization mixture can
be attributed to the faster melting of Li3N. This was facilitated by BaF2 [28], consequently
leading to improved crystallisation of hBN from PBN. As such, the effect of the addition
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of BaF2 to crystallinity and textual properties of the hBN nanosheets was studied using
Raman spectroscopy and BET analysis.
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Figure 1. TEM images of (a) pristine hBN electrode materials and hBN samples after modification
with (b) 2.5, (c) 5, and (d) 10 wt% BaF2 [28].

The crystalline structural properties of the samples by Raman spectroscopy revealed
formation of hBN nanostructures as evidenced by the presence of the first-order active
Raman vibrating mode of hBN (E2g) centred at −1365.4 ± 1.6 cm−1 (Figure 2a) [28,36].
Additionally, correlation of the finite-size effects within hBN with the inherent broadening
of the Raman vibrational modes (Figure 2a, inset) showed the dependence of crystallinity
of the hBN nanosheets to the addition of BaF2. For instance, the bandwidths (FWHM)
values decreased from 17.01 cm−1 for the pristine hBN sample to 11.07 cm−1 for the 5 wt%
BaF2- modified hBN sample, followed by a slight increase to 11.9 cm−1 recorded for the
10 wt% BaF2- modified hBN sample. The narrowing of the bandwidths can be ascribed
to formation of larger crystallites, as observed from the TEM micrographs (Figure 1c),
as well as subsequent improvement in crystallinity and quality of the hBN nanosheets.
As the hBN nanosheets are to be used as the active material in chemical sensor devices,
determination of their surface areas and pore size distributions is very crucial in assessing
their potential application within the field of sensor technology. Based on the multi-point
Brunauer–Emmet–Teller (BET) method shown in Figure 2b, the samples exhibited a type II
isotherm—an indication of the formation of macroporous or non-porous materials. As a
result, the specific surface area was then determined to be 8.7 m2/g for the pristine hBN
sample, whilst modification with 2.5, 5, and 10 wt% of BaF2 led to surface areas of 3.5, 3.6,
and 2.9 m2/g, respectively [28]. The decreasing surface area was expectedly due to the
formation of larger crystalline planer flakes, thus limiting the amount of adsorption sites
for N2 and resulting in adsorption and desorption of the monolayer of N2 predominantly
on the material’s external rough surface on the basal planes. However, the results still
indicate that the samples had sufficient adsorption sites for the chemical vapours, thus
exhibiting potential for application in the chemical sensor technology.
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3.2. Sensing Properties of the hBN Nanosheets
3.2.1. Resistance of the Sensors

The electrical resistance of the active materials as a function of the frequency with
increasing concentration of an individual or a mixture of analytes was plotted so as to
determine to the optimum operating frequency for future experiments. From Figure 3
and Figure S1, great dependence of the sensor response to the structural properties of the
hBN nanosheets was seen upon exposure to increasing concentrations of acetone and/or
ethanol vapours. For instance, the rapid drop in resistance with increasing frequency for
all samples can be ascribed to the presence of defects within the layered 2D structure of
the hBN nanosheets [37]. Regardless of whether the nanosheets exhibited a well-defined
morphology, as in the case of the 5 wt% BaF2-modified hBN sample, or were defective, as
seen with the pristine and the 2.5 wt% BaF2-modified hBN samples, the presence of defects
influenced the resistance of the resultant sensing device. We applied an alternating electric
field due to the movement of charge carriers over relatively long distances so as to overcome
the defects as well as the potential barriers of the layered 2D nanostructure [38]. As such,
the best operating frequencies for the active materials in the modified hBN-based devices
for acetone and/or ethanol were determined to be in the range of 1–3 kHz. The selection
of the optimum operating frequency of the sensors was such that the LoD should have
been lower whilst the sensitivity was higher (Figures S2–S6). The operating frequency was
found to be better than and/or comparable to that of the commonly used active materials
for detection of acetone and/or ethanol vapours, especially for room temperature-based
sensors. For instance, Mutuma et al. reported operating frequencies of 3–10 kHz for
differently nitrogen-doped hollow carbon sphere-based acetone sensors [39]. Moreover, Li
et.al reported that zinc oxide-based nanosheets functioned best at the operating frequency
of 3 kHz for detection of acetone, although the devices had to be heated to a temperature of
280 ◦C [40]. Generally, the results showed that the morphology of the hBN sensor material
has a great influence on the sensing capability towards either acetone or ethanol vapours.

