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Abstract: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the
production of autoantibodies specific to self-molecules in the nucleus, cytoplasm, and cell surface. The
diversity of serologic and clinical manifestations observed in SLE patients challenges the development
of diagnostics and tools for monitoring disease activity. Elevated type I interferon signature (IFN- I)
in SLE leads to dysregulation of innate and adaptive immune function, resulting in autoantibodies
production. The most common method to determine IFN-I signature is measuring the gene expression
of several IFN-α-inducible genes (IFIGs) in blood samples and calculating a score. Optimal selection
of IFIGs improves the sensitivity, specificity, and accuracy of the diagnosis of SLE. We describe
the mechanisms of the immunopathogenesis of IFN-I signature (IFNα production) and its clinical
consequences in SLE. In addition, we explore the association between IFN-I signature, the presence
of autoantibodies, disease activity, medical therapy, and ethnicity. We discuss the presence of IFN-I
signature in some patients with other autoimmune diseases, including rheumatoid arthritis, systemic
and multiple sclerosis, Sjogren’s syndrome, and dermatomyositis. Prospective studies are required
to assess the role of IFIG and the best combination of IFIGs to monitor SLE disease activity and
drug treatments.

Keywords: IFNα; autoimmune disease; IFN-α-inducible genes; diagnostics; monitoring disease
activity; autoantibodies; IFN-I; immunopathogenesis; inflammation; gene expression

1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized
by the production of autoantibodies reactive to intracellular molecules, including nucleic
acid and nucleic-acid-binding proteins, resulting in inflammation of many different organ
systems, including skin, joints, kidney, blood, nervous system, and blood components [1].
The diversity of serologic and clinical symptoms observed in SLE patients (primarily
women) challenges the development of diagnostics and new tools for monitoring disease
activity [2]. New immunological markers are needed to improve prognostics and monitor
SLE disease.

The most distinguishing feature of SLE is an immune response to nucleic acid and
associated proteins, resulting in autoantibody production, immune complex formation, and
organ inflammation. Intense complement activation and elevated type I interferon (IFN-I)
(often referred to as IFNα) production are critical factors in the pathogenesis of SLE [3].
IFNα cytokines are major effectors in the pathogenesis of SLE, with several regulatory
effects on both innate and adaptive immunity, resulting in the initiation and progression of
SLE disease. Specifically, most SLE patients have elevated expression of IFN-α-inducible
genes (IFIGs) compared to healthy controls and patients with rheumatoid arthritis (RA) [4].
Thus, elevated IFN-I expression contributes to the pathogenesis of SLE.

Elevated IFN-I signature in SLE induces dysregulation of innate and adaptive immune
function (Figure 1). The clinical consequences are increased disease severity, hyperinflam-
mation, and skin rash due to the high induction of apoptosis, chemokine production, and
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myeloid cell recruitment [5]. High IFN-I expression leads to immune-complex-mediated
multiorgan damage and elevated autoantibody production due to abnormalities in B-cell
differentiation. Patients with elevated IFN-I signature are more likely to develop lupus
nephritis (the kidney is inflamed, with impaired function, leading to kidney failure). More-
over, the IFN-I signature promotes CD8 T-cell exhaustion and CD4 proliferation, leading to
cellular infiltration, autoimmunity, and organ damage. Indeed, CD8+ T cells from periph-
eral blood of SLE frequently display a reduction in effector function, including attenuated
granzyme B and perforin production. In addition to this impaired cytolytic defect in CD8+

cells, CD4+ follicular helper (Tfh) cells produce IL-21 and promote the germinal center for-
mation of B cells and the differentiation of Th17 cells, which contribute to the pathogenesis
of SLE.
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Figure 1. Clinical consequences of type I interferon signature in systemic lupus erythematosus (SLE).
Tfh, follicular helper; Th17, T helper 17; CD, cluster of differentiation.

