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Abstract: In craniofacial research and routine dental clinical procedures, multifunctional materials
with antimicrobial properties are in constant demand. Ionic liquids (ILs) are one such multifunctional
intelligent material. Over the last three decades, ILs have been explored for different biomedical
applications due to their unique physical and chemical properties, high task specificity, and sus-
tainability. Their stable physical and chemical characteristics and extremely low vapor pressure
make them suitable for various applications. Their unique properties, such as density, viscosity, and
hydrophilicity/hydrophobicity, may provide higher performance as a potential dental material. ILs
have functionalities for optimizing dental implants, infiltrate materials, oral hygiene maintenance
products, and restorative materials. They also serve as sensors for dental chairside usage to detect
oral cancer, periodontal lesions, breath-based sobriety, and dental hard tissue defects. With further
optimization, ILs might also make vital contributions to craniofacial regeneration, oral hygiene
maintenance, oral disease prevention, and antimicrobial materials. This review explores the different
advantages and properties of ILs as possible dental material.

Keywords: biomaterials; dental materials; ionic liquids (ILs); tissue regeneration and multifunctional

1. Introduction

The first ionic liquid (IL), ethylammonium nitrate, was reported in 1914 by Paul
Walden [1]. In 1992, Wilkes and Zaworotko [2] reported the first 1-ethyl-3-methylimidazolium-
based air and moisture-stable imidazolium-based ILs, garnering the attention of the research
community. To date, this compound class has been used in most science and technology
spheres. ILs are salts of relatively large organic cations and inorganic or organic anions.
Generally, at least one of the ions is voluminous, asymmetric, and contains nonpolar tails
or combinations of these properties. The bulky and asymmetric ions of ILs, compared to
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simple ions of classical inorganic salts, such as NaCl, prevent crystallization at ambient
temperature, with melting points below 100 ◦C. When the melting points are near or below
room temperature, the ILs are termed as room-temperature ionic liquids (RTILs) [3].

ILs have drawn attention due to their attractive properties, including low vapor pres-
sure, high chemical and thermal stability, wide electrochemical window, nonflammability,
and the ability to dissolve various organic and inorganic materials. The properties of ILs,
such as density, viscosity, and hydrophilicity/hydrophobicity, can be modified by judicious
selection of cations and anions, by fine-tuning the lengths of the cation alkyl chain, or
by the covalent tethering of task-specific functionalities to one or both of the constituent
ions [4–10]. Hence, ILs are frequently referred to as task-specific or designer solvents.
Cations and anions of some of the discussed ionic liquids are shown in Figure 1.
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Figure 1. Chemical structures of some typical Ionic Liquid cations and anions [11].

The unique properties of ILs make them particularly promising candidates as envi-
ronmentally benign or “green” alternatives to organic solvents for chemical synthesis [12],
catalysis [13], separation [14], and extraction [15]. Moreover, they represent safe and ver-
satile electrolytes for electrochemical applications (lithium batteries, supercapacitors, and
fuel cells) and photovoltaics (dye-sensitized solar cells (DSSCs) [16]). They are also novel
functional materials [17] for lubrication [18], microfluidics [19], and sensors [20]. Addition-
ally, the antimicrobial properties of ILs, discovered two decades ago, have facilitated their
use in numerous biomedical applications as novel biomaterials.

Although few reviews have explained the potentiality of ILs in biomedical applications,
none have discussed the potential role of ILs in dentistry and craniofacial sciences in details.
This comprehensive review is a pioneering study in dentistry and craniofacial engineering,
exploring the different functionalities and applications of ILs in this field.