3.2.2. Performance of the Sensors

Based on the optimum operating frequency for each hBN-based sensor (Table 1), the
performance of the devices was determined from their responses upon exposure to the
vapours and the recoveries after removal of the analyte vapour. Figure 4 shows that all
active materials exhibited excellent gas-sensing performance for individual acetone or
ethanol vapours, as shown by response and recovery times, which were <100 s (Table S2) at
optimum frequencies and exposure of 160 ppm analyte vapour. However, exposure to the
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vapour mixture showed compromised response times for all samples except for the sensor
devices based on the 5 wt% BaF2-modified hBN samples (tres −56 s and trec −15 s). This
could be attributed to the poor interaction of both acetone and ethanol molecules on the
basal planes of hBN flakes. Interestingly, for the majority of samples, the results indicated
that the samples behaved as p-type semiconducting devices, shown by the increase in
sensor resistance upon exposure to the analyte vapour and a depletion in sensor resistance
on removal. On the contrary, the sensor performance for the devices fabricated out of
0 wt% BaF2-modified hBN samples exhibited n-type semiconducting behaviour (Figure 4i),
an indication of the prolonged depletion of the pre-generated holes as well as increased
amount of hopping sites due to the defective nature of the 0 wt% BaF2-modified hBN
sample, thereby leading to increased conductivity upon exposure to the vapour mixture.
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Table 1. Optimum frequency (f ), determined limit of detection concentration (LoD), and sensitivity
(S) for detection of acetone, ethanol, and acetone: ethanol mixture.

Analyte Parameter 0 wt% 2.5 wt% 5 wt% 10 wt%

Acetone

f (kHz) 1 1 3 3

S (×10−2 ppm−1) 1.8 2.1 0.042 0.72

LoD (ppm) 86.2 43.2 460 144

Ethanol

f (kHz) 1 3 3 1

S (×10−2 ppm−1) 1.5 1.6 0.045 0.19

LoD (ppm) 30.4 61.7 542.6 133.5

Acetone:
Ethanol

(1:1)

f (kHz) 1 3 1 1

S (×10−3 ppm−1) −9.1 7.0 7.2 10.0

LoD (ppm) 30.4 18 197 439
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Furthermore, better performance was recorded for the hBN nanosheets that exhibited
well-defined nanosheets morphology and structural properties (Figure 4c,d). For instance,
response times less than 60 s were recorded for the 5 wt% and the 10 wt% BaF2-modified
hBN samples upon exposure to acetone vapour, whilst recovery times <50 s were observed
for both samples after removal of acetone (Table S3). The observations can be ascribed to
the abundance of active surface adsorption sites on the basal planes of hBN nanosheets
through the generation of more ionised adsorbed oxygen species (i.e., O2

−, O−, or O2−,
Scheme 2a,b) [41]. These adsorbed oxygen functional groups enabled faster conversion
of acetone to carbon dioxide (Scheme 2(ci)) facilitated by the weak interaction of acetone
molecules to the hBN surface. Furthermore, an improved saturation platform was observed
for the 5 wt% BaF2-modified hBN sample (Figure 4c) in comparison with other hBN-based
devices. This could have been due to the presence of larger basal planes for the 5 wt%
BaF2-modified hBN sample, which enabled adsorption and coverage of a larger surface by
the acetone molecules, thus leading to the observed faster response and recovery times for
this sample. Owing to the large basal plane, faster response (56 s) and recovery (15 s) times
were recorded upon exposure of the 5 wt% BaF2-modified hBN-based sensor device to the
mixture of acetone and ethanol. Moreover, this could be suggestive of the selectivity of this
hBN-based sensor towards acetone in the presence of other VOCs.