2. Interferon-α-Inducible Genes (IFIGs) Used to Calculate Type I Interferon Signature

The four IFIGs frequently used to determine the IFN-I signature are IFI27, IFI44, IFI44L,
and RSAD2 (Table 1) [4,6]. Other IFIGs used less frequently in IFN signature are IFIT1,
LY6E, MX1, HERC5, EPSTI1, OAS3, OAS1, ISG15, PRKR, SIGLEC1, MX1, and HERC5.
Leukocyte subsets that are related to IFN-I signature are CD19+ B lymphocytes, CD3+CD4+

T lymphocytes, and CD33+ myeloid cells [7]. IFIGs are expressed mainly in B cells, T cells,
or/and myeloid cells (which include monocytes), and these immune cells are present in
peripheral blood samples from SLE patients [7].

Some IFIGs are more expressed in patients with SLE than in patients with other
autoimmune diseases, including RA. IFI44 and PRKR mRNA levels in peripheral blood
mononuclear cells were higher in SLE patients than in RA patients and healthy donor
controls using qPCR analysis, whereas IFIT1 was comparable between SLE and RA pa-
tients [4]. However, IFIT1 expression was higher in SLE patients compared to healthy
controls (outside the setting of active viral infection) using RT-qPCR [4,8].

The most popular molecular methods available for the determination of IFN-I signa-
ture in SLE are RT-qPCR, microarrays, and Nanostring technology. Nanostring is useful
for screening IFIGs, as it can generate expression analysis of hundreds of genes across
many samples. Nanostring nCounter is a strongly sensitive technique, as it can detect
low-abundance mRNAs that are not detected by DNA microarrays [9,10]. The sensitivity
of the Nanostring nCounter is comparable to RT-qPCR (Taqman assays or SYBR Green) [9].
Results generated by Nanostring showed higher concordance with RT-qPCR than DNA
microarray assay [9]. Gene expression analysis using microarrays is less precise than RT-
qPCR, but there is a high degree of correlation between the two methods [11,12]. Lastly,
Nanostring is a digital barcode technology for the direct multiplexed measurement of gene
expression and is less time-consuming but more expensive than RT-qPCR [13].
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Table 1. Common interferon-α-inducible genes in systemic lupus erythematosus patients.

Gene Symbol Entrez Gene Name Subcellular Locations 1 SLE Subsets

IFI27 Interferon alpha-inducible protein 27 Nucleus, mitochondrion myeloid cell, T cell
IFI44L Interferon-induced protein 44-like Cytosol, nucleus myeloid cell, T cell, B cell
IFI44 Interferon-induced protein 44 Nucleus, mitochondrion myeloid cell, T cell, B cell

RSAD2 Radical S-adenosyl methionine domain
containing 2

Endoplasmic reticulum,
mitochondrion myeloid cell, T cell, B cell

IFIT1 Interferon-induced protein with
tetratricopeptide repeats 3 Cytosol myeloid cell, T cell

LY6E Lymphocyte antigen 6 complex, locus E Extracellular, plasma
membrane T cell

EPSTI1 Epithelial stromal interaction 1 Cytosol unknown

OAS3 2′-5′-oligoadenylate synthetase 3 Cytosol, nucleus, plasma
membrane myeloid cell, T cell, B cell

OAS1 2′-5′-oligoadenylate synthetase 1 Cytosol, nucleus T cells
ISG15 ISG15 ubiquitin-like modifier Cytosol, nucleus, extracellular myeloid cell, T cell, B cell
PRKR Platelet-activating factor receptor Nucleus, extracellular unknown

SIGLEC1 Sialic acid binding Ig like lectin 1 Extracellular, plasma
membrane, endosome myeloid cells

MX1 Myxovirus (influenza virus) resistance 1 nucleus myeloid cell, T cell, B cell
HERC5 Hect domain and RLD 5 cytoplasm myeloid cells

1 Subcellular location of each gene was identified using https://www.genecards.org, accessed on 12 January
2023.

When using RT-qPCR, the relative gene expression (RE) is typically determined using
the 2−∆∆CT method (CT, cycle threshold). Individual gene expression (∆CT) of each IFIG
is normalized with one or more housekeeping genes (∆CT IFIG = CT IFIG − CT Housekeeping).
The exponential expression (∆CqE) is calculated using 2−1 × (∆CT IFIG). The relative gene
expression (∆∆CT) of each IFIG of its corresponding sample is then normalized with the
∆CT value measured in a pool of healthy control (HC) (RE ∆∆CT IFIG-SLE = ∆CT IFIG-SLE ÷
∆CT IFIG-HC). The sum or median of the relative gene expression for all IFIGs is used to
calculate the IFN-I score for each sample. Log2 can be applied to the final IFN-I score to
obtain a value between 0 and 10.