2. Ionic Liquids as Antimicrobial Agents

According to the Centers for Disease Control and Prevention (CDC) of the United
States (U.S.) [21,22], more than 3 million people become infected with antimicrobial-
resistant pathogens, resulting in 48,000 deaths annually in the U.S. These infections are
associated with a more than $4.6 billion annual burden on the health care system. These
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numbers will increase unless action is taken. Therefore, antimicrobial resistance is a press-
ing issue that must be overcome in global health. While overuse and misuse of antibiotics
are growing concerns, the lack of novel antibiotics for resistant bacteria is the main chal-
lenge. Therefore, the search for next-generation antibiotics is a race against time. With high
tunability and task-specificity, ILs have been envisaged as a promising next-generation
antibiotic for resistant microorganisms [23].

Cell membranes, both plasma membranes or internal membranes are made of glyc-
erophospholipids: a glycerol, phosphate group, and two fatty acid chains. Glycerol is
a three-carbon poly alcohol that acts as the connector and attaches the phosphate polar
(hydrophilic) head group and two nonpolar, hydrophobic hydrocarbon fatty acid tails [24].
The different components of a model lipid bilayer are shown in Figure 2. Cholesterols
(not present in the bacterial cell membrane) regulate cell membrane fluidity (stiffness).
Cholesterol also plays an essential role in maintaining the integrity of lipid membranes.
Xiao-Lei et al. used an egg sphingomyelin (SM)-cholesterol model membrane to show
that, in the absence of cholesterol, the meager molar IL: SM ratio can disrupt the model
membrane [25]. Transmembrane proteins are embedded into the cell membrane and are
responsible for the controlled transportation of materials into and out of the cell [26].
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Figure 2. Different components of a model lipid bilayer (Phospholipid) [25].

Due to the surface charge (phosphate head group) of the lipid bi-layer, the cationic
moiety of the ILs adsorbed on the lipid membrane interacts with the transdermal protein
and disorganizes the bi-layer with the penetration of its long alkyl chain, which ultimately
changes the regular properties of a cell membrane [27–29]. The longer the alkyl chain, the
higher the antibacterial activity [30]. Fluidity (stiffness) and membrane potential changes
affect the biochemical gradients and interrupt the controlled exchange of intercellular
and extracellular materials by affecting standard diffusion rates and transdermal protein
stability. ILs sometimes initiate irreversible cell wall damage by creating permanent pores,
another critical cause of the sub-cellular imbalance [31–33]. Overall, the antimicrobial
activity of ILs can be divided into several steps. First, ILs are absorbed into cell membranes
due to the electrostatic interactions of the polar head group. Second, they interact with
the transmembrane protein. Third, they penetrate the phospholipid bilayer with their
hydrophobic tails, disrupting the layer, causing intracellular cytoplasm leakage, and leading
to cell lysis [34] (Figure 3). RTILs, based on imidazolium cation with a long alkyl chain and
hydrophobic anion bis(trifluoromethansulfonyl)imide (NTf2), show antibacterial activity.
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The positive charge of the imidazolium ion is electrostatically attracted to the membrane’s
negatively charged phosphate head groups while its alkyl long chain can easily penetrate
the bacterial cell wall [35]. In particular, the hydrophobic anion (NTf2) of ILs may increase
their antibacterial properties by disorganizing membranes.
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Parameters to Control Antimicrobial Properties

Antimicrobial properties can be enhanced by increasing the alkyl chain length. In
a recent study, replacing an alkyl group with a phenolic group and increasing the other
alkyl chain length of an imidazolium-based IL exhibited minimal inhibitory concentrations
(MICs) < 7.81 µM against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus au-
reus [30]. ILs become absorbed into the cell membrane by electrostatic interactions between
ILs and the polar head groups. Therefore, increasing the number of cations in per-ionic
liquids can enhance the efficacy of ILs as antimicrobial agents [29,31]. Polymeric ionic
liquids (PILs) are more effective than monomers as one can tune the hydrophobicity and
charge density (number of cations) in PILs. Therefore, PILs with better efficacy and lower
MIC values than their monomers are better antimicrobial agents for resistant bacteria [23].

