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Abstract: Dental disorders are a serious health problem in equine medicine, their early recognition
benefits the long-term general health of the horse. Most of the initial signs of Equine Odontoclastic
Tooth Resorption and Hypercementosis (EOTRH) syndrome concern the alveolar aspect of the teeth,
thus, the need for early recognition radiographic imaging. This study is aimed to evaluate the applica-
bility of entropy measures to quantify the radiological signs of tooth resorption and hypercementosis
as well as to enhance radiographic image quality in order to facilitate the identification of the signs of
EOTRH syndrome. A detailed examination of the oral cavity was performed in eighty horses. Each
evaluated incisor tooth was assigned to one of four grade–related EOTRH groups (0–3). Radiographs
of the incisor teeth were taken and digitally processed. For each radiograph, two–dimensional sample
(SampEn2D), fuzzy (FuzzEn2D), permutation (PermEn2D), dispersion (DispEn2D), and distribu-
tion (DistEn2D) entropies were measured after image filtering was performed using Normalize,
Median, and LaplacianSharpening filters. Moreover, the similarities between entropy measures
and selected Gray–Level Co–occurrence Matrix (GLCM) texture features were investigated. Among
the 15 returned measures, DistEn2D was EOTRH grade–related. Moreover, DistEn2D extracted
after Normalize filtering was the most informative. The EOTRH grade–related similarity between
DistEn2D and Difference Entropy (GLCM) confirms the higher irregularity and complexity of incisor
teeth radiographs in advanced EOTRH syndrome, demonstrating the greatest sensitivity (0.50) and
specificity (0.95) of EOTRH 3 group detection. An application of DistEn2D to Normalize filtered
incisor teeth radiographs enables the identification of the radiological signs of advanced EOTRH
with higher accuracy than the previously used entropy–related GLCM texture features.

Keywords: radiographs; texture analysis; entropy–based approaches; equine odontoclastic tooth
resorption and hypercementosis; dental care

1. Introduction

Dental disorders, including complications related to cases of oral cavity disease,
constitute a serious health problem in equine medicine [1]. As equine hypsodont teeth
slowly erupt over most of the horse’s life [2], simple dental rasping is able to improve the
welfare and possibly food digestion as well as biting behaviour of more than 70% of horses
presenting dental disorders [3]. Thus, dental disorders are of major importance in equine
veterinary practice, with up to 10% of practice time involving dental–related work [1].

Biomedicines 2022, 10, 2914. https://doi.org/10.3390/biomedicines10112914 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10112914
https://doi.org/10.3390/biomedicines10112914
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0003-0148-9912
https://orcid.org/0000-0001-9436-1074
https://doi.org/10.3390/biomedicines10112914
https://www.mdpi.com/journal/biomedicines
http://www.mdpi.com/2227-9059/10/11/2914?type=check_update&version=2


Biomedicines 2022, 10, 2914 2 of 18

The current standard of care in equine dentistry includes performing a complete visual
oral examination, including general and dental history taking, observation and general
physical examination, as well as comprehensive oral and dental examination [4]. However,
radiography and possibly other imaging of dental apices and reserve crowns is essential
in the evaluation of primary incisor and canine teeth disease affected by resorption and
hypercementosis of the reserve crown [5,6], secondary periodontal disease with remodelling
and lysis of the alveolar bone [1,7,8], traumatic disorders of teeth [1,9,10], as well as
apical infections such as cheek teeth apical abscessation [1,9]. The welfare of the horse
depends on skilled and knowledgeable veterinarians who can characterize normal and
abnormal findings relative to the oral cavity [4], including frequently occurring dental
disorders [1]. Therefore, the digital processing of dental radiographs is proposed here
to enhance the quality of the image so that the veterinarians can more easily identify
the radiographic signs of disease. As radiography is useful in the diagnosis of tooth
resorption and hypercementosis [5,6], bone remodelling and lysis [1,7,8], as well as tooth
fractures [1,9,10] and infections [1,9], these preliminary studies focus on the example of
Equine Odontoclastic Tooth Resorption and Hypercementosis (EOTRH) syndrome. EOTRH
requires radiographic imaging in the early stages to visualize the alveolar aspect of the
teeth, where the signs are typically more advanced than is suggestive by the external
appearance of the teeth [5,11]. Moreover, the radiographic signs of EOTRH appear earlier
than the clinical signs [12–14], as 88% of horses with no apparent clinical signs demonstrated
radiographic signs of incisor teeth resorption and 20% of horses demonstrated signs of
incisor teeth hypercementosis [5]. Resorption and hypercementosis are two ongoing
processes that progressively affect the structure of the tooth starting from the alveolar
aspect (root and the reserve crown) [15]. Both processes are radiographically well–defined,
as teeth demonstrate high radiodensity [16], where low radiopaque signs of resorption and
high radiopaque signs of hypercementosis are alternately visible, thus, presenting the high
irregularity and complexity of the image texture of radiographs [17].

The complete visual examination of the oral cavity allows the veterinarian to identify
and manage dental problems and diagnose early stages of disease, benefiting the long–term
general health of the horse and improving its quality of life [4], whereas the main aim
of using digital processing of digital radiographs is to enhance the automated detection
of early signs of EOTRH disease that might be missed by solely visual evaluation. Thus,
the introduction of digital processing to the equine dental radiographs aims to improve
the detection of specific signs of dental diseases which are not recognizable during the
preliminary visual examination. It has been shown that raw radiographs collected directly
from the X–ray scanner, which have not been digitally processed, are less effective in incisor
teeth radiographic texture quantification than those that have been digitally processed. Due
to the presence of noise, the radiographic filtering by filters improves the edge delimitation,
such as Normalize or Bilateral filters, which increases the recognition of the radiographic
signs of EOTRH syndrome [17]. However, the specific detection of grade 1, grade 2, and
grade 3 EOTRH radiological signs remains challenging.

