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Abstract: This study analyzed genetic risk assessments in patients undergoing bariatric surgery
to serve as a predictive factor for weight loss parameters 1 year after the operation. Thirty (30)
patients were assessed for Genetic Addiction Risk Severity (GARS), which analyzes neurogenetic
polymorphisms involved in addiction and reward deficiency. Genetic and psychosocial data collected
before the operation were correlated with weight loss data, including changes in weight, body mass
index (BMI), and percent of expected weight loss (%EWL). Results examined correlations between
individual gene risk alleles, 1-year body weight data, and psychosocial trait scores. Spearman’s
correlations revealed that the OPRM1 (rs1799971) gene polymorphism had significant negative
correlation with 1-year weight (rs = −0.4477, p < 0.01) and BMI (rs = −0.4477, p < 0.05). In addition,
the DRD2 risk allele (rs1800497) was correlated negatively with BMI at 1 year (rs = −0.4927, p < 0.05),
indicating that one risk allele copy was associated with lower BMI. However, this allele was positively
correlated with both ∆Weight (rs = 0.4077, p < 0.05) and %EWL (rs = 0.5521, p < 0.05) at 1 year post-
surgery. Moreover, the overall GARS score was correlated with %EWL (rs = 0.4236, p < 0.05), ∆Weight
(rs = 0.3971, p < 0.05) and ∆BMI (rs = 0.3778, p < 0.05). Lastly, Food Cravings Questionnaire (FCQ)
scores were negatively correlated with %EWL (rs = −0.4320, p < 0.05) and ∆Weight at 1 year post-
surgery (rs =−0.4294, p < 0.05). This suggests that individuals with a higher genetic addiction risk are
more responsive to weight loss treatment, especially in the case of the DRD2 polymorphism. These
results should translate clinically to improve positivity and attitude related to weight management
by those individuals born with the risk alleles (rs1800497; rs1799971).

Keywords: bariatric surgery; obesity; addiction; genetics; psychosocial; DRD2 gene; GARS;
Reward-Deficiency Syndrome; dopamine homeostasis; behavioral addiction
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1. Introduction

Among adults worldwide, obesity is a steadily growing problem [1–11]. In 2008, this
global health issue impacted approximately 1.5 billion adults [12]. By 2016, this number
climbed to 1.9 billion adults worldwide [13]. By the year 2030, 1.35 billion individuals are
projected to be overweight, and obese adult numbers are projected to reach 573 million
individuals [14]. If this issue remains neglected, these numbers are projected to reach
2.16 billion overweight individuals and 1.12 billion obese individuals by 2030 [14].

There is evidence to support that obesity and eating disorders are related to psychiatric
comorbidities [15–24]. Among Brazilian obese patients, binge eating disorders were found
to correlate with depression and suicidal thoughts [25]. Additionally, patients seeking
bariatric weight loss surgery often suffer from various affective and psychological disorders
including anxiety, depression, and body image dissatisfaction [26].

One challenge in weight management science is that most treatments for obesity are
considered unsustainable over time [27,28]. Bariatric surgery is considered an optimal
weight loss method for individuals unable to achieve efficient results from typical, non-
surgical weight loss interventions [29]. The two common types of bariatric surgeries
include gastric sleeve and bypass surgery (or laparoscopic sleeve gastrectomy and Roux-
en-Y gastric bypass, respectively). One clinical study found that after 7 years, gastric sleeve
surgery resulted in a 47% weight loss, gastric bypass surgery resulted in a 55% weight loss,
and both surgeries resulted in an improved quality of life [30].

However, this procedure can pose post-operative behavioral risks such as increased
rates of alcohol abuse [31–33]. In fact, many substance and non-substance behavioral
addictions (such as gambling disorders) tend to increase after obesity operations [34].
Interestingly, common genetic liability to alcohol consumption problems (ACP) and sui-
cide attempts (SA) were significantly correlated with all impulsive personality traits
(rs= 0.2–0.53, p < 0.002), and the largest correlation was with lack of premeditation, though
supplementary analyses suggested that these findings were potentially more influenced
by ACP than SA [35,36]. It is noteworthy that in a genome-wide association study among
veterans with a history of attempted suicide, a strong pan-ancestry signal at the dopamine
receptor D2 locus (p = 1.77 × 10−7) was identified and subsequently replicated in a large,
independent international civilian cohort (p = 7.97 × 10−4)7 [37].