3. Biomedical Applications of Ionic Liquids

A series of experimental and computational studies [36–41] have proven that when
the ILs’ alkyl chain length becomes longer than four carbons, they aggregate and form
a nonpolar domain. These nonpolar domains permeate the three-dimensional ionic net-
works. While the chain length increases, these nonpolar domains become larger and more
connected, exhibiting microphase segregation. Ionic liquids show this property even in
mixtures with water or other molecular solvents like DMSO, propylene carbonate, ace-
tonitrile, and short-chain primary alcohol [9,10]. This unique property of ILs and their
binary mixture with molecular solvents make them universal drug solubilizing agents. The
limiting factor for different drug molecules is their poor solubility in biological media and
cellular matrices mainly composed of water. RTILs are superior drug delivery materials
compared to commonly used salts in pharmaceuticals since they do not possess crystal
polymorphism problems and can dissolve organic and inorganic materials. Therefore,
turning most drugs into ILs will enhance their therapeutic utility [42–44], making them an
active pharmaceutical ingredient ionic liquid (API-IL). Targeted drug delivery encompasses
drug packaging, transport to the targeted area, and controlled release. ILs can play a
significant role in all areas as they circumvent biological barriers without hampering bio-
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logical activity [45–47]. Different approaches, such as micelles, inverted micelles, vesicles,
liposomes, nanoparticles, emulsions (micro or nano), hydrogels, etc., load drugs and carry
them to the targeted area, then control release by photo or thermal sensitivity. ILs can be
tailored easily to form emulsions (ILs-in-water and ILs-in-oil). ILs can be used as polar
media in IL-in-oil or nonpolar media with a significant alkyl chain length in IL-in-water
emulsions. By replacing one of the alkyl groups with task-specific functionality and a
large alkyl chain in the other, ILs can form micelles without surfactants. Studies have
found the highest drug loading and targeted drug delivery [48–50]. Properties of hydrogel,
ionogels, and thermoresponsive gels can be tuned using task-specific ILs and can be used
for controlled drug release [51,52].

The long-term stability of proteins is essential in terms of dealing with proteins.
Generally, proteins are folded to avoid loss due to aggregation. Instead of aqueous buffers,
ILs help prevent aggregation and reverse aggregation or refolding (only 3% loss) for many
cycles [53–55]. Controlled manipulations of the polar and nonpolar regions of ILs and
their binary mixture enable them to offer low toxicity and thermal and conformational
stability [56]. Although it is unclear how ILs interact with proteins, combinations of
experimental and theoretical approaches are needed.