On the other hand, the longer response times for pristine (−74 s) and 2.5 wt% BaF2-
modified (−61 s) hBN samples (Table S3) towards detection of acetone could be attributed
to the retention of charge carriers as a result of prolonged electron-hopping effect generated
by the structural defects. Subsequently, it can be suggested that these defects led to strong
interaction of acetone molecules with the hBN surface, thereby resulting in longer recovery
times of −95 s and −71 s for the pristine and the 2.5 wt% BaF2-modified hBN samples,
respectively. The retention of charge by defects was also shown by the extremely long
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responses (−113 s) and recoveries (−75 s), thus translating to poor sensing performance
of the 2.5 wt% BaF2-modified hBN samples for detection and selectivity of VOCs. In
the presence of a mixture of gases, roles of various surface structural properties were
shown by the varying response and recovery times (Figure 4i–l). Expectedly, great sensing
performance was exhibited by the 5 wt% BaF2 hBN-based device, as shown by the short
response (−56 s) and recovery (−75 s) times. This indicated that the basal plane of the
structurally improved 5 wt% BaF2 hBN nanoflakes (Figure 4k) enhanced the charge transfer
to both analytes. On the other hand, the defective-prone 2.5 wt% BaF2 hBN (Figure 4j)
nanostructures suffered a somewhat compromised sensing performance, as indicated by
the extremely long response (−113 s) and recovery (−75 s) times. Interestingly, different
sensing behaviour was shown by the variously modified hBN devices, with the pristine
hBN device showing the n-type semiconducting behaviour (Figure 4i), whereas all the
BaF2-modified hBN devices displayed a p-type semiconducting behaviour (Figure 4j–l).
The results show the significance of the structural properties in the manner of which each
hBN active material transfer charge carried upon exposure to a mixture of ethanol and
acetone vapours.
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Regarding the performance of the sensors on exposure to ethanol vapour, the devices
showed poor response times (−70–80 s, Table S3), an indication of poor transfer of charge
carriers of the hBN active materials to the adsorbed ethanol molecules, therefore leading
to a prolonged electron-hopping effect. Albeit, the sensing performance towards ethanol
and/or acetone is governed mostly by the interaction of ethanol molecules with the gener-
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ated adsorbed O2
−, O−, or O2− species [27,42], the long response times during exposure to

ethanol for all devices are suggestive of the difficult absorption of the more polar ethanol
molecules on the surface and the grain boundaries of hBN nanosheets in comparison with
the adsorption mechanism of acetone. Moreover, owing to the two-step reduction process
of ethanol on the active materials (Scheme 2(cii,ciii)) [27,42], this could have contributed to
the observed longer response times of ethanol in all samples. In this case, when the sensing
device was exposed to ethanol vapour, the reduced gas molecules were first oxidised into
an acetaldehyde molecule (Scheme 2(cii)), which then required more oxygen anions for
the final conversion into carbon dioxide and water (Scheme 2(ciii)). However, the shorter
recovery times of −34 s, −56 s, −34 s, and −40 s for pristine, 2.5 wt%, 5 wt%, and 10 wt%
BaF2-modified hBN-based devices (Table S3), respectively, are suggestive of the weak
interaction of the ethanol molecule with the basal planar hBN surface. In hindsight, the
results show that layered hBN nanosheets with well-defined morphologies and improved
properties can have excellent functionality as good resistance-based VOCs sensors, sim-
ilar to their zero-bandgap graphene, small band-gap semiconducting transitional metal
dichalcogenides (TMDs), and conducting mxenes counter-parts [16,43,44].