Identifying individuals who may be at risk for behavioral addictions can influence and
personalize post-surgical intervention methods for those with obesity. This can potentially
maximize benefits and likelihood of surgical success. Assessments for at-risk patients can
occur in a couple of different fashions. First, psychological assessments can be utilized to
discern which patients might be struggling with body image issues and affective disorders,
thus influencing the course of pre-surgical preparations and post-operative behavioral
follow-ups [26,29,38,39].

In addition to psychological screenings, an individual’s genetic makeup can be ob-
served [40–43] to highlight a propensity towards behavioral addictions [44], giving clin-
icians further opportunities to tailor interventions and maximize the likelihood of the
operation’s success. Genetic addiction risk has been previously described to identify ge-
netic polymorphisms (alleles) known to play a role in addiction, compulsive behaviors
(such as overeating) [45,46], vulnerability to pain [47], and behavioral/conduct disor-
ders [48]. A partial summary of these genes and their polymorphisms, locations, and risk
alleles are shown in Table 1. Briefly, these genes are known to play a role in mesolimbic
neurotransmission: modulating neurotransmitter systems such as GABA receptors, sero-
tonin transporters, mu-opioid receptors, multiple neurotransmitter enzymes, and, most
importantly, receptors and transporters in dopaminergic neurotransmission [49]. Together,
alterations in their neurogenetic markers establish a framework for epigenetic behavioral
expressions known as Reward Deficiency Syndrome (RDS) [50]. The candidate genes
relating to RDS have been thoroughly investigated in hundreds of studies. A meta-analysis
of 74,566 case-controlled subjects showed a significant risk of alcohol-use disorder in the
presence of DRD2, DRD3, DRD4, DAT1, COMT, OPRM1, and 5HTT polymorphisms [51].
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Table 1. GARS panel. Table adopted from Blum et al., 2020 [52].

Gene Polymorphism Location Risk Allele(s)

Dopamine D1 Receptor DRD1 rs4532 SNP Chr5 A

Dopamine D2 Receptor DRD2 rs1800497 SNP Chr11 A

Dopamine D3 Receptor DRD3 rs6280 SNP Chr3 C

Dopamine D4 Receptor DRD4 rs1800955 SNP Chr11 C
48 bases Repeat VNTR Chr11, Exon 3 7R, 8R, 9R, 10R, 11R

Catechol-O-Methyltransferase
COMT rs4680 SNP Chr22 G

Mu-Opioid Receptor OPRM1 rs1799971 SNP Chr6 G

Dopamine Active Transporter
DAT 1 40 bases Repeat VNTR Chr5, Exon 15 3R, 4R, 5R, 6R, 7R, 8R

Monoamine Oxidase A MAOA 30 bases Repeat VNTR Chr X, Promoter 3.5R, 4R

Serotonin Transporter SLC6A4
(5HTTLPR)

43 bases Repeat
INDEL/VNTR plus rs25531

SNP
Chr 17 LG, S

GABA(A) Receptor, Alpha-3
GABRB3 CA-Repeat DNR Chr 15 (downstream) 181

We presently examined the role of specific psychosocial and genetic factors and their
association with weight data outcomes in patients undergoing bariatric surgery. The
objective of the present study was to examine this pre-operative data and identify its
predictive ability in the trajectory of post-operative outcomes. Genetic and psychosocial
data were correlated with post-operative body weight data 1 year after surgery.

2. Materials and Methods
2.1. Subjects

Initially, 70 bariatric surgery candidates were consulted at Kaleida Health Bariatric
Center in Buffalo, NY. Of these, 34 subjects provided initial informed consent.

Among these participants, the mean age was 47 (SD = 12.33). A total of 10.3% of
these participants were males and 89.7% were females. The mean height of these par-
ticipants was 165 cm (SD = 7.38) and the mean pre-operative bodyweight was 118 kg
(SD = 20.76). The mean BMI was 43 (SD = 6.02). Of the individuals that reported race
(n = 27), 85.19% were white, 11.11% were black or African, and 3.7% were Hispanic. Pre-
operative bloodwork of these participants included the following measures: glucose mean
102.62 mg/dL, SD = 31.28. Triglyceride mean = 144.04 mg/dL SD = 82.45 and cholesterol
mean = 193.2 mg/dL, SD = 38.33.

