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Abstract: The antitumor effect of antibody-drug conjugates (ADC) is the main factor in achieving
cures. Although the mechanism of tumor resistance to treatment is multifaceted, tumor-derived extra-
cellular vesicles (T-EVs) have been implicated as contributing to the attenuation of ADC therapeutic
efficacy. Thus, strategies to eliminate T-EVs are highly promising for overcoming drug resistance.
Here we demonstrate plasma exchange therapy to remove T-EVs, decreasing their amount in vitro
by 75%. Although trastuzumab emtansine (T-DM1) treatment alone was effective in our rat tumor
model, the combination therapy of T-DM1 and T-EV filtration achieved early tumor shrinkage. Our
results indicate that T-EV filtration plus ADC is a promising strategy for overcoming drug resistance.
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1. Introduction

Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) designed
with an anti-human epidermal growth factor receptor 2 (HER2) antibody conjugated with
an inhibitor of microtubule polymerization, DM1 [1]. T-DM1 inhibits tumor growth by
inhibiting growth signaling through the HER2 pathway. In addition, the binding of T-
DM1 to HER2 (highly expressed in cancer cells) leads to the intracellular incorporation of
T-DM1 and apoptosis via the activation and release of DM1 [1]. Although clinical trials
demonstrated that T-DM1 improves survival in patients with HER2-positive metastatic
breast cancer, a significant fraction of patients did not respond to T-DM1 [2,3]. Thus, a
novel approach to enhance the antitumor effect of T-DM1 is necessary.

Programmed death (PD-1) is a checkpoint inhibitory molecule mainly expressed in,
activated in, and serving as a marker of exhausted T cells [4]. The binding of its ligand,
programmed death-ligand 1 (PD-L1), to PD-1 in T cells transduces inhibitory signals, result-
ing in the attenuation of T cell proliferation, cytokine production, and cytotoxic molecule
production [4]. Therefore, the PD-1/PD-L1 axis is a primary mechanism of escape from
antitumor immune responses [4]. PD-L1 not only localizes on the tumor cell surface but also
exists in the blood as soluble variants which are generated by the shedding of membrane-
type PD-L1 via metalloproteinase activity [5]. A phase two, multicenter, randomized study
revealed that median progression-free survival was almost half in the PD-L1-positive breast
cancer subgroup compared with the negative group after T-DM1 treatment [6]. On the
other hand, the concentration of soluble PD-L1 (sPD-L1) is associated with the tumor stage
in breast cancer [7]. Furthermore, higher sPD-L1 is reported to be associated with shorter
overall survival in breast cancer patients after trastuzumab treatment [8], indicating that
PD-L1 may ablate the antitumor effect of trastuzumab and T-DM1 in breast cancer. PD-L1
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also exists on extracellular vesicles (EVs), which are characterized by lipid bilayer small
particles from diverse types of cells [9]. Recently, it has been reported that PD-L1 on EVs is
highly potent at suppressing immune functions and decreasing IL-2, IFN-γ, and granzyme
B production [10]. Interestingly, PD-L1-negative tumor cells and several immune cell types
acquire PD-L1 expression from PD-L1-transporting EVs [11]. High levels of EV-bound
PD-L1 have been reported as a biomarker for worse prognoses in several cancers [10]. These
facts indicate that the removal of sPD-L1 and EVs with PD-L1 may enhance antitumor
immune function.

EVs contain nucleotides and proteins, suggesting that they may be involved in cell-to-
cell communication [9,12]. Recently, it has been reported that tumor-derived EVs (T-EVs)
play an essential role in tumor growth, metastasis, and immune regulation [9,12], in
addition to a report of T-EV involvement in drug resistance [13]. T-EVs contain immune-
suppressive cytokines, such as TGF-β1 [14], which induce drug resistance [15], in addition
to the fact that ADC-resistant cells secrete more EVs expressing the ADC target protein
compared to sensitive cells [14]. Additionally, reports have demonstrated higher amounts
of ADC on EVs from resistant cells versus sensitive cells [14], indicating that T-EVs can trap
ADC on their surface.

Thus, strategies to eliminate T-EVs are considered a promising way to reduce the resis-
tant potential of tumor cells [16]. So far, several reagents have been reported to suppress
the generation, trafficking, and uptake of EVs to effect suppression of tumor growth [17].
However, since the safety of these reagents for human application has not yet been defini-
tively demonstrated, they are only currently used in animal models. Although it has been
reported that the clearance of EVs was induced by anti-CD9 or anti-CD63 antibodies via
macrophages [18], it is still unclear whether anti-CD9 and anti-CD63 antibodies affect
normal cells that also express CD9 and CD63 [19–21].