A few studies have evaluated the sensitivity and specificity of the IFN-I signature in
SLE patients and other autoimmune diseases. The IFN6 score (calculated with SIGLEC1,
IFI27, IFI44L, IFIT1, ISG15, and RSAD2 relative expression) using RT-qPCR in SLE patients
had 89% sensitivity and 72% specificity using pediatric patients in the interferonopathy
group (SLE, dermatomyositis, and connective tissue disease) and non-interferonopathy
(juvenile idiopathic arthritis and healthy controls) [13]. As seen in RT-qPCR, the IFN6 score
using Nanostring resulted in a sensitivity of 90.5% and specificity of 63.3% [13]. On the
other hand, the IFN5 score (calculated with EPST11, IFI44L, LY6E, OAS3, and RSAD2)
using RT-qPCR had between 84% sensitivity and 47% specificity in 137 SLE patients [14].

For Nanostring nCounter, the IFN score can be calculated by two methods: a z-score-
based standardized score and a geomean score. Standardized z-scores for each IFIG are
determined using the mean and standard deviation of healthy controls (HC) with the
following equation: (z − score for each gene = [(gene count − mean (HC gene expres-
sion)]/[standard deviation (HC gene expression)]. For example, the IFN28 standardized
score was calculated by summing the 28 z-scores for each sample [10]. Alternatively, the
geometric mean or geomean of the counts of each IFIG in each sample is calculated to
generate the IFN score. In addition, the IFN5 score (EPSTI1, IFI44L, LY6E, OAS3, and
RSAD2) was determined by Nanostring custom array with different ranges of sensitivity
(63.6–83.8%) and specificity (41.7–67.2%) depending on the outcomes (disease activity state,
intake of prednisone, ≥2 flares, and new immunosuppressive) [14].

For microarrays, the mean and standard deviation for three IFIGs (IFI27, OAS3, and
IFI44) from 27 HCs were used to calculate the IFN3 score [11]. For each SLE patient, a z-score
was calculated for these three IFIGs by subtracting the HC mean from the SLE expression

https://www.genecards.org
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value for that IFIG and then dividing the difference by the HC standard deviation. No
sensitivity or specificity was reported in this study [11]. This scoring system has also been
used in other studies on IFN-I signature using RT-qPCR [15,16].

More studies are needed to understand the importance of selected IFIGs to optimize
and improve the sensitivity and specificity (>80%) for the diagnosis of IFN-I signature in
SLE patients. Possible ways to improve these parameters are to increase the number of IFIGs
(>6 IFIGs used to calculate IFN-I score) that are highly expressed in SLE patients compared
to HC and other autoimmune diseases, such as rheumatoid arthritis (RA), systemic sclerosis
(SSc), Sjögren’s syndrome (SS), dermatomyositis (DM), and multiple sclerosis (MS).

3. Mechanism of Type I Interferon Signature in the Pathogenesis of SLE

The first step of IFN-I signature in the pathogenesis of SLE is when plasmacytoid
dendritic cells (pDCs) produce IFNα after immune recognition of autoantigens derived
from apoptotic material from dead and dying cells and neutrophil extracellular trap debris
(Figure 2) [17]. The production of IFNα promotes the maturation of monocytes to dendritic
cells, activation of T cells, and simulation of B cells [18]. Thus, IFNα can play a role
in the activation and differentiation of B cell into autoantibody-producing plasma cells
and promote SLE disease. Although IFN-α is produced by a wide range of cells, such
as macrophages, fibroblasts, and endothelial cells, plasmacytoid dendritic cells (pDCs)
are thought to be the primary cell type responsible for producing high levels of IFN-α in
response to dying cells.
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Figure 2. Mechanism of type I interferon signature in systemic lupus erythematosus (SLE) pathogene-
sis. (a) Plasmacytoid dendritic cells (pDCs) produce IFNα due to immune recognition of autoantigens
derived from apoptotic material from dead and dying cells and neutrophil extracellular trap debris.
(b) IFNα promotes the maturation of (b) pDC to mature pDC and (c) monocyte to dendritic cells (DC),
which activates T cells. IFNα promotes (d) the exhaustion of CD8+ cells and (e) the activation of B
cells after interacting with a CD4+ T cell. (f) B cell matures into plasma-cell-producing autoantibodies
specific to nucleic-acid-containing autoantigens. High autoantibody production led to the loss of B
cell tolerance in SLE.