4. Ionic Liquid-Based Applications in Craniofacial Engineering and Dentistry
4.1. ILs in Dental Implants

According to the American Academy of Implant Dentistry (AAID) and the American
College of Prosthodontists, approximately 36 million U.S. citizens have lost all their teeth,
and 120 million are missing at least one. These numbers are expected to grow over the next
two decades. People can lose their teeth irrespective of age to numerous causes, including
decay, gum disease, injury, accident, cancer, etc. Loss of a single tooth worsens overall
oral health by weakening the jawbone. Dental implants are the most common treatment
for dental loss. An implant consists of three components: an implant post, a cylindrical
screw-shaped device anchored into the mandibular bone that provides necessary support
for a dental prosthesis (crown), and an abutment that connects dentures to dental posts
(Figure 4). Endo-osseous implants are made of metal, which must be biocompatible, non-
corrosive, and flexible with high strength. Pure titanium and different titanium alloys are
common materials for endo-osseous implants. Their long-term clinical survival rate has
made them the gold standard. Zirconium ceramics have been introduced as an alternative
to titanium due to drawbacks reported in the literature, such as allergies, hypersensitivity,
metal degradation, and discoloration in the peri-implant regions [57–59].
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A successful dental implant is associated with the osseointegration of surrounding
soft and bone tissues with the dental implant surface [60–63]. However, many factors,
such as microbial biofilm formation, stress during insertion and mastication of the implant,
corrosion, and systematic health and host immune-inflammatory responses, may affect the
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implant’s long-term stability [62]. Therefore, implants are subjected to different processes,
including sandblasting, selective ion etching, and bioactive coating to minimize surface
roughness, formation of an anti-bacterial biofilm, etc. [64]. Implant surfaces are prone to
bacterial colonization, resulting in a “race for the surface” between host tissues and bacteria.
Therefore, anti-bacterial biofilm is a determining factor for the long-term stability of the
dental implant and is considered a major determining factor of implant failure [65,66]. Zhao
et al. have shown how the “race for the surface” occurs using human gingival fibroblasts
and different supragingival bacterial strains [66]. Within the first hour, a protective soft
tissue seal must form around the implant’s neck to prevent bacterial colonization. If this
does not occur (i.e., bacteria form a biofilm), fibroblasts lose the battle, and the implants
must be replaced. ILs, especially dicationic ILs, have been used to prepare anti-bacterial
biofilms, providing essential lubrication, corrosion resistance, and wear performance while
maintaining compatibility with the host cells [67,68]. Since ILs act as antimicrobial agents,
creating an IL layer can help provide conditions for fibroblast and pre-osteoblast growth
and proliferation to form a seal, preventing bacterial growth [67,69,70]. Wheelis et al.
evaluated the biocompatibility of dicationic IL coatings on commercially pure titanium
disk (cpTi) in a subcutaneous implantation rat model [71]. They used two dicationic ionic
liquids with two amino acid anions (IonL-Phe, IonL-Met) and three doses to investigate
the interference of coatings in the osteointegration process during the early healing period
(Figure 5). They did not observe significant interference in the early healing timeline or
tissue regeneration. They also showed in separate studies [67,70] that dicationic IL film
remains on the implant surface for more than seven days, maintaining growth conditions
for human gingival fibroblasts and pre-osteoblasts while posing severe toxicity to bacterial
cells, thus helping the host cells to commandeer the surface.
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of titanium implants (coated and uncoated). Images show the healing representation (pointed with
arrows) of post-implantation at 2 and 14 days (Scale bar 20 µm). (C) Areas marked with arrows
showing inflammatory responses of surrounding tissues at 14 days (post-implantation) in coated and
uncoated titanium implants (Scale bar 20 µm). Reproduced with permission [71].

4.2. ILs as Dental Infiltrant Materials

Non-cavitated carious lesions near dental surfaces are a prevalent dental disease [72].
To protect dental hard tissues, restorative materials are placed directly into a tooth cavity
to prevent further expansion of lesions and restore dental functions and aesthetics. The
American Dental Association (ADA) classified restorative materials into four categories in
2003: amalgam, resin-based composites, glass ionomer, and resin-modified glass ionomer.
Proper diet, patient education on oral hygiene, and topical fluoride application are the
primary treatments for incipient enamel caries lesions [73,74]. The next step is to apply
biocompatible materials as resin infiltrates for superficial carious lesions. These infiltrates
are light-curable resins that inhibit carious progression by sealing the lesion’s body and
pores in proximal dental surfaces [75–77].

Designing highly active antimicrobial surfaces or coatings is a significant challenge
for public health. Resins are inert methacrylate monomers, such as triethylene glycol
dimethacrylate (TEGDMA) and bisphenol A-glycidyl methacrylate (Bis-GMA), that lack
antimicrobial activity. Hence, efforts are being made to endow resin infiltrates with antimi-
crobial properties. Cuppini et al. developed microcapsules loaded with 2.5wt%, 5wt%, or
10wt% ionic liquid as resin infiltrates [78] (Figure 6).
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Microcapsule-loaded RTILs show excellent antibacterial properties without chang-
ing other physicochemical properties or eliciting cytotoxicity (cell viability > 90%). In
recent studies [79,80], three thermally stable epoxy-amine networks were synthesized using
imidazolium-based ionic liquid monomers with similar thermomechanical properties to
conventional diglycidyl ether (DGEBA) epoxy prepolymers. They further tested antimicro-
bial properties against Escherichia coli (E. coli) and found potent biofilm inhibition of ~92%.
Importantly, imidazolium ionic liquids can replace carcinogenic bisphenol A. Recently,
an RTIL (BMIMTFSI) was successfully used as an antibacterial experimental orthodontic
adhesive against Streptococcus mutans [81] and resin infiltrate [78].