To combat these limitations, the removal of EVs is an ideal alternative strategy.
Hemodialysis can directly remove several compounds from the blood. However, it has
been reported that the pore size of dialysis filters is smaller than the EV diameter [22], and
the literature indicates that circulating EVs increase after hemodialysis [23]. Plasmapheresis
devices (e.g., Hemopurifier®) are useful options in this regard as they have been reported
to efficiently decrease hepatitis C viral load [24]. Although the size and structural simi-
larities between viral and cancer exosomes indicates the possibility of exosome removal
by Hemopurifier® [16], there is a need to accumulate evidence to validate methods for
removal of target exosomes. On the other hand, plasma exchange (PE) is a suitable method
for eliminating EVs and small proteins, such as sPD-L1, as it has been reported to reduce
their numbers [25]. But, in spite of this ostensibly beneficial effect, the utility of PE in
EV and sPD-L1 removal and its subsequent effect on tumor treatment with ADCs is still
unclear. Thus, we aimed to reduce EVs with a plasma exchange method and investigate
their therapeutic effect on tumor treatment with ADCs in a murine model.

2. Materials and Methods
2.1. Animal Usage and Care

F344/NJcl-rnu/rnu rats raised under specific pathogen-free conditions were pur-
chased from CLEA Japan (Tokyo, Japan), and rats between 6 and 7 weeks of age were used
for the experiments.

2.2. Cell Lines

NCI-N87 cells (American Type Culture Collection [ATCC], Manassas, VA, USA) and
PC-9 cells (The European Collection of Authenticated Cell Cultures [ECACC], Salisbury,
UK) were cultivated in RPMI-1640 (Sigma Aldrich, St. Louis, MO, USA) supplemented
with 10% FBS (System Biosciences, Palo Alto, CA, USA) and 1% penicillin-streptomycin
(FUJIFILM Wako, Osaka, Japan), at 37 ◦C under 5% CO2.
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2.3. Rat Tumor Model

Briefly, we intradermally injected 1 × 107 NCI-N87 cells into the dorsal skin of each
extremity. When the tumors reached approximately 10 mm in diameter, we performed
plasma exchange and administration of T-DM1. Tumor diameters were measured with a
caliper, and the tumor volume was determined according to the following formula: tumor
volume (mm3) = (length) × (width)2 × 0.5.

2.4. In Vitro and In Vivo Circuit Assays

The newly developed plasma membrane for the plasma exchange circuit assay was
kindly gifted from Toyobo. For the In Vitro Circuit Assay, circuits were filled with heparin-
containing saline (10 U/mL). Bovine blood was filtered and centrifuged at 3000 rpm for
15 min, and 50 mL of the supernatant plasma was collected in a centrifuge tube. Prepared
plasma was used to fill the circuit up to the 3-way stopper. Next, 2.5 mL of PC-9 or 400 µL
of NCI-N87 culture supernatant for the assessment of sPD-L1 or exosomes was added to
5 mL or 20 mL of bovine blood, respectively. To replace displaced liquid, circulation was
continued for 82 min (Figure 1A). For the In Vivo Circuit Assay, the circuit was filled with
heparin/saline as before (10 U/mL). After rat plasma, derived from tumor-free rats, was
thawed at 37 ◦C, the cryoprecipitate was removed with tweezers. Prepared plasma was
used to fill the circuit up to the three-way stopper. Under anesthesia, using isoflurane
inhalation, catheters were placed in the femoral artery and vein. After connecting each
catheter to the prepared circuit, plasma exchange was started at the speed of 1.2 mL/min.
Body temperature was monitored at 36.5 ◦C using a rectal probe and an automated tem-
perature monitor. Plasma exchanges were performed approximately every 25 min to
achieve a 90% plasma exchange rate. Three mg/kg of T-DM1 was administered through
the three-way stopper, which was connected to the venous circuit (Figure 1B).
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Figure 1. Schematic figure of plasma exchange. (A) In vitro plasma exchange circuits, fluid from the
bovine blood pool recovers through the plasma membrane unit. (B) In vivo plasma exchange circuits,
femoral vein, and artery were connected to the catheter. Blood was drawn (up to 2 units of plasma
exchange) and returned to the femoral vein.

2.5. Measurement of sPD-L1 in In Vitro Circuit Assays

To assess the removal of sPD-L1 in the circuit, 100µL of samples collected before and
after plasma exchange was used for an ELISA. PD-L1 ELISA was carried out by a human
PD-L1 ELISA kit (Abcam, Cambridge, UK) according to the manufacturer’s instructions.
OD values were averaged from the result of 3 wells, and the relative decrease was calculated
as the OD value after plasma exchange divided by the OD value before plasma exchange.