A typical feature of SLE is lymphopenia and leukopenia, where T cell and B cell
populations are reduced [1]. Endogenous production of IFNα has been implicated in the
pathogenesis of leukopenia in SLE disease, as elevated serum levels of IFNα in SLE were
correlated negatively with leukocyte numbers [18,19]. Absolute lymphocyte count was
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1.3-fold lower in high IFNα scores than in low IFNα scores in SLE patients, whereas the
percentage of monocytes was 1.6-fold higher in the high IFNα score group [4]. Leukocyte
counts were also correlated negatively with IFNα concentration in serum [20]. In addition,
the transcriptional activity of leukocytes (CD19+CD3− B cells and CD3+CD4+ T cells) was
higher in SLE patients than in healthy controls [7], suggesting the prolonged upregulation
of nucleic-acid-sensing pathways could change the immune effector functions and induce
a systemic inflammation observed in SLE pathogenesis.

4. Higher Production of Autoantibodies in SLE with Elevated IFN-I Signature

In SLE, the immune component complexed with RNA or DNA promotes plasmacytoid
dendritic cells to produce IFNα by activating toll-like receptors (TLR) TLR7 or TLR9,
respectively. IFNα score correlates positively with autoantibodies in SLE patients, including
anti-double-stranded DNA (dsDNA) and anti-Smith (Sm) antibodies [21,22]. Moreover,
IFNα enhances the differentiation of T follicular helper (Tfh) and Th1 cells, activating the
production of autoantibodies by plasma cells and elevating tissue inflammation [23].

Antinuclear antibodies (ANA) consist of various autoantibodies targeting nuclear
protein and cytoplasmic cell components, including anti-dsDNA, anti-ribonucleoprotein
(RNP), anti-Sm, and anti-Ribosomal P (Rib-P) antibodies, and are detected in ~95% of SLE
patients (Table 2) [24]. ANA are not specific to SLE, as they can be detected in different
autoimmune, rheumatic, and infectious diseases [25]. Anti-dsDNA antibody is among the
most specific autoantibodies in patients with SLE but is not sensitive, as its frequency is
only 50–60%. Similarly, anti-Sm and anti-RNP are less frequently detected in SLE than
anti-dsDNA antibodies in SLE disease, while anti-Rib-P antibodies are even less sensitive
than those autoantibodies. Anti-Sm antibodies are specific to core proteins, especially
B protein followed by D1 and D2 [26]. Anti-RNP antibodies are directed against A and
C proteins that are associated with the U1 RNA (U1-RNP complex) [26]. Interestingly,
anti-dsDNA IgG, anti-RNP IgG, and anti-C1q antibodies were associated with disease
activity in SLE patients [27].

Table 2. Autoantibodies in systemic lupus erythematosus (SLE) and their association with the type I
interferon signature (IFN-I), clinical outcomes, and disease activity.

Antibodies 1 Frequency in SLE
(%)

Association with
IFN-I

Clinical
Outcomes

Association with
Disease Activity

ANA IgG 95 yes Autoimmune
disease no

Anti-dsDNA IgG 50–60 yes LN, skin, cerebral yes

Anti-Smith IgG 20–40 yes Renal, neurologic,
vasculitis disorders no

Anti-RNP IgG 23–40 yes
Raynaud

phenomenon,
myositis

yes

Anti-Rib-P IgG 15 yes LN, autoimmune
hepatitis no

Anti-La/SSB IgG 30–40 yes LN, skin disease yes

Anti-Ro/SSA IgG 12–20 yes
Subcutaneous

lupus,
neonatal lupus

no

Anti-C1q IgG 20–50 no LN yes
1 ANA, antinuclear antibody; dsDNA, double-stranded DNA; RNP, ribonucleoprotein; Rib-P, Ribosomal P; C1q,
complement 1q; LN, lupus nephritis.