Nanoparticles, especially silver (AgNP), zinc oxide, titanium dioxide nanoparticles,
quaternary ammonium, and cationic nanoparticles, have been incorporated into resin
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as antibacterial agents, showing promising results [82–84]. Each of these methods has
challenges. For example, the primary concern of AgNPs is adverse effects on human health
and the dispersion of nanoparticles into solvents. RTILs are used to stabilize nanoparticles
and act as antimicrobial agents for dental resins [81,85,86]. Although microorganisms can
rapidly develop resistance against nanomaterials, such as AgNP, the infinite tunability of
RTILs makes them the ultimate solution for antimicrobial resistance [35,87].

4.3. Ionic Liquids (ILs) as Oral Hygiene Products

Efforts have been made to develop IL-based oral hygiene products, such as dental
toothpaste and mouthwash/mouth rinse. Madhusudan et al. proposed an oral care
composition for removing or reducing plaque comprising an IL formulated with choline
salicylate and tris-(2-hydroxyethyl) methylammonium methylsulfate. They developed
74 prototype formulations; in vivo experimental results suggested several formulations
might provide clinical efficacy to disrupt, dissolve, and remove bacterial plaque. The
function of ionic liquid-based oral care compositions will also prevent different gingivitis
and oral cavity diseases, such as dental caries, calculus, erosion, periodontitis, halitosis,
and even salivary gland disorders, including xerostomia/dry mouth [88].

4.4. Ionic Liquids (ILs) as Dental Restorative Materials in Clinics

In clinics, dental cement selection is vital in achieving successful restoration and
significantly increases the duration of teeth restoration [89]. Kajimoto et al. explored the
possibility of utilizing ILs to mix with dental cement, converting them to multifunctional
smart (intelligent) adhesives [90]. Due to the bonding strength of the dental cement,
removal from the oral cavity can require excessive force or vibration to the tooth by
electrical appliances, which might generate heat. Heating adhesives in the oral cavity have
possible drawbacks and risks damaging the surrounding oral mucosa [90]. The group
experimented with a specific electric current to trigger and control the heating process
by implementing IL-based dental cement. They developed a prototype resin-modified
glass-ionomer cement (RMGIC) with an IL and validated the use of an electric current
trigger to control the properties of an IL-based smart cement [90]. In a more recent study,
the same research team reported that after immersion and decreasing the bonding strength
via electrical current application, the electrical conductivity was greater for the RMGIC with
IL [91]. Thus, combining dental cement and ILs might represent an effective multifunctional
smart material with antimicrobial properties.

5. Biosensor Prospects in Dental Applications
5.1. Interleukin-6 Sensor to Detect Oral Cancer

Researchers have shown that interleukin-6 (IL-6) promotes tumor growth by causing
DNA methylation changes, which can lead to changes in the oral cancer cell gene expres-
sion [92]. Higher levels of IL-6 have been reported in the serum and saliva of patients with
oral cancer than in control subjects, demonstrating a possible relationship between IL-6
and oral cancer [93].

In the future, oral health care could utilize ionic liquids (ILs) as a strategy for early oral
cancer diagnosis. IL with menthol can be used to mass-screen patients for early oral cancer
diagnosis. The IL’s chemical structure can affect the menthol release rate [94]. Complexes
can be formed comprising IL with a menthol moiety [94] and IL-6 antibodies [95]. This
complex can bind IL-6 and release a proportional amount of menthol. As menthol triggers
TRPM8 and induces a cooling sensation, the intensity of this sensation will notify the
patient if IL-6 has been released and the amount of IL-6 in the mouth.