Exclusion criteria included pregnant women, prisoners, and those with significant cog-
nitive or neurological impairments. Data were collected on medical history, comorbidities
and other conditions treated, and weight history. More than half of the sample reported a
childhood history of obesity. A total of 48% of subjects reported alcohol use (M ≤ 1 drinks
per week). Cigarette use was reported in 1 patient. A total of 42% of patients reported
orthopedic pain. A total of 39% of patients had depression. A total of 81% of patients
experienced sleep apnea. Data were collected at 1-year post-surgery follow-up visits for
30 subjects. Lack of follow ups due to the COVID-19 pandemic resulted in a smaller than
anticipated sample size.

2.2. Surgery

All patients received either laparoscopic sleeve gastrectomy or Roux-en-Y gastric
bypass surgery. A total of 23 individuals received laparoscopic sleeve gastrectomy, and
7 individuals received Roux-en-Y gastric bypass.
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2.3. Data Collection

Parameters relating to health pre- and post-surgery (1 year) were collected from
electronic health records (2021–2022). Change in weight and BMI from 1 year after surgery
were calculated.

2.4. Psychosocial Questionnaires

Patients were given surveys in both paper in digital formats. The surveys can be
seen in Table 2. These validated scales were used to evaluate psychosocial data related
to obesity and eating habits. These reports included: nutrition (Eating Attitudes Test-
26 (EAT-26) [53]; Food Cravings Questionnaire—Trait Reduced (FCQ-TR) [54]; Eating
Expectancies Inventory (EEI) [55]; food addiction (modified Yale Food Addiction Scale
2.0 (mYFAS 2.0) [56]; binge-eating disorder symptoms (Weight-Influenced Self-Esteem
Questionnaire (WISE-Q) [57]; depression and anxiety (Difficulties in Emotion Regulation
Scale) (DERS) [58]; Center for Epidemiologic Studies Depression Scale (CESDS) [59], and
chronic stress and life quality (Chronic Stress Index (CSI) [60]; sleep (Pittsburgh Sleep
Quality Index (PSQI) [61]. This methodology was utilized as previously described [62].

Table 2. Summary of previous and present findings: Genetic and psychosocial correlates of body-
weight data after Bariatric Surgery at 6 months and 1 year post-operation. Data from 6 months
post-operation were previously reported [62].

6 Months 12 Months

∆BMI and a mean % excess weight
loss (56 ± 13.8%)

% EWL (p < 0.05),
∆Weight (p < 0.05), and ∆BMI
(p < 0.05).

GARS scores above 7
76% of subjects
GARS significantly correlated
(increases) with ∆ weight and ∆ BMI

76% of subjects
correlated with ∆ weight and ∆ BMI.

GARS scores significantly correlated (increases)
with ∆ weight and ∆ BMI

The DRD2 risk allele

Positively correlated (increases) with ∆Weight
(p < 0.05), and positively correlated (increases)
with % Expected Weight Loss (EWL)
(p < 0.05)-negatively correlated (decreases) with
BMI at 1 year (p < 0.05).
-one copy of the risk allele was associated with
lower BMI.

The COMT risk allele
negative correlation (decreases) with
EEI scores p < 0.05) and PSQI scores
(p < 0.05)

GABRB3 risk allele
correlated positively (increases) with
EEI
(p < 0.01) and FCQ scores p < 0.01)

OPRM1 risk allele positive correlation (increases) with
the DERS score (p < 0.05)

Spearman’s correlations showed a significant
negative correlation (decreases) with 1-year
weight (p < 0.01) and BMI (p < 0.05)

The DRD2 risk allele

-negatively correlated (decreases) with BMI at
1 year (p < 0.05).
-one copy of the risk allele was associated with
lower BMI.
-positively correlated (increases) with ∆Weight
(p < 0.05), and positively correlated (increases)
with % EWL (p < 0.05)
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Table 2. Cont.

6 Months 12 Months

Food Cravings Questionnaire (FCQ)
scores

negatively correlated (decreases) with %EWL
(p < 0.05) and ∆Weight (p < 0.05).

CONCLUSIONS
These data support the potential
benefit of a personalized medicine
approach, including
genetic testing and psychosocial trait
questionnaires when counseling
patients with
obesity considering bariatric surgery.