SLE patients with anti-RNP and anti-Sm antibodies were more prevalent in the IFN3α
high-score group than in the low-score group in SLE (calculated with IFI44, IFIT1, and
PRKR). In contrast, the levels of anti-RNA-binding protein (RBP) and anti-dsDNA anti-
bodies were comparable between the two groups [4]. Anti-RBP antibodies can bind to
different RNA-binding proteins, including Sm and RNP. Similarly, the IFN3 score (calcu-
lated with LY6E, OAS1, and IFIT1) was positively correlated with the levels of anti-dsDNA
and anti-RBP antibodies in blood from SLE patients [21]. A high IFN3 score (calculated
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with MX1, PKR, and IFIT1) was associated with the presence of anti-dsDNA and anti-RBP
antibodies in SLE [22]. In addition, the ANA titer was correlated positively with an IFN63
score (averaging 63 IFIGs) in SLE patients [28]. Finally, the IFIG expression levels (IFI44,
IFI27, RSAD2, and IFI6) were positively correlated with ANA, anti-La, anti-RNP, anti-Ro,
and anti-Sm in the whole blood of SLE patients [29]. Thus, the IFN-I signature is usually
positively correlated with the levels of autoantibodies in patients with SLE disease.

Complement component 1q (C1q) is a key molecule for complement activation, and
low C1q is associated with the development of SLE. The presence of anti-C1q antibodies
is found in 20–50% of SLE patients. Purified anti-C1q antibodies from lupus nephritis
inhibited phagocytosis of early apoptotic cells, which contributed to the accumulation of
autoantigen and the inhibition of clearance of apoptotic cells [30].

Antibodies specific to Ro and La are less frequent in SLE patients than in Sjögren
syndrome (SS). Anti-Ro antibodies are associated with cutaneous lupus erythematosus,
while anti-La antibodies are related to lupus nephritis and skin disease [25]. In addition,
pregnant women with anti-Ro are the most at risk to develop neonatal lupus in the fetus
with congenital heart block [31].

5. Controversy between Disease Activity and Type I Interferon Signature in SLE

There is some controversy regarding the association between IFNα expression/score
and SLE disease activity index (SLEDAI-2K). Positive associations were observed between
IFN5 score (LY6E, OAS1, IFIT1, ISG5, and MX1) and renal SLEDAI-2K (>3 criteria) [21],
between IFN5 score (EPSTI1, IFI44L, OAS3, and RSAD2) and SLEDAI-2K [14], and between
IFN3 score (IFI44, IFIT1, and PRKR) and SLEDAI-2K [4]. In contrast, no correlation was
found in SLE patients between SLEDAI-2K and the IFN3 score calculated with IFI27, OAS3,
and IFI44 [11]. The IFN-I scores remained stable over 3–12 months despite marked changes
in SLEDAI activity [21], suggesting that the IFN-I signature is not synchronous with acute
changes in disease activity in SLE.

The contradiction between studies is likely due to the clinical activity of SLE patients
(active versus inactive disease) and the diversity of manifestations that changes the SLEDAI-
2K scores. In addition, some IFIGs used to measure the IFN-I signature (and IFNα scores)
might not be the most responsive to changes in disease activity [32,33]. Depending on the
selected IFIGs, the expression of IFNα may not be a dynamic factor of the SLE disease
progress but a stable characteristic of the patient and innate activation state of the IFNα

pathway.