With the rapid advances in diagnostic imaging in equine dentistry [17–19],
high–resolution detailed digital images [20] as well as a vast and ever–growing amount
of data [17] are more readily available. Digital image processing is increasingly used to
select and provide diagnostically important data [21] to avoid information noise that is
difficult to evaluate. As the development of the computer–aided detection of image dif-
ferences is a multi–stage process [22,23], the first two steps towards achieving the main
goal have already been attained. The first step, concerning the preliminary demonstration
of the possibility of quantifying the texture features of horses’ incisor radiographs, has
been previously published [17]. The second step is presented in this study. This second
step concerns the advancement in image regularity evaluation, comparison of the novel
and recent image regularity indicators, and demonstration of the detection accuracy of
radiographic signs of teeth resorption and hypercementosis in both novel and recent ex-
periments. To achieve this intermediate goal, the two–dimensional entropy measures [24],
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which are relatively recent methods of image irregularity and complexity quantification,
have been proposed to obtain relevant and insightful data from equine dental radiographs,
which could be applied in early EOTRH diagnosis. As entropy–based measurements
represent a new class of easy–to–implement methods [25], their evaluation in different
types of clinical applications [26] is advisable. In equine medicine, the entropy–based
measurements have been successfully applied for the analysis of the texture of equine
thermal images in pregnancy determination [27] and the rider:horse body weight ratio
detection in horseback riding [28]. In the study examining the pregnancy model, four
entropy–based measurements were used [27], however, in the horses’ back load assess-
ment model, a fifth measurement was added [28]. These five entropy–based measure-
ments included: two–dimensional sample entropy (SampEn2D) [29], two–dimensional
fuzzy entropy (FuzzEn2D) [30], two–dimensional permutation entropy (PermEn2D) [31],
two–dimensional dispersion entropy (DispEn2D) [32], and two–dimensional distribution
entropy (DistEn2D) [33]. These five aforementioned entropy–based measurements have
been implemented in the current study. We hypothesize that the quantitative description of
incisor tooth radiographs, by using filtrations and entropy measurement extraction, imply
the specific detection of the radiological signs of grade 1, grade 2, and grade 3 EOTRH
syndrome, which could be used in the future development of the automated detector of
early signs of the disease.

Therefore, the study aimed to evaluate the applicability of entropy measures to quan-
tify the radiological signs of tooth resorption and hypercementosis and to enhance the
quality of the radiograph to improve the identification of the radiographic signs of EOTRH
syndrome. To achieve this goal, the measures of five entropy–based measurements were
extracted from radiographs of equine incisor teeth. Then, combinations of measures and
filters were used to identify changes associated with the EOTRH grades. Next, the selected
entropy measures and filters were compared with recently reported features of gray–level
matrices texture analysis approaches to find similarities. Finally, for the selected mea-
sures and features, the detection accuracy of the radiographic signs of EOTRH syndrome
was calculated.

2. Materials and Methods
2.1. Horses

Eighty privately owned horses (n = 80) (age mean ± SD: 16.9 ± 7.0; 37 geldings,
43 mares; 30 Polish Halfbred horses, 13 Arabian horses, 10 Schlesisches Warmblood horses,
8 Wielkopolska breed horses, 7 Dutch Warmblood horses, 5 Thoroughbred horses, 4 Polish
coldblooded horses, and 3 Malopolska breed horses) were enrolled in the current study. The
owners presented their horses for the standard veterinary diagnostic procedure including
a basic clinical examination [34], a detailed examination of the oral cavity [35], and an
additional examination [5]. In the current study, examination data collected from July 2021
to December 2021 were used.

A basic clinical examination was conducted following standard protocol [34], which
allowed for the collection of the internal temperature, heart rate, respiratory rate, mu-
cous membranes, capillary refill time, and lymph node evaluation. After a basic clini-
cal examination–based qualification prior to the sedation procedure, the horses received
a dose of detomidine hydrochloride (Domosedan; Orion Corporation, Espoo, Finland;
0.01 mg/kg bwt i.v.), xylazine hydrochloride (Xylapan; Vetoquinol Biowet Sp. z o.o.,
Gorzów Wielkopolski, Poland; 0.4 mg/kg bwt i.v.), or a combination of both. In some cases,
the additional dose of butorphanol tartrate (Torbugesic; Zoetis Polska Sp. z o.o., Warsaw,
Poland.; 0.01 mg/kg bwt i.v.) was required. No clinical contraindication to the sedation
procedure was found in any of the examined horses.

A detailed examination of the oral cavity was conducted following standard protocol
and included a visual examination and digital palpation of the teeth [35]. The Haussmann’s
mouth speculum was used to ensure the safety of the horse and veterinarian during a
detailed examination. A 400 mL syringe was used to flush the oral cavity in order to remove
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any food which remained on, around, and between teeth. The periodontal probe was used
for the evaluation of the interdental spaces. All clinical signs, including the condition of
teeth, interdental spaces, gums, and mucosa of the cheeks and tongue, were documented
on the equine dental chart [15] (Figure 1A).
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Figure 1. Scheme of radiographic–based detection of the signs of the Equine Odontoclastic Tooth
Resorption and Hypercementosis (EOTRH) syndrome. A detailed dental examination (A); a stan-
dard radiography (B); segmentation of input radiographs with regions of interest (ROIs) of the
first upper right incisor tooth (101) and the first upper left incisor tooth (201) marked with yellow
lines (C); filtering of input radiographs by three filters—Normalize, Median, and Laplacian Sharp-
ening (D); a texture analysis of output radiographs after filtering using entropy–based measures
(five measures: SampEn2D—two–dimensional sample entropy, FuzzEn2D—two–dimensional fuzzy
entropy, PermEn2D—two–dimensional permutation entropy, DispEn2D—two–dimensional disper-
sion entropy, DistEn2D—two–dimensional distribution entropy) and Gray–Level Co–occurrence
Matrix (six selected features: Cluster Prominence, Contrast, Difference Average, Difference Entropy,
Difference Variance, Inverse Variance) (E).

