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Abstract: Accurate identification of tissue types in surgical margins is essential for ensuring the
complete removal of cancerous cells and minimizing the risk of recurrence. The objective of this
study was to explore the clinical utility of Raman spectroscopy for the detection of oral squamous cell
carcinoma (OSCC) in both tumor and healthy tissues obtained from surgical resection specimens dur-
ing surgery. This study enrolled a total of 64 patients diagnosed with OSCC. Among the participants,
approximately 50% of the cases were classified as the most advanced stage, referred to as T4. Raman
experiments were conducted on cryopreserved tissue samples collected from patients diagnosed
with OSCC. Prominent spectral regions containing key oral biomarkers were analyzed using the
partial least squares–support vector machine (PLS–SVM) method, which is a powerful multivariate
analysis technique for discriminant analysis. This approach effectively differentiated OSCC tissue
from non-OSCC tissue, achieving a sensitivity of 95.7% and a specificity of 93.3% with 94.7% accuracy.
In the current study, Raman analysis of fresh tissue samples showed that OSCC tissues contained
significantly higher levels of nucleic acids, proteins, and several amino acids compared to the adjacent
healthy tissues. In addition to differentiating between OSCC and non-OSCC tissues, we have also
explored the potential of Raman spectroscopy in classifying different stages of OSCC. Specifically, we
have investigated the classification of T1, T2, T3, and T4 stages based on their Raman spectra. These
findings emphasize the importance of considering both stage and subsite factors in the application
of Raman spectroscopy for OSCC analysis. Future work will focus on expanding our tissue sample
collection to better comprehend how different subsites influence the Raman spectra of OSCC at
various stages, aiming to improve diagnostic accuracy and aid in identifying tumor-free margins
during surgical interventions.

Keywords: Raman spectroscopy; oral cancer; partial least squares; support vector machine; tissue

1. Introduction

Oral cancer, associated with significant morbidity and mortality rates, involves the
development of cancerous cells in the tissues of the oral cavity, including the mouth, tongue,
lips, gums, the floor of the mouth, and the inner lining of the cheeks [1]. OSCC is the most
common type of oral cancer, accounting for approximately 90% of all oral malignancies,
which are often detected at a later stage, leading to a five-year survival rate of approxi-
mately 50% [2]. Oral potentially malignant disorders (OPMDs) are mucosal irregularities
that carry a higher risk of developing into OSCC. Timely detection and intervention are
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essential to mitigate its life-treatening potential. Annually, around 377,713 new cases are
diagnosed, with the highest number (248,360) recorded in Asia; there are 177,757 deaths
due to oral cancer worldwide [3]. It is the fourth most common cancer among men in
Taiwan, with an incidence of 7400 cases [4]. In Taiwan, it is the major malignancy in young
adults, and the average age of death is lower than other cancers. In recent years, many
innovative diagnostic and therapeutic approaches have been developed for the detection
and treatment of oral cancer, significantly enhancing patient survival rates. Although, in
some patients, due to the late diagnosis of the disease, the postoperative survival rate still
needs to be improved. Early diagnosis and treatment of oral cancer are crucial for im-
proving survival rate and achieving a better prognosis. During routine practice, clinicians
identify oral cancer by conducting a traditional oral examination. If any abnormalities
are observed, patients are recommended for a biopsy to establish a definitive diagnosis.
However, biopsies are invasive procedures that may cause discomfort to patients and
require both specialized skills and access to expensive laboratory resources, which are often
only available in resource-rich settings. Hence, several non-invasive diagnostic methods
have been developed at the clinical level to decrease the frequency of biopsies and enable
early-stage diagnosis of oral cancer [5]. The existence of early detection techniques for oral
cancer can aid in establishing a specialized area for accurate prognosis and prevention.
Nonetheless, current diagnostic procedures and therapies have not yet achieved optimal
effectiveness [6].