6. American College of Rheumatology (ACR) Criteria and Type I Interferon Signature

The ACR revised a set of criteria for the classification of SLE disease. This classifi-
cation is based on 11 criteria, including malar rash, discoid rash, photosensitivity, oral
ulcer, arthritis, serositis (pleurisy and pericarditis), renal disorder (persistent proteinuria
and cellular casts), neurologic disorder (psychosis and seizures), hematologic disorder
(hemolytic anemia, leukopenia, lymphopenia, and thrombocytopenia), immunologic dis-
order, and ANA [34]. Among ACR criteria, proteinuria and renal involvement were not
associated with IFN3α scores (measured by PRKR, IFI44, and IFIT1 or by IFIT1, MX1,
and PRKR) [21,35]. In contrast, renal involvement in SLE patients was associated with a
high IFN3 score (PRKR, IFIT1, and IFI44) [4]. In addition, the IFN4 score (LY6E, OAS1,
MX1, and ISG15) was higher in patients with lupus nephritis than in patients without,
especially during active renal disease [16]. IFN-I gene expression (MX1, EI2AK2, and
IFIT1) in serum from SLE patients was positively correlated with arthritis, nephritis, and
lymphadenopathy [36]. Therefore, the selection of IFIGs influences the association between
the IFN-I score and ACR criteria.
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7. Type I Interferon Signature in other Autoimmune Diseases

Elevated IFN-I signature has been reported in other autoimmune diseases, including
RA [37], systemic sclerosis (SSc) [38], Sjögren’s syndrome (SS) [39,40], dermatomyositis
(DM) [41], and multiple sclerosis (MS) [42].

RA is a systemic autoimmune disease characterized by chronic inflammation in the
synovium of the joint tissue and autoantibodies in the serum, especially rheumatoid factor
and anti-cyclic citrullinated peptide antibodies [43]. Using microarrays, the IFN43 score
(calculated with 43 IFIGs) was higher in 20 RA patients than in 15 RA patients or 15 healthy
controls in peripheral blood, suggesting that the IFN-I signature is present in a subgroup
of patients with RA, characterized by increased activity of innate immunity, coagulation,
and complement cascades [43]. Similarly, a high IFN35 score (calculated with 35 IFIGs
using Affymetrix microarray technology) was detected in 22% of RA patients (22/102) in
whole blood [37]. This study revealed that the IFN-I signature was heterogeneous in RA
patients and the treatment with anti-TNFα reduced IFN-1 expression in RA patients [37].
Finally, IFIG response (IFIT2, RSAD2, STAT1, and XAF1) was overexpressed in fibroblasts
and monocytes from RA synovium samples, while T cells had upregulation of interferon
regulatory factors (IRFs), including IRF7 and IRF9 [44]. The subgroup of RA patients with
an elevated IFN-I signature was more likely to respond to treatment with rituximab and
tocilizumab [45–47].

Patients with SSc possess endothelial cell dysfunction and immune impairment, result-
ing in fibrosis and Raynaud’s phenomenon [38]. SSc is also characterized by a dysregulation
of humoral immunity and the production of autoantibodies to nuclear and nucleolar com-
ponents, which can lead to an elevated IFN-I signature. Microarrays showed a higher gene
expression of seven IFIGs (G1P3, G1P2, MNDA, IRF7, TAP1, ISG20, and MX1) in periph-
eral blood cells from patients with SSc than in healthy controls [38]. However, elevated
IFIG expression levels in peripheral blood of SSc with established disease (47–68%) were
lower than those in SLE [48]. Previous findings suggest that elevated IFN signature could
happen later in the SSc disease and play a less critical pathogenic role than in SLE and SS
patients [49].

SS (also named sicca syndrome) is a chronic autoimmune disease characterized by
lymphocytic infiltration of exocrine glands [50]. SS pathogenesis is associated with autoan-
tibody production and dysregulation of apoptosis. Using microarrays, gene expression
of IFIGs was overexpressed in the peripheral blood of SS patients compared to healthy
controls [51]. The expression levels for most IFIGs were positively correlated with the titers
of anti-Ro/SSA and anti-La/SSB antibodies [51]. Salivary gland biopsy specimens from
SS patients contain various immune cells producing IFNα [40]. Sera from SS patients had
anti-RBP antibodies (including SSA/Ro, SSB/La, RNP, and/or Sm), which are associated
with increasing IFNα production in peripheral blood mononuclear cells. SS and SLE sera
had comparable levels of IFNα after stimulation with apoptotic or necrotic cells [40]. Like
SLE, SS patients produce immune complexes with IgG binding to nucleic acid released
by apoptotic cells, which induce the IFN-I signature in pDCs from peripheral blood [39].
Therefore, when evaluating the specificity of IFN-I signature for SLE diagnosis, SS sam-
ples will degenerate more “false positive” during the validation. The specificity could be
improved by the selection of IFIGs with higher expression levels in SLE than in SS.