An additional examination allowed for radiography of the incisor teeth [5]. The radio-
graphs were obtained by intraoral presentation, which required insertion of the protected
radiographic cassette into the opened oral cavity of the horse, following the guidelines of
the bisecting angle technique [13]. The dorsoventral projection for the maxillary teeth [15]
was achieved by using the following settings: 2.5 mAs; 65 kV; of the x–ray tube (Orange
9020HF, Ecoray Co., Ltd.; 3F, Urbanlight B/D, 630, Eonju–ro, Gangnam–gu, Seoul, Korea)
and the same distance (80 cm) to the radiographic cassette (Saturn 8000, Vievorks Co.,
Ltd., 41–3, Burim–ro, 170beon–gil, Dongan–gu, Anyang–si, Gyeonggi–do, 14055 Korea.
The radiographs were acquired on HP portable computer (HP Inc UK Ltd., Earley West,
300 Thames Valley Park Drive, UK) using DxWorks software (Vievorks Co., Ltd., 41–3,
Burim–ro, 170beon–gil, Dongan–gu, Anyang–si, Gyeonggi–do, 14055 Korea) and saved as
.jpg files (Figure 1B).

The study was approved by the II Local Ethical Committee on Animal Testing in War-
saw on behalf of the National Ethical Committees on Animal Testing (No WAW2/091/2020
approved on 29 July 2020). The owners agreed to use the horses’ data in the current study.
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2.2. Radiographs Classification

Based on the clinical and radiological signs achieved from the standard veterinary
diagnostic procedure, four grade–related EOTRH groups (0–3) were annotated. The radio-
logical classification system introduced by Hüls et al. [36] and modified by Rehl et al. [5]
was used. This classification system includes the evaluation of shape, surface structure,
contour, and consistency of incisor teeth as well as contour, radiodensity, and delineation of
the periodontal space of incisor teeth. As the preliminary application of two–dimensional
entropy measures in the radiographic–based detection of the signs of EOTRH syndrome
was tested, the central maxillary incisor teeth showing the best presentation in the radio-
graphs obtained in the dorsoventral projection and the lowest superimposition of rounding
tissues, were selected for testing. Following the modified Triadan system for equine dental
nomenclature [37], the test incisor teeth were numbered as 101 (the first upper right incisor
tooth) and 201 (the first upper left incisor tooth). On each selected incisor tooth, the repre-
sentative rectangular region of interest (ROI) was manually annotated. Each ROI covers
the largest possible area of the tooth crown and the largest possible area of the tooth root.
Each ROI was individually fitted to the consecutive, separate teeth as shown on Figure 1C.
Each ROI was edged by four high–radiodensity lines representing: (i) the occlusal side of
the incisor tooth, (ii) the medial side of the incisor tooth, (iii) the apical side of the incisor
tooth, and (iv) the lateral side of the incisor tooth, respectively. The ROIs were annotated
using the ImageJ software version 1.46r (Wayne Rasband, National Institutes of Mental
Health, Bethesda, MD, USA) and saved as .png files.

Based on above criteria, 101 and 201 maxillary incisor teeth were classified to grade 0
(normal teeth; n = 37), grade 1 (mildly EOTRH affected teeth; n = 94), grade 2 (moderately
EOTRH affected teeth; n = 20), and grade 3 (severely EOTRH affected teeth; n = 8). The total
number of incisors for all groups was 159; as 1 incisor was excluded due to tooth fractures.

2.3. Digital Radiograph Processing

Radiographs were digitally processed in two steps including input image filter-
ing (Figure 1D) and output image texture analysis (Figure 1E). For the image filtering,
three filtering algorithms were chosen: Normalize, Median, and Laplacian Sharpening
based on the previously described findings of equine incisor teeth radiographs evalu-
ation [17]. For the image texture analysis, five entropy–based texture measures were
considered: two–dimensional sample entropy (SampEn2D), two–dimensional fuzzy en-
tropy (FuzzEn2D), two–dimensional permutation entropy (PermEn2D), two–dimensional
dispersion entropy (DispEn2D), and two–dimensional distribution entropy (DistEn2D),
based on the previously described applicability in the equine image evaluation [27,28].
Both processing steps were conducted one after the other for the annotated ROIs, so that
for each ROI, fifteen filtering–entropy combinations were returned. Each ROI was con-
sidered separately. Additionally, the currently presented entropy–based texture measures
were compared with the selected, previously reported Gray–Level Co–occurrence Matrix
data [17].

One may observe in Górski et al. [17] that the data from the combination of nine filter-
ing algorithms (Mean, Median, Normalize, Bilateral, Binomial, Curvature Flow, Laplacian
Sharpening, Discrete Gaussian, and Smoothing Recursive Gaussian) and six texture analysis
approaches (First Order Statistics (FOS), Gray–Level Co–occurrence Matrix (GLCM), Neigh-
bouring Gray Tone Difference Matrix (NGTDM), Gray–Level Dependence Matrix (GLDM),
Gray–Level Run Length Matrix (GLRLM), and Gray–Level Size Zone Matrix (GLSZM)
were returned using PyRadiomics—an open–source python package for the extraction of
features from radiographic images [38]—and presented in relation to the radiological signs
of EOTRH syndrome grades. The raw data of six selected GLCM features selected in a
previous study [17] (Cluster Prominence, Contrast, Difference Average, Difference Entropy,
Difference Variance, Inverse Variance) were used in the current study to find similarities
with the current raw data of entropy–based texture measures. For the details of the protocol
of GLCM features extraction, see Górski et al. [17].
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2.3.1. Filtering

Three filtering algorithms were implemented to reduce the noise in the radiographs
using SimpleITK toolkit in Python language [39,40]. The used filtering algorithms differ
depending on the linearity of the filter, type of output image, and result of filtering, as
shown in Table 1.