There are many non-invasive techniques, such as vital staining techniques [7], optical
imaging, and autofluorescence imaging [8], to assist in the early detection of oral cancer.
However,Raman spectroscopy is the most widely used optical technique for providing
specific fingerprint-type information on molecules [9]. Before morphological changes in
the diseased tissue take place, it can identify changes in the composition and content of
biomolecules in a sample caused by cell proliferation, differentiation, or malignancy [10].
Raman spectroscopy presents numerous benefits over conventional chemical techniques,
including eliminating the requirement for dilution and reagents, reduced analysis duration,
provision of extensive information, and the ability to work with minimal sample vol-
umes [11]. Multivariate analysis remains essential for pinpointing the most diagnostically
relevant features within the spectral dataset and for delving deeper into the underlying bio-
chemical alterations. The efficacy of Raman spectroscopy (an optical diagnostic technique)
with multivariate statistical analyses was demonstrated using an excitation wavelength
of 532 nm for oral cancer detection, using discriminant analysis (DA) followed by prin-
cipal component analysis (PCA) and partial least squares (PLS) [12,13]. In a previous
study [14], we explored the combined use of optical diagnostic techniques, namely Raman
spectroscopy and VELscope, to enhance the detection rate of oral cancer. Since OSCC
is commonly found among oral cancer patients, it is crucial to develop an accurate and
non-invasive method for detecting OSCC. Although, at the early stage, adjuvant treatment
can be more beneficial than in advanced stages. One global collaborative study under-
scores the significance of adjuvant therapy for early-stage OSCC, showing its potential
to enhance patient outcomes and inform the creation of more efficient, tailored treatment
approaches [15]. The potential of Raman spectroscopy has been repeatedly proven in many
studies in discriminating OCSCC from non-tumorous tissue by using different techniques
based on spectral data [16–19].

In this study, a Support Vector Machine (SVM) technique followed by PLS was pro-
posed for classifying the OSCC from non-tumorous tissues, which could play an important
role in the margin of resection for intraoperative use. Afterward, the cross-validation (CV)
method was used to evaluate the model performance in terms of sensitivity, specificity,
accuracy, precision, F1-measure (F1), balanced accuracy, Matthews correlation coefficient,
and the receiver operating characteristic (ROC) curve.
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2. Methods and Materials
2.1. Sample Collection and Preparation

The Chang Gung Memorial Hospital’s Institutional Review Board (IRB) approved
this study through IRB No: 201800420B0 and 202300682B0. This study was conducted in
the Department of Otolaryngology—Head and Neck Surgery in Taiwan. Tissue samples
for ex vivo experiments with pathological reports were collected in the Chang Gung
Memorial Hospital’s Department of Otolaryngology—Head and Neck Surgery. In this
study, we measured 128 tissue samples taken from 64 patients (64 from adjacent sites of
tumor and 64 from tumor cryopreserved tissue samples). The mean age of the patients
was 55.4 ± 12.8 years and 92% of the patients were male. The patient demographics are
illustrated in Table 1. Following surgery, participants were admitted to the ICU, where they
provided their written informed consent for the collection of tissue samples. All samples
measured a minimum of 3 × 3 mm. Surgical resection specimens from normal-looking
mucosa near the tumor were collected 15–30 min after surgical removal, while tumor
samples were acquired immediately post-surgery. The distance between the tumor border
and the adjacent tissue (resection margin) is 1.5 to 2 cm. The examined cryopreserved
samples were freshly sliced and stored in liquid nitrogen at −80 °C to maintain their
morphological integrity until use. Glass, being the most widely available substrate and
providing satisfactory results at lower source wavelengths [20], was employed as the
substrate for testing each tissue sample. From each tissue sample, five spectra were
collected, resulting in a total of 320 spectra from tumor tissues and 320 spectra from
non-tumorous parts. This provided a combined total of 640 spectra for analysis.

2.2. Raman Spectroscopy Detection and Data Acquisition

The Micro Raman Identify (MRI) system (ProTrusTech Co., Ltd., Tainan, Taiwan) was
used, which has a laser with an excitation wavelength of 532 nm and a laser power of
12.6 mW. The integration and acquisition durations were set at 5 s and 15 s, respectively,
with an average spectrum value of 3. Before the analyses, the samples were removed
from the refrigerator and allowed to thaw at room temperature for approximately 1 h.
Subsequently, Raman spectra were recorded for the tissue samples at room temperature
using the Raman spectroscopy technique. For each sample measurement, five spectra
were gathered from the entire sample area, and the average of these five spectra was used
for subsequent data analysis. Figure 1 displays a representative Raman spectrum with
selected regions of interest (normal and tumor tissues) and their corresponding measured
Raman spectra.