DM is characterized by vascular inflammation, antibodies against endothelial au-
toantigen, and skin rash [52]. Infiltration of B cells and CD4+ T cells was associated with
abnormalities in muscle tissue in DM patients. Using microarrays, IFIG expression levels
(including ISG5, Mx1, OAS1, IFIT4, IFIT1, IFI44, OAS3, OAS2, IRF7, and IFI27) in muscle
samples were higher in DM than in other inflammatory myopathies, such as inclusion body
myositis, polymyositis, necrotizing myopathy, and myopathies with inflammation [41]. In
addition, the IFN6 score (ISG15, LY6E, IFI44, IFI27, IFIT1, and OAS1) was higher in 13 DM
patients than in 40 patients with inflammatory myopathies (no patients had SLE or MCTD).
Like SS, DM would reduce the specificity of IFN-I signature in SLE due to its presence in
DM patients.
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MS is a chronic neurological disorder with heterogeneous demyelination and inflam-
mation in the white matter of the central nervous system. Gene expression of IFIGs (IFI44L,
IFITM1, G1P2, IFITM3, and Mx1) in peripheral blood cells was higher in MS than in healthy
controls, suggesting an elevated IFN-I signature in MS patients [42]. Moreover, IFNα levels
increased in peripheral blood from MS patients compared to healthy controls [53]. The role
of the IFN-I signature in MS is still not well understood.

Systemic autoimmune rheumatic diseases (SARDs) (Figure 3), which include SLE, SS,
SSc, DM, RA, and PM, have overlapping clinical characteristics, especially the production
of ANA. The IFN5 score (EPSTI1, IFI44L, LY6E, OAS3, and RSAD2) was higher in SARD
patients with positive ANA than in SARD patients with negative ANA [49]. In early SARD,
elevated IFN5 was detected in 65.5% of patients (SLE 80.3%, MCTD/DM 100%, SS 82.6%,
and SSc 42.3%). Interestingly, SSc patients had the lowest IFN5 score among the SARD
groups. Elevated IFN-I signature was detected in 35% of patients with early SSc, but their
IFN5 score was lower than in other early SARD groups. In all ANA-positive groups, only
the presence of anti-Ro and anti-La antibodies were positively correlated with the IFN5
score among all autoantibodies (including anti-RNP, anti-Sm, and anti-dsDNA), suggesting
that anti-Ro and anti-La play a role in IFNα production [49]. Moreover, a high IFN-I
signature was observed in asymptomatic patients that had positive ANA (titer ≥1:160 by
immunofluorescence), confirming that elevated levels of IFIG expression are associated
with ANA production. Another study reported that the breakdown of positive IFN-I
signatures (top five IFIGs were IFI6, RSAD2, STAT2, IFI44, and IFI27) in whole blood of
patients were 73% SLE, 68% SSc, 66% DM, 61% polymyositis (PM), and 33% RA [29]. These
findings confirm the major role of autoantibodies in the development of IFN-I signature.
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Figure 3. Presence of type I interferon signature in systemic autoimmune rheumatic diseases, which
include systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, Sjögren’s syndrome,
multiple sclerosis, dermatomyositis, and polymyositis.