CONCLUSIONS
Based on previous work, carriers of the DRD2
risk allele (rs1800497) are significantly more
compliant with pharmacological treatment, and
spearmen correlations had the highest
compliance
to behavioral therapeutics, thus lower BMI
compared to non-carriers.

2.5. Genetic Addiction Risk Severity (GARS)

The GARS assay (Geneus Health, San Antonio, TX, USA) is a genetic test used to
evaluate eleven gene polymorphisms known to be involved in motivation and reward. This
test is commonly used to predict RDS, a propensity for addictive behaviors (such as eating
disorders), and a tendency towards substance abuse. Prior to surgery, cheek swab samples
were collected from subjects and processed according to previously published protocol [63].
PCR amplification was used to isolate DNA, which was then analyzed for polymorphisms
in genes: DRD1, OPRM1, DRD2, DRD3, DRD4, COMT, DAT1, DRD4-R, GABRB3, HTTLPR,
and MAOA [45,49]. Geneus Health in San Antonio, Texas provided analysis and results.
Individual risk scores were calculated as previously described [47,49,64,65].

2.6. Statistical Analysis

Data were assessed and visualized using GraphPad Prism software 8.1.2 (Dotmatics,
San Diego, CA, USA). Spearman’s rank correlations were analyzed for ∆BMI and ∆Weight
1 year after surgery date. GARS risk alleles were correlated with ∆BMI, ∆Weight, and psy-
chosocial scores. Tukey’s HSD test, Sidak’s test was performed post hoc (when applicable)
for significant ANOVA outcomes.

2.7. Ethics

This study was approved by and complied with the Institutional Review Board of the
University at Buffalo (#IRB00003126). All subjects were fully informed about the nature of
the study, and all provided informed consent.

3. Results
3.1. Baseline Demographic Characteristics

Participants (n = 30) were recruited from the Bariatric Program at Kaleida Health,
which is designated as a Comprehensive Center under the Metabolic and Bariatric Surgery
Accreditation and Quality Improvement Program. This study was approved by the IRB at
the University at Buffalo. Participants were predominantly female and Caucasian, with
>50% reporting a childhood history of overweight/obesity. Of these subjects, 74% under-
went vertical sleeve gastrectomy. The COVID-19 epidemic prevented us from obtaining
psychosocial questionnaires and follow-up data in 10 participants.

3.2. Psychosocial and GARS Data

A majority of subjects disclosed symptoms of depression, issues in sleep quality, and
food addiction and cravings. These reports are in agreement with previous psychosocial
studies on obesity [56,59,61,66]. The Yale Food Addiction Scale (mYFAS) results were lower
than anticipated [67,68]. The summarized psychosocial scores (previously reported) [62]
can be seen in Table 3.
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Table 3. Psychosocial Questionnaire Results as previously reported by Thanos et al., 2023 [62].

Eating Attitudes Test-26 Total: 14.9 (8.1)

Food Cravings Questionnaire—Trait Reduced (FCQ-T)

- Domain Control: 2.3 (1.17)
- Thoughts: 2.1 (1.23)
- Plans: 2.5 (1.57)
- Emotions: 2.4 (1.33)
- Cues: 2.7 (1.54)

Eating Expectancies Inventory

- Manage Negative Affect: 2.91 (2.02)
- Pleasurable and Useful as a Reward: 3.62 (2.23)
- Feeling Out of Control: 3.12 (2.11)
- Enhances Cognitive Competence: 2.69 (1.82)
- Alleviates Boredom: 3.35 (2.23)

Modified Yale Food Addiction Scale 2.0

Mean Symptom Count (SD):
1.32 (1.23)
No Food Addiction (%): 61
Mild (%): 31
Moderate (%): 4
Severe (%): 4

Weight-Influenced Self Esteem Questionnaire M (SD): 1.6 (1.3)

Difficulties in Emotion Regulation Scale—Short Form

Total Mean (SD): 33.81 (10.96)

- Total w/o Awareness: 27.5 (10.52)
- Awareness: 6.35 (2.46)
- Clarity: 4.61 (1.80)
- Goals: 7.58 (3.88)
- Impulse: 4.23 (2.3)
- Non-acceptance: 5.65 (2.67)
- Strategies: 5.38 (2.89)

Center for Epidemiological Studies Depression Scale

Total Score (Mean, range): 12.7, 0–35
No Depression (%): 69
Mild Depression (%): 8
Probable Depression (%): 23

Chronic Stress Index Perceived Everyday Unfair Treatment (Mean Score): 1.8
Major Negative Life Events in Past Year: 1.13

Quality of Life Enjoyment and Satisfaction Questionnaire M (SD): 3.24 (0.89)

Pittsburgh Sleep Quality Index M (SD): 8.0 (3.74)

Summary of scored outcomes from self-report psychosocial questionnaires completed by patients prior to surgery
(n = 26). Mean score totals and subscale scores for each inventory.