2.6. Preparation of Exosomes

Collected samples from circuits were applied to qEV single 35 nm columns (Mei-
wafosis, Tokyo, Japan) to purify exosomes according to the manufacturer’s instructions.
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Separated fluid was put into tubes with Amicon Ultra filters (Merck Millipore, Burlington,
MA, USA) and centrifuged at 14,000× g for 10 min at 4 °C before Western blotting.

2.7. Western Blotting

Collected exosomes were resuspended in 2x Tris-Glycine SDS Sample buffer and
denatured at 95°C for 5 min. All samples were then subjected to a 4–20% Tris-Glycine mini
gel (Thermo Fisher Scientific, Waltham, MA, USA) and electrophoresed at 225 V for 35 min
in Tris-Glycine SDS running buffer. Following electrophoresis, the proteins were then
transferred onto a PVDF membrane (Thermo Fisher Scientific) and probed with primary
biotin-conjugated antibody for CD9 (Clone 30B, rat IgG, FUJIFILM Wako, Osaka, Japan)
and streptavidin with the polymerized form of horseradish peroxidase (Thermo Fisher
Scientific). The membranes were incubated with ImmunoStar LD (FUJIFILM), and images
were subsequently acquired and analyzed for signal intensity using FUSION SOLO 7S
(Vilber Bio-Imaging, Collégien, France).

2.8. Statistical Analyses

We applied the linear mixed-effects model, including tumor volume, as the outcome
with treatment, polynomial in days post-treatment and their interactions as the fixed effects,
and rat ID as the random effect. The degree of the polynomial was chosen based on Akaike’s
information criterion, and robust, sandwich-type variances were used in the mixed-effect
model analyses. Based on this model, marginal means on days 7, 14, and 21 were compared
among treatments. Throughout the analyses, p values < 0.05 were considered significant.
The statistical tests were 2-sided.

3. Results

We first assessed the removal of sPD-L1 by filtration with a novel membrane using
an in vitro plasma exchange model. Concomitant with another study, we found that
plasma exchange decreased the amount of sPD-L1 in the circuit, reaching a reduction of
approximately 90% (Table 1).

Table 1. The OD value of sPD-L1 in the in vitro circuit before and after plasma exchange.

OD Value Average

Before 0.12 0.13 0.12 0.123
After 0.01 0.02 0.01 0.013

Next, we evaluated whether plasma exchange reduced EVs using an in vitro plasma
exchange model by western blot. We found that signal intensities before and after plasma
exchange were 1444 and 353, respectively, indicating an approximately 75% reduction of
tumor-derived EVs (Figure 2).
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Figure 2. Plasma exchange-reduced EVs. (A) T-EV levels pre- and post-plasma exchange were
analyzed by Western blot with anti-human CD9 antibody. (B) The signal intensity of Western blot
bands in (A) was normalized with pre-plasma exchange.
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Next, this membrane was applied to a murine in vivo plasma exchange model. To
evaluate the effect of EV removal during antitumor treatment, we analyzed tumor growth
after T-DM1 administration and found that both T-DM1 and combination therapy of T-DM1
plus plasma exchange inhibited tumor growth by day 21, whereas plasma exchange alone
failed to suppress tumor growth. There were no significant differences between the T-DM1
and combination therapy groups at the three time points. In addition, the combination
therapy significantly reduced tumor size on day 7 compared to the plasma exchange group.
Although the T-DM1 group showed tumor reduction on day 7, it was not statistically
significant when compared to the plasma exchange monotherapy group (Figure 3)
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Figure 3. A drug/filtration combination increases the removal of EVs and enhances tumor shrink-
age by T-DM1. Longitudinal marginal means of the tumor volume after the tumor size reached
approximately 10 mm in diameter with treatment by plasma exchange, T-DM1, and plasma exchange
with T-DM1 (n = 12 in each group) based on the linear mixed model. PE: plasma exchange, T-DM1:
trastuzumab emtansine. Error bars indicate confidence intervals; * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

We developed a membrane that efficiently removed sPD-L1 and captured EVs. In
addition, our data suggest that plasma exchange may potentially enhance the antitumor
effect of T-DM1.