Table 1. The comparison of details (linearity of the filter, type of output image, and result of filtering)
of three filtering algorithms (Normalize filter, Median filter, and Laplacian Sharpening filter) used in
the study.

Filter Linearity Output Image Result

Normalize
filter [41] Linear filter A rescaled image in which the pixels have

zero mean and unit variance An increase in the contrast of the image

Median
filter [41] Non–linear filter

A recalculated image in which the pixels are
represented by the medians of the pixels in
the neighbourhood of the input pixel

A reduction in the noise

Laplacian
Sharpening
filter [42]

Non–linear filter A produced image in which the pixels are
convoluted with a Laplacian operator

A change of the regions of rapid intensity
and highlights the edges

2.3.2. Extraction of the Entropy–Based Measures

The five entropy–based texture analyses were conducted separately, returning five entropy
measures, using Python, version 3.8.5 64–bit using package EntopyHub [43]. The ex-
tracted entropy measures differed depending, i.e., on the definition, relations between
the values and the irregularity/complexity of the image, and application of measures, as
shown in Table 2. For more details and equations of the entropy measures extraction, see
Domino et al. [28].

2.4. Statistical Analysis

Five entropy measures (SampEn2D, FuzzEn2D, PermEn2D, DispEn2D, DistEn2D) and
six selected GLCM features (Cluster Prominence, Contrast, Difference Average, Difference
Entropy, Difference Variance, Inverse Variance) were presented as a data series, where each
tooth of each horse represented one realization. The entire data set was divided into four
EOTRH grade–related groups, thus, four EOTRH grade–labelled data series were extracted.
The extracted data series were tested independently for univariate distributions using a
Shapiro–Wilk normality test.

EOTRH grade–labelled data series were then compared between EOTRH grades using
the ordinary one–way ANOVA followed by Tukey’s multiple comparisons test for Gaussian
data and the Kruskal–Wallis test, followed by the Dunn’s multiple comparisons test for
non–Gaussian data, and for each entropy measure and GLCM feature independently. The
alpha value was established as α = 0.05. On the respective plot, when a measure value
was found to significantly increase with the EOTRH grades, the red line was additionally
marked. The entropy measures and GLCM features were presented on scatter plots with
bars using mean ± SD and dots representing each realization, where lower case letters
indicate differences between EOTRH grades.

EOTRH grade–labelled data series were then compared between used filtering algo-
rithms using the ordinary one–way ANOVA followed, by Tukey’s multiple comparisons
test for Gaussian data and the Kruskal–Wallis test, followed by the Dunn’s multiple com-
parisons test for non–Gaussian data, and for each entropy measure and GLCM feature
independently. The alpha value was established as α = 0.05. The entropy measures
and GLCM features were presented on scatter plots with bars using mean ± SD and
dots representing each realization, where lower case letters indicate differences between
filtering algorithms.
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Table 2. The comparison of details (definition, relations between the values and the irregularity/complexity of the image, and application of measures) of five
entropy measures (SampEn2D, FuzzEn2D, PermEn2D, DispEn2D, DistEn2D) used in the study.

Entropy Measures Definition Values Application

SampEn2D [29,44]

The negative natural logarithm of the probability of similarity of patterns of
length m with patterns of length m + 1

SampEn2D = − ln
Φm+1

Φm

Low: regular patterns or periodic
structures, as they have the same
number of patterns for both m and m + 1
High: irregular patterns

A measure of the irregularity in the
pixel patterns

FuzzEn2D [30,45]

The negative natural logarithm of the conditional probability

FuzzyEn2D = − ln
Φm+1(r)

Φm(r)

Low: regular patterns or periodic
structures
High: irregular patterns or
non-periodic structures

A measure of the irregularity in pixel
patterns but using a continuous
exponential function to determine the
degree of similarity

PermEn2D [31,46]

The concept of counting permutation patterns π, where the permutation
patterns are obtained after ordering the positions of the initial image patterns

PermEn2D = − 1
(n − dn + 1)(m − dm + 1)

dn!×dm!

∑
π=1

p(π) ln p(π)

Low: regular patterns with the pixels
always appearing in the same order
High: irregular patterns with the highly
disordered image pixels

An identification of irregular structure of
the image

DispEn2D [32,45]

The conception of using the sigmoid function relies on mapped to c classes and
the values of image pixels form zc

i,j = round(c × v(i, j) + 0.5), where v(i, j)

DispEn2D = − 1
(n − dn + 1)(m − dm + 1)

dn!×dm!

∑
π=1

p(πv) ln p(πv)

Low: regular patterns with the low
probability of dispersion patterns
High: irregular image with the high
probability of dispersion patterns

An assessment of the regularity of
images with no indeterminacy of
small–sized images

DistEn2D [33,47]

The amount of similarity between two windows by measuring the distance
between the corresponding windows based on the distance matrix used to
estimate the empirical probability density function (ePDF)

DistEn2D = −
M

∑
t=1

ptlog2(pt)

Low: regular patterns of the small
size images
High: irregular patterns of the small
size images

A quantitative description of the
irregularities of the images, taking into
account the small size of the image

SampEn2D—two–dimensional sample entropy; FuzzEn2D—two–dimensional fuzzy entropy; PermEn2D—two–dimensional permutation entropy; DispEn2D—two–dimensional
dispersion entropy; DistEn2D—two–dimensional distribution entropy.
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Based on the received differences, only for the most EOTRH–related entropy measures
and GLCM features were linear regressions calculated. On regression plots, two regression
equations were displayed, including one selected entropy measure and one for Cluster
Prominence, Contrast, Difference Average, Difference Entropy, Difference Variance, or
Inverse Variance. Equations were supported with the measure of the difference of linearity.
All the slopes were significantly non–zero (p < 0.0001). For non–significant differences be-
tween the slopes (p > 0.05), one slope was calculated and the intercepts were compared. For
non–significant differences between the intercepts (p > 0.05), one intercept was calculated.
When the slope value of the entropy measure was higher than the slope value of the GLCM
features, the plot was additionally marked by dashed frames. GraphPad Prism6 software
(GraphPad Software Inc., San Diego, CA, USA) was used for all statistical analyses.