GARS results were categorized as homozygote (two copies of the risk allele), heterozy-
gote (one copy of the risk allele), or low risk (no copies of the risk allele). Homozygote
alleles were most present in the MAO and DRD1 genes. No subjects were homozygous
for risk alleles in genes OPRMI, DRD4 (rs761010487), and DAT1f. A GARS score above
or equal to 7 indicates a high risk for addiction and RDS. In total, 76% of subjects were
categorized as high-risk. Previous studies have shown that a high GARS score is correlated
with an increased risk for alcohol abuse [45,51,69–71].

3.3. Risk Allele Correlates

Spearman’s correlations revealed that the OPRM1 showed a significant negative
correlation with 1-year weight (rs = −0.4477, p < 0.01, 95% CI: −0.7052, −0.08583) and BMI
(rs = −0.4477, p < 0.05, 95% CI: −0.7052, −0.08590). DRD2 was negatively correlated with
BMI at 1 year (rs = −0.4927, p < 0.05, 95% CI: −0.7331, −0.01429), positively correlated
with ∆Weight (rs = 0.4077, p < 0.05., 95% CI: 0.03711, 0.6797), and positively correlated with
%EWL (rs = 0.5521, p < 0.05, 95% CI: 0.2219, 0.7687) at 1 year post-surgery. The results of
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these correlations with SNPs are shown in Figure 1. The overall GARS score was correlated
with %EWL (rs = 0.4236, p < 0.05, 95% CI: 0.05629, 0.6899), ∆Weight (rs = 0.3971, p < 0.05,
95% CI: 0.02445, 0.6729), and ∆BMI (rs = 0.3778, p < 0.05, 95% CI: 0.001782, 0.6603) (Figure 2).
Lastly, FCQ scores were negatively correlated with %EWL (rs = −0.4320, p < 0.05, 95%
CI: −0.7176, −0.022) and ∆Weight at 1-year post surgery (rs = −0.4294, p < 0.05, 95% CI:
−0.7160, −0.01879) (Figure 3).
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Figure 1. Scatterplots visualizing correlations between SNPs and body weight data. (A) Positive
correlations between single DRD2 SNPs and 1 yr ∆Weight (rs = 0.4077, p < 0.05). (B) Negative
correlations between single DRD2 SNPs and 1 yr BMI (rs = −0.4927, p < 0.05). (C) Positive correlation
between DRD2 SNPs and %EWL (rs = 0.5521, p < 0.05). (D) Negative correlation between OPRM1
SNP and 1 yr BMI (rs = −0.4477, p < 0.05).
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A one-way ANOVA was performed to compare means of weight, BMI, ∆Weight, and
∆BMI between the different SNP expression values (0, 1, or 2). The Tukey HSD post hoc test
was performed where relevant. There is a significant difference in 1 year BMI (p = 0.010),
∆BMI (p = 0.041), and ∆Weight (p = 0.018) between 0 and 1 DRD2 risk allele copy. There
is a significant difference in 1-year BMI (p = 0.021) and 1-year weight (p = 0.016) between
0 and 1 copy of the OPRM1 risk allele. (Subjects with two copies of the DRD2 risk allele
and the OPRM1 risk allele were not represented in the sample.) There is also a significant
difference in ∆BMI (p = 0.017) among the different SNP expression values of the MAOA
risk allele. Tukey HSD post hoc tests indicate that there is a significant difference (p = 0.017)
in ∆BMI between 0 and 1 copy of the MAOA risk allele, but not between 0 and 2 copies or 1
and 2 copies. These results are visualized in Figure 4.