3.2.3. Determination of Sensing Parameters

At the chosen optimum operating frequencies, sensing parameters of each hBN-based
device, given by the concentration limit of detection (LoD, Equation (S2)) and the sen-
sitivity (S, Equation (S3)), were estimated from the plots of sensor resistance and/or
response (∆R/R0, Equation (S4)) against the concentration of analyte of interest (Figure 5
and Figures S2–S4). As seen in Figure 5, the sensor responses were increasing with either
acetone or ethanol vapour concentration, an indication that the hBN-based nanosheets in
this study were p-type semiconducting in nature. However, the structural morphology of
the hBN nanosheets was found to play a profound role in the overall sensing performance
of the devices. For instance, very low sensitivity and extremely high LoD values were
determined for the devices based on the hBN nanosheets exhibiting improved structural
properties. In particular, 4.2 × 10−4 ppm−1 and 460 ppm (Table 1) were estimated as the
sensitivity and the LoD values for the sensing device based on 5 wt% BaF2-modified hBN
nanosheets for acetone detection, whilst ethanol detection registered 4.5× 10−4 ppm−1 and
543 ppm, respectively. Similarly, sensitivity and LoD values were estimated for the sensing
device based on 10 wt% BaF2-modified hBN nanosheets towards the detection of both ace-
tone and ethanol (Table 1). Despite the 5 wt% BaF2-modified hBN-based devices displaying
fast response and recovery times upon exposure to acetone and ethanol (Figure 4c,g), their
overall poor sensing performance could be attributed to the weak interactions between
the carbonyl groups on the analyte molecules with the hBN basal surface. A similar ar-
gument could also be used for the observed LoD (144 ppmacetone and 134 ppmethanol) and
sensitivity (7.2 × 10−3 ppm−1

acetone and 1.9 × 10−3 ppm−1
ethanol) values for the 10 wt%

BaF2-modified hBN-based devices on exposure to increasing concentrations of both acetone
and ethanol vapours. Interestingly, slight improvement in the sensing performance of the
hBN nanosheets exhibiting improved structural properties was observed upon exposure
to the mixture of ethanol and acetone (Table 1 and Figure S2c,d). For instance, low LoD
values of 197 ppm and 439 ppm were estimated for 5 wt% and 10 wt% BaF2-modified hBN-
based devices, whereas higher sensitivities were determined to be 7.0 × 10−3 ppm−1 and
1.0 × 10−2 ppm−1, respectively. This is suggestive of enhanced transfer of charge carriers.
Moreover, the defects were observed to have little impact on the sensing performances of
0 wt% and 2.5 wt% BaF2-modified hBN-based devices, as high sensitivity and low LoD
values were estimated upon detection of a VOCs vapour mixture of ethanol and acetone.
In spite of the retention of charge carriers by defective sites, these acted as capture sites
for the adsorption of a larger volume of analyte molecules, thus corresponding to low
LoD values of 30.4 ppm and 18 ppm for 0 wt% and 2.5 wt% BaF2-modified hBN-based
devices, respectively.
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On the other hand, pristine and defective 2.5 wt% BaF2-modified hBN samples reg-
istered lower concentration limits of detection and high sensitivity values (Table 1). The
lower values are indicative of improved sensing performance, which could be ascribed
to the stronger surface interaction of the analyte molecules with the hBN nanosheets.
Furthermore, the abundant nitrogen and/or boron vacancies (VN or VB) in the defective
structure of hBN could have acted as electron capture sites upon exposure to either acetone
or ethanol [45,46], thereby resulting in improved sensitivity. Interestingly, regardless of
the theoretical studies showing that the even, smooth surfaces of hBN nanosheets enabled
full access of their atoms to the adsorbing gas molecules, thus allowing for larger sensor
area per unit volume and improving the sensitivity [25–27], our results showed that the
formation of well-defined morphology hBN nanosheets greatly hindered their performance
towards the detection of volatile organic compounds. In summary, the results indicated that
our synthesised hBN nanosheets are potential candidates for room temperature chemore-
sistive gas sensors (Table 2), as the obtained values were comparable to those of graphene,
conductive metal oxides, mxenes, as well as transition metal dichalcogenides (TMDs) [25].
Moreover, the sensors were found to be stable even after 18 months of storage as approx-
imately 75%, 50%, 92%, and 8% decreases in sensor responses were observed for 0 wt%,
2.5 wt%, 5 wt%, and 10 wt% modified hBN samples after exposure to 160 ppm of acetone
(Figure S7). Likewise, the effect of the structural properties was observed by the sensitivity
values, which were recorded after 18 months and were found to be 0.04, 0.1, 0.04, and
0.12 as well as 0.4, 2.3, 0.06, and 0.2 × 10−2 ppm−1 against acetone and ethanol for 0 wt%,
2.5 wt%, 5 wt%, and 10 wt% modified hBN samples, respectively (Table S4).The 5 wt%-BaF2
hBN samples produced reproducible results in comparison with other active materials even
after 18 months of storage, and this can be attribute to the improved crystallinity of the
nanoflakes, which thus limited and/or slowed the degradation of the hBN nanostructures.