Based on the received differences, for the most EOTRH–related entropy measures and
GLCM features only, the detection accuracy of EOTRH 0 and EOTRH 3 was calculated
using three thresholds for gradually increasing measures (mean, mean + SD, mean + 2SD).
The radiograph was annotated as EOTRH 0 when the individually measured value was
above the threshold and annotated as EOTRH 3 when below it. The same annotation was
carried out for the both EOTRH grade–related groups. The sensitivity (Se), specificity (Sp),
positive predictive value (PPV), and negative predictive value (NPV) were estimated. The
values of Se, Sp, PPV, and NPV were calculated across the range from 0.1 to 1.0 using
standard formulae [48].

3. Results

Among the 15 returned combinations of entropy measures (n = 5) and filtering algo-
rithms (n = 3), three entropy measures for Normalize filtering output radiographs, four
entropy measures for Median filtering output radiographs, and two entropy measures
for Laplacian Sharpening filtering output radiographs differed significantly between the
EOTRH grades (Figure 2). Although some EOTRH grade–related differences were noted
for SampEn2D (Normalize filtering, p = 0.0009, Figure 2A and Median filtering, p < 0.0001,
Figure 2F), FuzzEn2D (Normalize filtering, p = 0.002, Figure 2B; Median filtering, p < 0.0001,
Figure 2G; and Laplacian Sharpening filtering, p = 0.0014, Figure 2L), and PermEn2D
(Median filtering, p = 0.005, Figure 2H), only DistEn2D significantly increased with the
EOTRH grades. DistEn2D extracted from the Normalize filtering output radiographs was
the lowest in the EOTRH 0 group, higher in the EOTRH 1 and 2 groups, and the highest in
the EOTRH 3 group, with no differences between the EOTRH 1 and 2 groups (p < 0.0001,
Figure 2E). DistEn2D extracted from the Median filtering output radiographs was lower
in the EOTRH 0 group compared to the EOTRH 3 group, with no differences between the
EOTRH 0–2 groups and EOTRH 2–3 groups (p < 0.0001, Figure 2J). DistEn2D extracted from
Laplacian Sharpening filtering output radiographs was lower in the EOTRH 0 group com-
pared to EOTRH 1–3 groups with no differences between EOTRH 1–3 groups (p < 0.0001,
Figure 2O). The significance of this step was to extract entropy–based measurements from
the radiographs of equine incisor teeth, and select those combinations of measures and
filters that changed with the EOTRH grades.

When comparing entropy measures between the filtering algorithms, the same differ-
ences in consecutive EOTRH groups were noted for SampEn2D (p < 0.0001, Figure 3A,F,K,P),
FuzzEn2D (p < 0.0001, Figure 3B,G,L,Q), PermEn2D (p < 0.0001, Figure 3C,H,M,R), and
DistEn2D (p < 0.0001, Figure 3E,J,O,T), respectively, but not for DispEn2D (p > 0.05,
Figure 3D,I,N,S). In each EOTRH group, SampEn2D and FuzzEn2D were always the
lowest after Median filtering, higher after Normalize filtering, and the highest after Lapla-
cian Sharpening filtering. Similarly, in each EOTRH group, PermEn2D was higher after
Median filtering than after Normalize and Laplacian Sharpening filtering, whereas Dis-
tEn2D was higher after Laplacian Sharpening filtering than after Normalize and Median
filtering. This step demonstrates how the use of filtering algorithms affects the values of
the entropy–based measurements received from the consecutive EOTRH groups.
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Figure 2. The comparison of the entropy measures between the EOTRH grades (0–3). The following
entropy measures are considered: SampEn2D—two–dimensional sample entropy (A,F,K),
FuzzEn2D—two–dimensional fuzzy entropy (B,G,L), PermEn2D—two–dimensional per-
mutation entropy (C,H,M), DispEn2D—two–dimensional dispersion entropy (D,I,N),
DistEn2D—two–dimensional distribution entropy (E,J,O). The output radiographs filtered
by Normalize (A–E), Median (F–J), and Laplacian Sharpening (K–O) filtering algorithms are
separated by dashed horizontal lines. Lower case letters (a–c) indicate differences between groups
for p < 0.05 independently for each measure. The significant increase with the EOTRH grades is
marked with a red line. Single realizations are marked with dots.