As previously discussed, the selection of IFIGs plays an important role in the accuracy
of IFN-I signature. Potential criteria of IFIG selection for specific autoimmune diseases are
higher expressed IFIGs in the specific disease than other diseases and healthy controls, at
least six IFIGs used to calculate the IFN score, and positive correlations between selected
IFIGs and autoantibody concentrations. In addition, the gene expression of IFIG(s) that is
positively correlated with disease activity/severity is desirable to improve the prognostic
of the patient.
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IFNs are well known for their antiviral properties and are grouped into two categories,
type I (IFNα) and type II (IFNγ) [42]. Viral infection induces the production of IFNα, while
activated T and NK cells produce mainly IFNγ. Viral infection in healthy populations
can increase IFN-I expression in blood. A high IFN35 score (calculated with 35 IFIGs
using microarrays) was detected in 15% of healthy controls (15/100) in whole blood [37].
However, expression levels of “common” IFN-I signature (IFI27, LY6E, and IFI44L) in CD4+

T cells and monocytes from PBMCs were higher in SLE than in immunized healthy donors
with yellow fever vaccine YFV-17D [54]. Their findings revealed that monocytes (subsets
CD16− and CD16+) possess a more complex transcriptional regulation in response to IFN-I
than CD4+ T cells in viral infection [54]. Thus, the IFN-I signatures in SLE and normal
immune response against a virus differ in the activation of IFIGs and their expression
levels.

8. Medical Therapy and Type I Interferon Signature

Specific medical therapy can reduce IFN-I signature in SLE patients. Hydroxychloro-
quine (HCQ) or corticosteroid therapy showed a trend toward a negative correlation with
the IFN-I score (PRKR, IFIT1, and IFI44) in PBMCs of SLE patients [4]. Chloroquine inhib-
ited cell signaling in TLR pathways by reducing complex-mediated cell activation and IFNα

production [55]. IFIG expression levels were lower in SLE patients with pulse glucocorticoid
(GC) therapy than those without this therapy, likely due to a reduction in IFNα-producing
pDC cells [4,56]. The use of immunosuppressive agents was positively correlated with IFN5
(LY6E, OAS1, IFIT1, ISG5, and MX1) in SLE patients [21]. In contrast, the IFN-I score was
similar between SLE patients taking immunosuppressive therapies, including mycophe-
nolate and azathioprine, and those without immunosuppressive agents [4]. Prednisone
and antimalarial treatments did not influence the IFN5 score in SLE patients [21]. Similarly,
no association was detected between treatment with antimalarial or immunosuppressive
drugs (azathioprine, mycophenolate, methotrexate, and cyclosporine) and IFN5 score (EP-
STI1, IFI44L, LYE6, OAS3, and RSAD2) in SLE patients [14]. The contradiction between
studies is likely due to heterogenicity in SLE disease and variability in response to medical
therapy among patients. Lastly, the therapy with corticosteroids, HCQ, methotrexate, or
other immunosuppressive drugs could reduce the IFN score [13] but more studies are
needed to select the most sensitive and specific IFIGs that respond to immunosuppressive
treatment in SLE patients.

9. Ethnicity and Type I Interferon Signature

In SLE patients, white race was negatively correlated with IFN-I gene expression
(MX1, EI2AK2, and IFIT1) [37] and IFN4 (HERC5, IFI27, IFIT1, and RSAD2) [57]. Similarly,
the IFN3 score (PRKR, IFIT1, and IFI44) was lower in Caucasians than in other ethnicities
(combined African Americans, Asians, and Hispanics) [4]. IFNα concentration was lower
in Caucasians than in Africans or Asians and comparable between Caucasians and Hispan-
ics [58]. The role of ethnicity in the development of elevated IFN-I signature remains to be
investigated.

10. Conclusions

This review article has clinical relevance in autoimmune disease to improve our knowl-
edge of IFN-I signature to monitor and diagnose SLE disease. Elevated IFN-I signature
induces DC and B-cell maturation and T-cell activation, leading to autoantibody production.
IFNα could represent a promising target for therapeutic intervention in SLE with elevated
IFN-I signature. IFIG expression detects cellular activity (IFNα production by immune
cells) and the classification of lupus patients that are similar clinically, leading to the devel-
opment of diagnostic and prognostic biomarkers that will help physicians to select specific
biological treatments. Prospective studies are required to assess the role of IFIG and the
best combination of IFIGs to monitor SLE disease activity and drug treatments (response
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to therapy). The influence of genetic and immunological characteristics of individual SLE
patients on the IFN-I signature remains to be investigated.
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