Our reported sensor performance, specifically for the pristine and the 2.5 wt% BaF2
modified hBN samples towards acetone or ethanol, showed better and/or relatively com-
parable LoD values to those of their 2D counterparts such as graphene oxide, transition
metal dichalcogenides (TMDs), and mxenes (Table 2). For instance, the pristine and the
2.5 wt% BaF2 modified hBN-based sensors showed significantly lower LoD values than
sensors based on TMDs and metal oxides for acetone and ethanol molecules; however, they
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were still relatively higher than those of graphene-and mxene-based sensors [16,46–55].
Better LoDs in mxene- and graphene-based sensors were attributed to the abundance of
oxygenated and/or ligand functional groups, which ultimately facilitated an improved
adsorption–desorption mechanism of the VOC molecules. On the other hand, improve-
ment in structural properties upon addition of BaF2 to the preceramic mixture of hBN,
especially 5 wt%, greatly compromised their sensing performance towards VOCs. This was
ascribed to the lack of defect sites, which subsequently led to fewer oxygenated functional
groups, thereby affecting the sensing properties of the 5–10 wt% BaF2 modified hBN-based
sensors. The important point in this work is the low LoD value for the defective hBN
samples towards detection of both VOCs compared to other reports in literature. Generally,
the results indicate that, with controlled improvement in the structural properties of hBN,
enhanced sensing performance of hBN nanosheets towards both protic and aprotic VOCs
can be achieved.

Table 2. Comparative sensor data for the hBN samples with other related materials for VOCs sensors.

Analyte Active Material Sensor Type Conc. Range (ppm) Temp. (◦C) LoD (ppm) Ref

Acetone

ZnO

Chemoresistive

5–1000 300 10 [40]

ZnO/Gr 10–10,000 280 13.3 [50]

pristine hBN

0–100 RT

86

This work
2.5wt% BaF2-hBN 43
5wt% BaF2-hBN 460
10wt% BaF2-hBN 144

α-Fe2O3/rGO 5–500 225 5 [53]

g-C3N4/WO3 N/A 340 100 [43]

Ti3C2Tx Electrochemical N/A RT 0.05 [42]

Ethanol

SnO2/MoS2

Chemoresistive

N/A 280 50 [54]

ZnO/GO 10–1000 400 10 [55]

pristine hBN

0–100 RT

30

This work
2.5wt% BaF2-hBN 62
5wt% BaF2-hBN 543
10wt% BaF2-hBN 134

Ti3C2Tx Electrochemical N/A RT 0.10 [42]

MoS2 →molybdenum disulphide, ZnO→ zinc oxide, hBN→ hexagonal boron nitride, BaF2 → barium fluoride, rGO→ reduced graphene
oxide, T3C2Tx → bimetallic Mxene, SnO2 → tin oxide, GO→graphene oxide, WO3 → tungsten oxide, gC3N4 → graphitic carbon nitride,
α-Fe2O3 → alpha ferric oxide.