A post hoc power analysis was conducted using G*Power 3.1 [72] to test the correlation
using a two-tailed test, an alpha of 0.05, a moderate effect size (r = 0.40), and a sample size
of n = 29. Results showed that the achieved power was 0.59.
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Figure 4. ANOVA results detailing the significant differences in means of (A) 1-year BMI between
subjects with 0 and 1 copy of the DRD2 gene (p = 0.010); (B) ∆BMI between subjects with 0 and
1 copy of the DRD2 gene (p = 0.041); (C) ∆Weight between subjects with 0 and 1 copy of the DRD2
gene (p = 0.018); (D) ∆BMI between subjects with 0 and 1 copies of the MAOA gene (p = 0.017). Note:
difference in mean insignificant between 0–2, 1–2 copies of the MAOA gene. (E) 1-year BMI between
subjects with 0 and 1 copy of the OPRM1 gene (p = 0.021). (F) 1-year weight between subjects with 0
and 1 copy of the OPRM1 gene (p = 0.016).

4. Discussion

These results reflect a beneficial response to weight loss surgery in individuals with
indicators of high genetic addiction risk. Those with higher GARS scores show greater
changes in weight, %EWL, and change in BMI 1 year after bariatric surgery. Our ANOVA
results indicated a significant difference in mean weight change between individuals with
0 and 1 copy of the MAOA gene, with 1 copy resulting in lower average weight change.
The ANOVA and Spearman’s correlations revealed a significant improvement in weight
parameters in patients with 1 copy of the OPRM1 and the DRD2 gene.

The DRD2 gene, located on chromosome 11q23, is the most widely studied gene in
neuropsychiatry [73–93]. The A1 risk allele is associated with various substance and non-
substance addictions [70,94,95]. Carriers of this risk allele show a decreased availability
of dopamine D2 receptors [96,97], which can result in D2 receptor super-sensitivity [98],
increasing severity of alcoholism [99,100], obesity [28], and addiction relapse [98].

A1 allelic presence is related to many facets of obesity [7,43,51,55,56]. DRD2 variants
were associated with BMI in individuals seeking weight loss treatment [74]. Parental
obesity, postpubescent onset, and a preference for carbohydrates have all been linked to
the A1 obese phenotype [99]. The A1 allelic presence was found in 45.2% of 73 nonalcohol-
and nondrug-abusing obese subjects. This presence was observed in 51.5 subjects with a
history of parental obesity. Carbohydrate preferers displayed 64.3% of this allelic presence.
Even fat distribution was found to have a hereditary component [101,102].
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We believe that the results of this clinical study are likely the result of D2 modulation.
At first glance, it may seem contradictory that individuals with a genetic susceptibility
to addictive eating and obesity would have such a positive response to bariatric surgery.
However, compliance to addiction treatment has been observed in alcoholics with the
A1 polymorphism [103]. Bromocriptine treatment (dopamine agonist therapy) proved
to produce the most significant attenuations in craving and anxiety amongst A1 carrier
alcoholics [103]. This genotype was associated with reductions in body weight, fat mass,
and BMI after among subjects who underwent resistance training and calorie restriction
for weight loss. In addition, DRD2 polymorphisms are correlates of longitudinal obesity
mitigation in Chinese children and adolescents [104]. Moreover, carriers of the DRD2 A1
allele with diminished D2 receptor availability show a positive association between caudate
response and change in weight [95].

We speculate that the surgical intervention directly modulated the dopaminergic
reward system. It is known that D2 availability can decrease with overstimulation from
overeating [105–107] and D2 striatal receptor availability is significantly decreased in cases
of severe obesity [28]. These results suggest that surgery bypassed D2 super sensitivity and
decreased the wanting mechanism in these obese patients.

There is in fact some evidence pointing to an upregulation/normalization of D2
receptors after bariatric surgery [28,108–111]. In a preclinical autoradiography study, rats
on a chronic high-fat diet became obese and showed decreased D1 and D2 receptors in
the nucleus accumbens and striatum. Rats who were given a high-fat diet and Roux-en-Y
gastric bypass surgery showed no difference in DA receptor levels when compared to
restricted diet rats, suggesting that striatal and nucleus accumbens dopamine systems can
be normalized after bariatric surgery [110].

This phenomenon is observable in clinical studies as well. Striatal D2 and D3 availabil-
ity was assessed in morbidly obese women after Roux-en-Y gastric bypass surgery [109].
At first, striatal availability of these receptors decreased at baseline and remained after 6
weeks. After 2 years, however, the availabilities of these receptors increased and improved
body weight data were observed [109]. Additionally, among five female subjects undergo-
ing this same bariatric procedure, significant weight loss was observed and D2 receptor
availabilities increased in the anterior and posterior putamen and caudate nucleus, and in
the ventral striatum [108].