Among the 18 returned combinations of selected GLCM features (n = 6) and filtering
algorithms (n = 3), all combinations differed significantly between the EOTRH grades
and significantly increased with the EOTRH grades (Figure 4). Although some EOTRH
grade–related increases were found between EOTRH 0 and 1 groups (Difference Variance
after Median filtering, p < 0.0001, Figure 4K), between EOTRH 2 and 3 groups (Cluster
Prominence after Median filtering, p < 0.0001, Figure 4G and Laplacian Sharpening filtering,
p < 0.0001, Figure 4M; Contrast after Laplacian Sharpening filtering, p = 0.010, Figure 4N;
Difference Average after Median filtering, p = 0.004, Figure 4I and Laplacian Sharpening
filtering, p = 0.029, Figure 4O; Difference Entropy after Laplacian Sharpening filtering,
p = 0.006, Figure 4P; Difference Variance after Laplacian Sharpening filtering, p = 0.0009,
Figure 4Q; Inverse Variance after Median filtering, p = 0.018, Figure 4L and Laplacian
Sharpening filtering, p = 0.002, Figure 4R), and EOTRH 1 and 3 groups (Contrast after
Median filtering, p = 0.0009, Figure 4H; Difference Entropy after Median filtering, p = 0.0002,
Figure 4J), all GLCM features significantly increased with the EOTRH grades from EOTRH
0 to 3 after Normalize filtering (p < 0.0001, Figure 4A–F). All examined GLCM features
extracted from Normalize filtering output radiographs were the lowest in the EOTRH 0
group, higher in the EOTRH 1 and 2 groups, and the highest in the EOTRH 3 group, with
no differences between the EOTRH 1 and 2 groups (p < 0.0001, Figure 4A–F). This step
extracted the GLCM features from the radiographs of equine incisor teeth, and selected
those combinations of features and filters that changed with each EOTRH grade.
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Figure 3. The comparison of the entropy measures between the filtering algorithms. The follow-
ing entropy measures are considered: SampEn2D—two–dimensional sample entropy (A,F,K,P),
FuzzEn2D—two–dimensional fuzzy entropy (B,G,L,Q), PermEn2D—two–dimensional per-
mutation entropy (C,H,M,R), DispEn2D—two–dimensional dispersion entropy (D,I,N,S),
DistEn2D—two–dimensional distribution entropy (E,J,O,T). The radiographs classified to EOTRH 0
grade (A–E), EOTRH 1 grade (F–J), EOTRH 2 grade (K–O), and EOTRH 3 grade (P–T) are separated
by dashed horizontal lines. Lower case letters (a–c) indicate differences between groups for p < 0.05
independently for each measure. Single realizations are marked with dots.
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Figure 4. The comparison of the selected Gray–Level Co–occurrence Matrix (GLCM) features between
the EOTRH grades (0–3). The following GLCM features are considered: Cluster Prominence (A,G,M),
Contrast (B,H,N), Difference Average (C,I,O), Difference Entropy (D,J,P), Difference Variance (E,K,Q),
Inverse Variance (F,L,R). The output radiographs filtered by Normalize (A–F), Median (G–L), and
Laplacian Sharpening (M–R) filtering algorithms are separated by dashed horizontal lines. Lower
case letters (a–c) indicate differences between groups for p < 0.05 independently for each feature. The
significant increase with the EOTRH grades is marked with a red line. Single realizations are marked
with dots.



Biomedicines 2022, 10, 2914 11 of 18

When comparing selected GLCM features between the filtering algorithms, the same
differences in consecutive EOTRH groups were noted for Cluster Prominence (p < 0.0001,
Figure 5A,G,M,S), Contrast (p < 0.0001, Figure 5B,H,N,T), Difference Average (p < 0.0001,
Figure 5C,I,O,U), Difference Entropy (p < 0.0001, Figure 5D,J,P,V), Difference Variance
(p < 0.0001, Figure 5E,K,Q,W), and Inverse Variance (p < 0.0001, Figure 5F,L,R,X), respec-
tively. In each EOTRH group, Cluster Prominence, Contrast, Difference Average, Difference
Entropy, and Difference Variance were always the lowest after Normalize filtering, higher
after Median filtering, and highest after Laplacian Sharpening filtering. Similarly, in each
EOTRH group, Inverse Variance was higher after Median and Laplacian Sharpening filter-
ing than after Normalize filtering. This demonstrated the effects that the filtering algorithms
had on the select GLCM features received from the consecutive EOTRH groups.
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Figure 5. The comparison of the selected Gray–Level Co–occurrence Matrix (GLCM) features between
the filtering algorithms. The following GLCM features are considered: Cluster Prominence (A,G,M,S),
Contrast (B,H,N,T), Difference Average (C,I,O,U), Difference Entropy (D,J,P,V), Difference Variance
(E,K,Q,W), Inverse Variance (F,L,R,X). The radiographs classified to EOTRH 0 grade (A–F), EOTRH 1
grade (G–L), EOTRH 2 grade (M–R), and EOTRH 3 grade (S–X) are separated by dashed horizontal
lines. Lower case letters (a–c) indicate differences between groups for p < 0.05 independently for each
measure. Single realizations are marked with dots.

Based on the received differences, the similarities were tested for DistEn2D and all
six GLCM features, of which were only extracted from Normalize filtering output radio-
graphs. The slope of the linear regression equations for DistEn2D compared to the slopes of
GLCM features were not significantly different, and one slope measurement was calculated
only for Difference Entropy (p = 0.578; one slope = 0.033; Figure 6D). The intercept within
this data pair was compared and considered significant (p < 0.0001), thus, one intercept was
not calculated. For all the other compared data pairs, the slopes were significantly different
(p < 0.05; Figure 6A–C,E,F). The slope value of DistEn2D (slope = 0.028) was higher than the
slope value of GLCM features for Cluster Prominence (slope = 0.009; Figure 6A), Contrast
(slope = 0.007; Figure 6B), Difference Average (slope = 0.007; Figure 6C), Difference Entropy
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(slope = 0.006; Figure 6E), and Inverse Variance (slope = 0.007; Figure 6F); but not for Differ-
ence Entropy (slope = 0.034; Figure 6D). Here, similarities between the selected entropy
measures and GLCM features after subsequent selected types of filtering can be observed.
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tropy) and selected Gray–Level Co–occurrence Matrix (GLCM) features (Cluster Prominence (A),
Contrast (B), Difference Average (C), Difference Entropy (D), Difference Variance (E), Inverse Vari-
ance (F)) throughout the EOTRH grades. Measure and features were extracted from the output
radiographs after Normalize filtering. Similarity was tested using linear regressions. A p < 0.05 was
considered significant. If the difference between slopes was not significant, a single slope measure-
ment was calculated. Plot where the slope value of the entropy measure was higher than the slope
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Based on the received differences, the detection accuracy of EOTRH 0 and EOTRH
3 was tested for DistEn2D and all six GLCM features extracted from Normalize filtering
output radiographs (Table 3). For DistEn2D and all six GLCM features, a salient observa-
tion was made, identifying that the Se and NPV decreased with higher threshold values
(mean > mean + SD > mean + 2SD) and the Sp and PPV increased with higher threshold
values (mean > mean + SD > mean + 2SD). For the first threshold (mean), Se ranged from
0.50 for DistEn2D; 0.27 for Difference Entropy; to 0.25 for the remaining five GLCM features.
Additionally, Sp ranged from 0.95 for DistEn2D to 0.99 for all GLCM features. For the
second threshold (mean + SD), Se ranged from 0.13 for DistEn2D; to 0.22 for Difference En-
tropy; through 0.17 for the remaining five GLCM features. Moreover, Sp ranged from 1.00
for DistEn2D; to 0.98 for Difference Entropy; through to 0.99 for the remaining five GLCM
features. For the third threshold (mean + SD), Se ranged from 0.00 for DistEn2D; 0.03 for
Cluster Prominence; to 0.07 for the remaining five GLCM features. Furthermore, Sp ranged
from 0.99 for Cluster Prominence to 1.00 for DistEn2D and the remaining five GLCM fea-
tures. This step allowed for the summarization of the detection accuracy of the radiographic
signs of EOTRH syndrome based on the selected entropy measures and GLCM features.
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Table 3. The accuracy (Se—sensitivity; Sp—specificity; PPV—positive predictive value;
NPV—negative predictive value) of the detection of EOTRH 0 and EOTRH 3 based on the selected
entropy measure (DistEn2D—two–dimensional distribution entropy) and the selected Gray–Level
Co–occurrence Matrix (GLCM) features (ClusterProminence; Contrast; DifferenceAverage; Differ-
enceEntropy; DifferenceVariance; Inverse Variance) extracted from the output images filtered by
Normalize filter. Three thresholds (mean; mean + SD; mean + 2SD) were used.