5.2. Gingivitis Sensor

A common condition in many oral diseases, such as gingivitis, is inflammation. Mi-
croorganisms cause an inflammatory immune response mediated by changes in the vascular
network and the exudation of gingival crevicular fluid (GCF), which contains inflammatory
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and plasma cells, ultimately resulting in tissue death. Gingivitis is the primary cause of
bleeding gums that allows plaque to accumulate at the gum line. Tartar will form if plaque
is left untreated. This results in bleeding as well as periodontitis, a severe form of gum and
jawbone disease [96]. Functionalized IL can be used for early diagnosis of gingivitis and to
highlight the damaged gum area. A possible option would be to synthesize fluorescent IL
with light intensity that becomes amplified or quenched upon illumination in the presence
of hemoglobin [97]. Hemoglobin is the oxygen-carrying protein in red blood cells [98].
Therefore, after rinsing the mouth with the IL complex, fluorescent light would reveal the
bleeding sites in the gum. An alternative option would be to make menthol-based IL func-
tionalized for hemoglobin. In this case, the IL can be synthesized to release menthol when
in contact with hemoglobin, causing a cooling sensation in the areas affected by gingivitis.

5.3. Tooth Caries and Cracks Sensor

The most prevalent cause of cracked tooth syndrome is chewing on hard foods, which
causes an incomplete tooth fracture. This is the third most frequent cause of tooth loss [99],
with no suitable diagnosis method. Transillumination and radiographic approaches, tra-
ditional dental crack identification methods, are inaccurate and offer subpar imaging
resolution [100]. Light-induced fluorescence dental imaging Field [100–102] has recently
gained considerable attention as a useful tool for diagnosing small cracks and cracked
teeth at an early stage. For real-time diagnosis, fluorescent IL can be used [103]. Here, after
rinsing the mouth with the liquid complex, the dyes will fill all possible cracks and, upon
illumination, will reveal the location and size of the cracks. It is important to note that the
illumination angle is essential to correctly identify the position and depth of the cracks [101].
This method provides a low-cost visual diagnostic tool for occlusal dental caries, proximal
dental caries, and tooth cracks. With the recently emerging telemedicine, this technique
will make clinical practice more accessible, especially in rural areas of developing countries.

5.4. Breath-Based Sobriety Sensors

Drinking too much alcohol can result in overdose, car accidents, intoxication of ath-
letes/pilots, etc. According to studies, the blood and saliva alcohol levels are consis-
tent [104]. A driver’s sobriety can be evaluated using a saliva alcohol test. The main
component of alcoholic drinks is ethanol, and saliva typically lacks alcohol subtypes, such
as methyl, propyl, or allyl. Ethanol concentration can be identified using ILs [105]. This can
be paired with the colorimetric IL to form an ethanol sensor. This hybrid liquid can be used
to rinse the mouth for a few seconds. Depending upon the alcohol concentration in the
saliva, the color of the liquid would change accordingly and provide a visual indicator of
the blood alcohol level. This method can be used as a fast, low-cost, and scalable technique
to monitor sobriety.

5.5. Oral Hygiene Sensor

A person’s oral cavity contains more than 70 different species of bacteria. Although
most are harmless, some bacteria are dangerous and can lead to dental problems, including
tooth decay and gum disease [106]. Oral health can be improved, and the risk of dental
problems can be decreased by minimizing the number of harmful germs in the mouth.
Fluorescent IL (excitation in the visible spectrum) functionalized for harmful bacteria can be
synthesized as a toothpaste [107]. This can be used by individuals at home to monitor the
effectiveness of brushing based on the number of fluorescent areas. This will significantly
help to improve personal hygiene.