The Mu-Opioid Receptor is known to modulate reward processing, motivation, and he-
donic behaviors [112]. This gene is commonly assessed to help determine genetic addiction
risk. However, its role in eating disorders and obesity has only been slightly investigated.
One study assessing ORM1 polymorphism, rs2281617 (different from presently observed
polymorphism) linked genetic data with feeding behavior, adiposity, and amygdala vol-
ume in 598 adolescents [113]. BOLD fMRI results showed that this polymorphism was
associated with higher amygdala volume, which correlated negatively with fat intake. It
is believed that the OPRM1 gene and variations of amygdalar volumes modulate dietary
intake of fat [113].

Though there are fewer studies relating the OPRM1 gene to obesity, Positron Emission
Tomography (PET) studies using the receptor agonist radiotracer 11C-carfentanil have
specified the role of this receptor in obesity and eating behaviors. Multiple studies have
found that OPRM1 availability is negatively related to obesity and food addiction [114–117].
First, there is evidence to suggest that familial obesity is related to decreased availability
of the OPRM1 [115]. OPRM1 availability has also been associated with eating habits as
indicated by the Dutch Eating Behavior Questionnaire [115]. This study revealed decreased
OPRM1 availability correlated with an increase in external eating. Subjects with decreased
receptor availability showed an increased likelihood of responding to palatable food cues
by eating [115].

Karlsson et al. observed the dynamics of obesity and the OPRM1 gene. In this study,
13 morbidly obese women underwent [(11)C]carfentanil PET scans. When compared to
controls, decreased availability of OPRM1 was observed in the ventral striatum, insula, and
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thalamus. BMI was associated negatively with OPRM1 availability [117]. Brain responses
to palatable foods occur in non-obese individuals as well. A BOLD fMRI study detected
activation in the amygdala, ventral striatum, and hypothalamus after subjects were shown
palatable food cues. OPRM1 availability was negatively associated with this fMRI reward
response [112].

The MAOA gene encodes for enzymes responsible for breaking down monoamine
neurotransmitters, including serotonin and dopamine [118,119]. Variations of this gene play
a role in psychiatric disorders including substance use disorders and conduct/antisocial
personality disorders [118,120]. Variations in this gene are associated with disease comor-
bidities because of the enzyme’s direct actions on dopamine levels [121].

The evidence linking this gene prompts further investigation. One study investigating
MAOA and COMT genotypes in obese subjects compared to controls found no significant
relation between the MAOA genotype and obesity [122]. Another study assessing the same
gene and similar repeat sequences of interest to our own (3.5R, 4R). The results of this study
reflected a strong significance of the MAOA genotype on body weight and BMI [119]. In a
group of young Portuguese adults, body fat and the MAOA 3R genotype were correlated
in men only [52]. The significant difference in mean change of BMI after 1 year of bariatric
surgery was only observed between individuals having 0 or 1 copy of the risk alleles, with
1 copy having the less favorable outcome lower average changes in BMI. Mean differences
between 0 and 2 or 1 and 2 copies were found to be insignificant. This may be related to
subtle changes in DA levels among this genotype.

5. Limitations

A small sample size due to lack of follow ups during COVID-19 pandemic can be
considered a limitation of this study. Genetic and psychosocial data are cofactors of post-
surgical results, while epigenetics and other variables were not the focus of this study.

6. Conclusions

This novel comparison between genetic and psychosocial factors predicted outcomes
following bariatric surgery. These results suggest that individuals with specific genetic
alleles and psychosocial scores are significantly correlated with weight loss and outcomes
following bariatric surgery. Specifically, patients carrying the DRD2 A1 allele (rs1800497)
and the mu-opioid allele (1799971) significantly correlated with greater weight loss follow-
ing bariatric surgery. Understanding these results should clinically translate to the patient
providing additional positivity and as such augmented attitude based on genetic and
psychosocial information. This report is the second part of a longitudinal study observing
the genetic and psychosocial effects on bariatric surgery outcomes [62]. A summary of
the present findings along with previous data can be seen in Table 2. Future studies will
track these same data at longer time intervals after bariatric surgery. Notes of recidivism,
including for substance and non-substance addictive behaviors, will be closely monitored
as well. These subjects will continue to be monitored for long-term outcomes beyond the
present study.
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