Measures DistEn2D Cluster
Prominence Contrast Difference

Average
Difference

Entropy
Difference
Variance

Inverse
Variance

Threshold mean
Se 0.50 0.25 0.25 0.25 0.27 0.25 0.25
Sp 0.95 0.99 0.99 0.99 0.99 0.99 0.99

PPV 0.67 0.94 0.94 0.94 0.94 0.94 0.94
NPV 0.90 0.70 0.70 0.70 0.70 0.70 0.70

Threshold mean + SD
Se 0.13 0.17 0.17 0.17 0.22 0.17 0.17
Sp 1.00 0.99 0.99 0.99 0.98 0.99 0.99

PPV 1.00 0.91 0.91 0.91 0.93 0.91 0.91
NPV 0.84 0.68 0.68 0.68 0.58 0.68 0.68

Threshold mean + 2SD
Se 0.00 0.03 0.07 0.07 0.07 0.07 0.07
Sp 1.00 0.99 1.00 1.00 1.00 1.00 1.00

PPV - 0.67 1.00 1.00 1.00 1.00 1.00
NPV 0.82 0.65 0.66 0.66 0.66 0.66 0.66

4. Discussion

The benefit of using imaging processing in the radiological assessment of EOTRH will
come from the enhanced automated detection of early signs of the disease that might be
missed by a mere personal evaluation. As the formation of the computed–aided detector
is a multi–stage process requiring extensive basic research, the current study presents
the second step towards achieving this main goal. In this paper, the novel quantitative
description of incisor tooth radiographs was used to enhance the quality of the radiograph
to make identifying the radiographic signs of EOTRH syndrome easier, and if possible, to
enhance the specific detection of the radiological signs of grade 1, grade 2, and grade 3
EOTRH syndrome.

Recently, filtering algorithms and texture analysis based on the first– and second–
order statistics have been successfully used in the digital processing of the equine maxillary
incisor teeth radiographs [17]. As the recent report was focused only on maxillary, not
maxillary and mandibulary incisor teeth, the current study was focused similarly to provide
the appropriate data sets required for the evaluation of similarities. In the previous study,
the GLCM application—supported by filtering by the Normalize filter—improved edge
delimitation, and was concluded to be the most advisable for the quantification of radio-
graphic signs of EOTRH syndrome [17]. In the current study, the EOTRH grade–related
increase level and accuracy of the EOTRH grade differentiation were compared between
the previous digital processing approach and the new one, showing a higher slope of
the linear regression equations and a higher sensitivity of radiographic sign detection for
entropy–based measures than gray–level matrix–based features. As the same radiographs
were used in both approaches, one may uphold the current hypothesis, that digital radio-
graph processing, including filtering and entropy measures extraction, may be considered
as the enhancement of the quantitative description of incisor teeth radiographs and the
advancement of field dental radiography. The research undertaken meets Zarychta’s [26]
statement that the applicability of entropy measures should be evaluated for various spec-
imens and should highlight advances in the development, testing, and application of
radiograph–processing algorithms to standard veterinary dental radiography.

In the case of EOTRH syndrome, two opposing pathological processes, resorption and
hypercementosis, affect the incisor teeth [5,11]. In both processes, a variable grade of tooth
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resorption and mild–to–severe hypercementosis were radiographically recognized in most pub-
lications devoted to the radiological diagnosis of EOTRH syndrome [5,6,15,49,50]—resorption
shows low radiopaque signs, whereas hypercementosis shows high radiopaque signs on
the background of the high radiodensity tooth structure [16,17]. Both processes may in-
volve the whole tooth structure, although resorption signs mainly appear in the enamel,
cementum, dentine, and pulp cavity [11], whereas hypercementosis is most commonly
found in the apex of the tooth, with bulbous enlargements of cement accumulation [51].
The alternating occurrence of radiological signs of resorption and hypercementosis gives
a mosaic pattern of the tooth structure that is separable visually [5,6,15] and quantifiable
with second–order descriptive statistics [17]. This quantification, based on the Gray–Level
Co–occurrence Matrix evaluation, counts the randomness in the radiograph using the differ-
ences in the intensity value of the respective pixels or their surroundings [17]. Precisely, the
irregularity of pixels in a given window and the likelihood of similarity of these pixels and
the pixels of the next window are the basis of the creation of a matrix where the occurrence
of a given pixel is counted [52,53]. Contrarily, all currently used entropy measures are
calculated directly on the image [24], returning the repeatability of pixel patterns of the
image, which in this application, is related to the texture properties of the radiograph [25].
In a currently considered type of application, the values returned from the radiographs are
directly related to the predictability or uncertainty of the radiograph’s spatial patterns and
are directly related to the radiograph’s irregularity or complexity [29–32]. Therefore, one
may observe that the approaches based on calculating features from the matrix obtained
from the processing step applied to the image, such as GLCM, represent the disorder of
the intermediate matrix rather than the irregularity of the image [54], whereas, in the case
of the EOTRH radiological signs, measures of irregularity and complexity [29–32] rather
than features of disorder [52] of radiograph texture may be extracted as more relevant
and insightful. This hypothesis is supported by the current results, which indicate that
measures of irregularity and complexity, such as DispEn2D, are more accurate in the differ-
entiation of the EOTRH radiological signs than the features of the disorder, such as Cluster
Prominence, Contrast, Difference Average, Difference Entropy, Difference Variance, and
Inverse Variance. It should be highlighted that DispEn2D, rather than GLCM features,
may be considered in further automated detection developments, which ultimately aim to
improve EOTRH detection.