The effect of dialysis on the removal of EVs is controversial as de Laval et al. reported
an increase in amounts of large EVs after hemodialysis [23], and Daniel et al. also reported
elevated levels of large, neutrophil-generated EVs after hemodialysis [26]. In contrast,
Ruzicka et al. showed that submicron particles, ranging from 20–1000 nm, decreased after
dialysis [22]. These facts indicate that differences may be due to discrepancies between
reported methods, including the type of patients, repetitive mechanical stress from the
hemodialysis treatment, and the type of dialyzer. On the other hand, plasma exchange is
ideal for removing small compounds since the membrane filters plasma-restricted proteins.
Orme et al. reported the efficacy of plasma exchange to remove sPD-L1, EVs, and PD-L1 on
EVs [25], showing 70.8%, 33.5%, and 73.1% reductions, respectively. Additionally, multiple
plasma exchange procedures are possible for the complete removal of these compounds,
suggesting that plasma exchange is feasible for the significant reduction of bloodborne
sPD-L1 and EVs. However, the removal of EVs by plasma exchange alone was insufficient
to suppress tumor growth in our model. We speculate that this may be due to the single
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plasma exchange performed in our study. Orme et al. reported that sPD-L1 recovered
33.8% between exchanges, with each plasma exchange typically performed at 1- to 3-day
intervals [25], indicating that the concentration of sPD-L1 can theoretically rebound 10 days
after plasma exchange. In addition, some patients experienced increased sPD-L1, EVs, or
PD-L1 on EVs after the first plasma exchange [25]. Given the amount of EV and sPD-L1
increase in patients with malignancies [25,27], a single plasma exchange may be insufficient.
Consistent with our result, Nishida-Aoki et al. demonstrated that the depletion of EVs with
anti-CD9 or CD63 antibodies failed to inhibit tumor growth at the primary site despite the
suppression of metastasis [18]. In that report, anti-CD9 and CD63 antibodies did not affect
vascular generation in the primary tumor, and, moreover, these antibodies did not affect
tumor cell proliferation and invasion [18]. These results indicate that EVs might play a
more important role in metastasis rather than tumor growth.

It has been reported that T-EVs express HER2 [28]. Given that soluble HER2 neutral-
izes anti-HER2 antibodies [29], HER2-positive T-EVs may inhibit the effect of anti-HER2
antibodies, resulting in the enhancement of tumor growth. HER2-positive T-EVs bind effi-
ciently to anti-HER2 antibodies, reducing their amounts on the tumor surface [28]. Because
binding of the HER2 motif to T-DM1 is competitive with T-EV-bound HER2, depletion of
T-EVs may increase the binding opportunities of T-DM1 to tumor cells, resulting in the
enhancement of ADCC by immune cells and inhibition of HER2-mediated growth signal
transduction. Collectively, we showed that the tumor volume on day 21 was not different
between T-DM1 single treatment and combination treatment; however, compared to T-DM1
alone, the combination therapy seemed to induce the early tumor shrinkage suggestive of
positive prognoses [30]. Therefore, our data indicated that plasma exchange with a novel
membrane might reduce HER2 positive T-EVs, enhancing the effect of T-DM1.

Since sPD-L1 is also released from non-tumor cells to maintain the immune response,
our model system may remove sPD-L1, which is involved in physiological homeostasis
of the immune response, leading to dysregulation of autoimmune responses as immune-
related adverse events caused by checkpoint inhibitors [31].

Given that tumors continually generate T-EVs and sPD-L1, the concentration of T-
EVs and PD-L1 may recover soon after plasma exchange, indicating that multiple plasma
exchanges are required to increase the effectiveness of exosome removal. Our model is
based on a single plasma exchange within 21 days due to the difficulty of ensuring a
catheter insertion. Thus, clinical applications of this system could be challenging. However,
the current study has established the utility of plasma exchange enough to serve as a
platform for further development. Therefore, hemodialysis patients with tumors may be
good candidates for future clinical trials.

Plasma exchange seemed to enhance tumor shrinkage by T-DM1, indicating that our
membrane efficiently captured T-EVs in addition to the reduction of several molecules,
including sPD-L1, in vivo. Due to the study’s exploratory nature and small sample size,
no significant differences were detected between the T-DM1 group and the combination
treatment group. Although combination therapy exerted a putative antitumor effect, more
data, including the results of multiple plasma exchanges and extension of observation of
tumor growth, should be accumulated in the future to test the hypothesis.

5. Conclusions

In conclusion, we have proposed a novel therapeutic strategy to inhibit tumor growth
by inhibiting the treatment-resistant function of T-EVs with a novel plasma exchange
membrane. This strategy can be applied to enhance various treatments against diverse
T-EV-generating cancer types.
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