6. Toxic Effects of Ionic Liquids (ILs)

Ionic liquids (ILs) have long been considered environmentally friendly and ecologically
benign solvents. Nevertheless, concerns have recently arisen regarding their potential
toxicity to human health and environmental impact, necessitating a thorough investigation.
ILs are engineered to possess low volatility and stability, which, unfortunately, reduces their
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biodegradability [108]. The toxicity of ILs is contingent upon their chemical composition,
including the types of cations, anions, and the alkyl chain length. ILs were found to be toxic
or highly toxic toward cells and living organisms [109,110]. Besides hampering the growth
rate of microbes, their antibacterial activity also interferes with their productivity [111].

Notably, ILs featuring choline-based components exhibit lower toxicity than the com-
monly used imidazolium, pyridinium, and pyrrolidinium variants [112–115]. This un-
derscores a clear relationship between IL structure and toxicity, offering prospects for
developing less harmful ILs. Even appropriate anions can reduce the half-maximal effec-
tive concentration (EC50) values by three orders of magnitude [116]. It is worth noting
that when ILs encounter water or other polar solvents, they may undergo ion exchange,
forming new substances with potentially different toxic properties. Research endeavors
have been undertaken to assess the cytotoxic effects of various piperidinium and pyrroli-
dinium ILs on the MCF7 human breast cancer cell line. Results suggest that toxicity tends
to increase with longer alkyl chain lengths. Furthermore, the nature of the anions also
plays a role, with Tf2N appearing to be more toxic than Br- [117]. Similar findings have
been observed in studies involving Escherichia coli, Staphylococcus aureus, Bacillus subtilis,
Pseudomonas flurescens, and Saccharomyces cerevisiae, reinforcing the trend that higher alkyl
chain lengths are associated with greater toxicity [118,119]. However, further studies are
needed to establish the precise molecular mechanism underlying the toxic effects of ILs.

With proper optimization, ILs can be incorporated into drug formulations to avoid
the development of cancer treatment resistance. Adequate knowledge of the toxicity will
provide vital information for anti-cancer drug development, as apoptosis-related drug
resistance is challenging for different cancer types. Additionally, there is an interest in
identifying other means of inducing cytotoxicity [120]. This information will improve the
efficacy of drugs against cancer progression and neurodegenerative disease.

7. Prospects and Future Directions

Room temperature ionic liquids (RTILs) have high potential in advanced tissue en-
gineering applications, including craniofacial engineering and dental procedures. They
can be easily incorporated with self-healing materials [121], magnetoelectric nanoparticles
(MENPs) [122,123], and electroconductive materials [124], through advanced tissue engi-
neering applications, such as three-dimensional (3D) cell cultures [125] and 3D bioprinting
techniques [126]. They can also be easily combined or used to control multi-functional
material-based applications. For example, they can influence applications based on MENPs
and electroconductive materials [122], and can be used for implant sensing [127].

7.1. ILs with Electroconductive Material for Dental Tissue Regeneration

Most cell types respond to electrical stimuli, which control the healing and regener-
ation of skin wounds, spinal cord injury, bone fractures, and neural growth [128]. The
combined usage of electroconductive materials and ILs has huge potentiality for guided
cell and tissue regeneration and may enable new directions for guided oral tissue regenera-
tion [124]. One of the challenges of dental hard tissue regeneration is the variable growth
rate, resulting in its under- or over-growth. The ILs can easily solve this issue by providing
better tissue regeneration control. ILs play a vital role in neural degeneration [129] and
could be an ideal root canal material to revitalize the dental pulps. By combining multifunc-
tional magnetoelectric nanoparticles (MENPs) with electroconductive and biodegradable
materials, ILs will have a potential role in the formulation of smart dental materials [130].