4. Conclusions

Following the modification of hexagonal boron nitride (hBN) flakes produced through
addition of barium fluoride (BaF2) in a polymer-derived ceramics (PDCs) synthesis tech-
nique, their sensing performance towards volatile organic compounds (VOCs) was then
investigated. The results showed that the sensing devices fabricated from the hBN nanos-
tructures were active for acetone or ethanol detection, and their sensing performance was
dependent on the structural properties of the nanostructures. For instance, the pristine
and the 2.5 wt% BaF2 modified hBN-based sensors exhibited improved sensing perfor-
mance towards both analytes. This was shown by the low LoDs (−43–86 ppmacetone
and −30–62 ppmethanol) and the high sensitivities (−1.8–2.1 × 10−2 ppm−1

acetone and
−1.5–1.6 × 10−2 ppm−1

ethanol), which can be attributed to the defective domains on these
samples, which subsequently provided an abundance of adsorption sites for the analyte
molecules of interest. Despite the rapid response and recovery times for the 5–10 wt% BaF2
modified hBN-based sensors, the improved 2D morphology for the hBN flakes was found to
hinder the good sensing performance of hBN nanostructures towards acetone and ethanol.
This was highlighted by the high LoD values of −144–460 ppm and −134–543 ppm, with
extremely poor sensitivities of −0.042–0.72 × 10−2 ppm−1 and −0.045–0.19 × 10−2 ppm−1
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for acetone and ethanol for the structurally improved 5–10 wt% BaF2-modified hBN flakes,
respectively. The loss in sensor activity was also attributed to the relatively low surface
areas of the hBN nanostructures (2.9 to 3.5 m2/g). Overall, the study demonstrated that the
structural properties of the hBN flakes should be taken into serious consideration prior to
the design of room temperature sensing devices for VOCs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemosensors9090263/s1, Figure S1: Dependence of sensor resistance on frequency with
increasing EtOH: Acetone concentrations for (a) 0, (b) 2.5, (c) 5, and (d) 10 wt% BaF2-modified hBN
based sensors, Figure S2: Sensor response versus EtOH: acetone concentrations (a) 0, (b) 2.5, (c) 5, and
(d) 10 wt% BaF2-modified hBN based sensors at optimum operating frequencies, Figure S3: Sensor
resistance as a function of analyte concentration for (a-d) acetone, (e-h) ethanol, and (i-l) ethanol:
acetone; red line indicates the estimated LoD resistance of the corresponding sensor at the optimum
frequency, Figure S4: The sensitivities of sensors data based on hBN-BaF2 (a) 0 wt%, (b) 2.5 wt%,
(c) 5 wt%, and (d) 10 wt% for acetone as a function of frequency; dashed line indicates the optimum
operating frequency, Figure S5: The sensitivities of sensors data based on hBN-BaF2 (a) 0 wt%,
(b) 2.5 wt%, (c) 5 wt%, and (d) 10 wt% for ethanol as a function of frequency; dashed line indicates
the optimum operating frequency, Figure S6: The sensitivities of sensors data based on hBN-BaF2
(a) 0 wt%, (b) 2.5 wt%, (c) 5 wt%, and (d) 10 wt% for ethanol:acetone as a function of frequency;
dashed line indicates the optimum operating frequency, Figure S7: Responses and recovery times for
(a) 0 wt%, (b) 2.5 wt%, (c) 5 wt%, and (d) 10 wt% BaF2-modified hBN devices fabricated 18 months
ago and after exposure and removal of 160 ppm of acetone at optimum operating frequencies,
Table S1: Properties of the studied analytes, Table S2: Optimisation parameters for the hBN sensors,
Table S3: Response and recovery times at 2 mg·mL−1 concentration of the hBN dispersion, Table S4:
Reproducibility of the hBN sensors.
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