In the current study, the ROIs annotated on the incisor teeth pass the criterion of
being a small size image, thus, one may suspect DispEn2D and DistEn2D rather than
SampEn2D, FuzzEn2D, and PermEn2D to be effective in this type of application, especially
considering that both DispEn2D and DistEn2D have been shown to be the most suitable for
the entropy–based texture analysis of small ROIs which were extracted from thermographs
in the equine applications of pregnancy [27] and back load [28] detection. Interestingly, in
the current study, only DistEn2D, not DispEn2D, demonstrated the most favourable EOTRH
grade–related differences. DistEn2D extracted from Normalize filtering output radiographs
was the lowest in the EOTRH 0 group, higher in the EOTRH 1 and 2 groups, and the
highest in the EOTRH 3 group. One may observe that the concept of counting the amount
of similarity between two windows by measuring the distance between the corresponding
windows, used in DistEn2D [33,47], is more suitable for the texture analysis of small regions
of the radiographs of equine incisor teeth than the concept of using the sigmoid function, as
used in DispEn2D [32,45]. The DistEn2D algorithm is invariant to rotation [33,44], whereas
the DispEn2D algorithm is the least sensitive to rotation, translation, and image size, out of
the five currently studied measures of entropy [45]. Thus, it appears that the concept of
a measure, and not the rotation, is essential to the usefulness of the DistEn2D algorithm
in this application. These findings justified the choice to use the DispEn2D for further
automated detection development.

One may note that the DistEn2D value was lower after Normalize and Median filtering
than after Laplacian Sharpening filtering, and the DispEn2D algorithm was the least
sensitive to filtering out of the five currently studied measures of entropy [29–32]. This
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can be considered a benefit over the GLCM approach. All GLCM features considered in
the current study differed between EOTRH grades 0–3 after filtering by the Normalize
filter but not after Median and Laplacian Sharpening filtration. The Laplacian Sharpening
filter returns the output radiographs with a sharper quality than the input radiograph [55],
and has been considered more suitable for the first–order than the second–order statistic
extracted from equine radiographs [17]. The Normalize filter increases the contrast of the
radiographs [56], which seems to be more favourable for the GLCM approaches than other
filtering algorithms [17]. As the GLCM approach returns the spatial distribution of the pixel
disorder [57], the output radiograph, after filtering by the contrast–improved algorithm,
demonstrates a greater grade of differentiation [58,59]. Contrarily, as the DispEn2D measure
returns a quantitative description of the irregularities of the images [33], both the contrast
improvement by Normalize filter and the noise reduction by Median [48] may provide a
good grade of differentiation for EOTRH radiological signs. One may also observe that for
the Normalize filtering output radiograph, the slope value of DistEn2D was higher than
the slope value of five from six compared GLCM features. These differences in the slopes
of the regression curves indicate a greater increase in the value of the entropy measure than
GLCM features with regard to the severity of the radiological signs of EOTRH, and suggest
a greater usefulness of DistEn2D than GLCM, which was confirmed by the detection
accuracy of EOTRH 0 and EOTRH 3. These findings justified the choice of the Normalize
and Median filtering for the further automated detection development.

Finally, one may discern that the proposed method of digital processing of radiographs
allows to detect the radiological signs of all grades of EOTRH syndrome, although it does
not adequately support the differentiation between EOTRH 0 and 1, EOTRH 1 and 2, as
well as EOTRH 2 and 3. Although the DistEn2D–based differentiation between EOTRH
0 and 3 was more accurate than GLCM–based differentiation, further studies on a bigger
data set are required to verify the applicability of the proposed algorithms. Within the
benefit of using imaging processing in the radiological assessment of EOTRH in horses, the
enhancement of the quality of the radiograph to facilitate the identification of identifying
the radiographic signs of EOTRH syndrome should be highlighted.

5. Conclusions

From the entropy measures recently applied in the equine image analysis, only Dis-
tEn2D showed the EOTRH grade–related differences which could be introduced to the
advanced veterinary diagnostic procedure for incisor teeth disorders. These observed
differences were the least susceptible to the use of radiograph filtering algorithms, return-
ing the same values after Normalize and Median filtering. As the EOTRH grade–related
differences were the most favourable for DistEn2D extraction from the Normalize filtering
output radiographs, this combination of digital radiograph processing may be carefully
advised in equine incisor teeth radiography. Interestingly, the considered GLCM features
demonstrated a higher susceptibility for filtering than the entropy measures, showing, sim-
ilar to DistEn2D, the most favourable differences after Normalize filtering. Moreover, both
the evidence of similarity and the highest EOTRH grade–related increase level were noted
for DistEn2D and Difference Entropy after Normalize filtering. As these two measures also
demonstrated the highest accuracy of the EOTRH grade differentiation, one may suggest
that they could be introduced as advancements into the field equine dentistry.
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