7.2. A Critical Component for Preventive Dental Care and Oral Hygiene

Oral hygiene maintenance is critical for a healthy oral cavity and lifestyle. However,
unfortunately, due to musculoskeletal disorders such as osteoarthritis, rheumatoid arthritis,
and other conditions, many elders find it challenging to maintain good oral hygiene [131].
Also, those who have arthritis cannot correctly grip a toothbrush [131,132], representing
a primary concern for poor oral hygiene, which leads to microbial accumulation and
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dental plaque formation. Also, Niesten et al. reported that elders residing in institutions
generally discontinue oral hygiene maintenance mainly due to inadequate social support
and disorientation [132]. Therefore, a need exists to provide improved methods and oral
care products, such as toothpaste and mouthwash, for plaque removal/prevention to
overcome some of these inefficiencies arising from poor brushing and flossing techniques.
In the future, ILs can minimize the gap by improving the antimicrobial properties of
toothpaste and mouthwash. This could effectively remove plaque usually unnoticed
between teeth, in the teeth cavities and fissures, and in gum pockets. Madhusudan and
colleagues with Colgate-Palmolive Company (New York, NY, USA) invented such a concept
to integrate ILs in oral care compositions [88].

With advanced 3D bioprinting techniques, there are enormous opportunities for
combining various amounts of ILs in toothpaste/mouthwash compositions to enhance
the protective environment within the oral cavities. Hayashi et al. recently explored a
technique enabling ILs to formulate fluoridated toothpaste. They reported preparing a
new class of hybrid ILs, called “fluoride ion-encapsulated germoxane cages”, containing a
fluoride ion inside [133].

Breath-based sensors could be another area for future bench-side applications of ILs
in clinical dentistry. There is evidence that the presence of chronic disease and cancer alters
cellular metabolic processes, and these alterations are recorded in the released volatile
organic compound (VOC) compositions of cancer cells. We have shown the potential of
using VOC sensors as a biomedical engineering approach for oral cancer detection. Due
to their multifunctional nature, ILs could be used for such breath-based early detection
systems [134].

7.3. As a Routine Anti-Microbial Material for Dental Clinics

Like any healthcare facility, dental clinics pose a risk of spreading coronavirus disease
(COVID-19) via cross-infection among patients, dentists, and community members. In clin-
ical dental settings, the instruments produce aerosols, droplets of saliva, secretions, saliva,
and blood, which can rapidly transmit viruses between dental practitioners, assistants, and
patients and their attendants [135,136]. Due to their antimicrobial properties and chemical
characteristics, RTILs could be used for coating the walls, appliances, and surfaces in dental
clinics to provide an infection-free environment [137].

A denture appliance resides in the oral cavity and is highly prone to microbial growth,
bacterial biofilm formation, and contamination. Many antimicrobial agents are commonly
used for denture preparation, such as titanium dioxide, methacrylic acid monomers, silica,
and MPDB/12-methacryloyloxy dodecylpyridinium bromide. Due to their multifunctional
properties and antimicrobial nature, RTILs can be incorporated as routine agents to fabricate
anti-viral dentures [137].

Further studies are required to accurately assess the toxicity at the cellular and molec-
ular levels. Experiments should be conducted utilizing flat two-dimensional (2D) cultures
and more advanced three-dimensional (3D) in vitro models (i.e., spheroids, sandwich cul-
tures) with cells embedded in extracellular matrices, such as rat tail-derived collagen type 1
and mice sarcoma tissue-derived basement membrane mimicking matrices [125,138]. After
successfully conducting biological characterization with in vitro models, in vivo studies
are required to complete the picture of IL toxicity prior to biomedical applications.

8. Conclusions

Ionic liquids (ILs) have a unique multifunctional property that might allow researchers
to explore the potentiality of remote sensing and controlling cellular growth in the craniofa-
cial region. ILs are antimicrobial and easy to characterize, enhancing the functionality of
dental cement, 3D bioprinting, and implants with sensing capabilities. However, further
in vitro and in vivo studies are required to evaluate the cytotoxicity of ILs and optimized
their formulations.
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