2.3. Data Analysis

Raman spectroscopy data were preprocessed to reduce interference, baseline correc-
tion, and eliminate data redundancy. After preprocessing, the spectral data consisted of
965 intensity variables, ranging from 500 cm−1 to 1800 cm−1. Spectral preprocessed data
were analyzed using an SVM followed by PLS. To enhance the diagnostic performance
of the SVM classifier, dimensionality reduction of the tissue’s Raman spectral data was
required. PLS was employed to extract features from the pre-processed Raman spectra of
the tissue samples. The mean-normalized spectral data were analyzed using the PLS–SVM,
developed in MATLAB (R2018a, MathWorks, MA, USA), which is a multivariate statistical
method. The main rationale for employing this multivariate statistical model is that the
PLS method eliminates redundancy and noise in high-dimensional datasets, while also
enabling the reduced-dimension features to serve as input for the SVM classifier [21]. The
PLS model was employed to estimate the concentrations of various biomolecules, such as
proteins, nucleic acids, lipids, and more, to their respective Raman spectra. In PLS discrim-
inant analysis, the latent variables (LVs) are oriented to maximize group differentiation.
Consequently, the LVs evaluate diagnostically relevant alterations rather than substantial
variations within the dataset [22]. SVM has been demonstrated to be an effective technique
for carrying out nonlinear classification, multivariate function estimation, or nonlinear
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regression. It efficiently prevents overfitting and underfitting issues, resulting in a more
efficient and convincing outcome [23].

Table 1. Patient Demographics Table.

Characteristics Age (Mean ± SD) Gender (M:F)

55.4 ± 12.8 59:5

Location

Tongue 14 (21.9%)
Mouth floor 5 (7.8%)
Lip 2 (3%)
Buccal mucosa 28 (43.8%)
Alveolus (gum) 14 (21.9%)
Retromolar trigone 1 (1.6%)

Tumor Stage T1 T2 T3 T4
6 (9.5%) 17 (26.3%) 10 (15.7%) 31 (48.5%)

Figure 1. Sampling process: OCSCC of the tongue (tumor part) and normal sample taken from
around 2 cm from tumor border along with mean Raman spectrum for normal and tumor specimen.

3. Results

A total of 128 tissue samples were analyzed using Raman spectroscopy. Among these
samples, 90 were utilized to develop the OSCC detection algorithm or classification model
with the training dataset. The remaining 38 samples served to validate the model using the
testing dataset. The tissue samples were collected from 64 patients diagnosed with oral
cancer, with 64 samples from non-tumorous regions and 64 from tumor lesions. Within the
OSCC patient group, 6 patients were in the first stage (T1), 17 in the second stage (T2), 10 in
the third stage (T3), and 31 in the fourth stage (T4).

3.1. Spectral Features

Figure 2 depicts the average Raman spectra for the 64 non-tumorous and 64 OSCC
patients after pre-processing, within the wave-number range of 500–1800 cm−1. In our
study, we found that the average spectra of non-tumorous tissue exhibited lower peaks
compared to OSCC, with major contributions from proteins, nucleic acids, amino acids,
carbohydrates, and lipids. The literature confirms that spectral peaks in normal tissue are
primarily influenced by lipids, while malignant tissue peaks are predominantly driven by
proteins [13,24]. The spectra of malignant or tumor tissue samples were characterized by
peaks at 1004, 1156, 1339, 1450, 1523, and 1655 cm−1, while normal tissue samples exhibited
dominant peaks at 747,829, 1072, 1220, and 1734 cm−1. It can be observed that both types
of tissues exhibit carotenoid peaks at 1523 cm−1 and 1155 cm−1, with tumorous tissues
displaying more intense carotenoid peaks compared to normal tissue. In one study [25],
these peaks (1004, 1156, and 1523 cm−1) were observed in the carcinoma Raman patterns
during the investigation, and they were significantly less intense in healthy tissues, which
is in good agreement with our results. The presence of peaks at 1156 and 1518 cm−1 in
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our analysis resulted from mixed signals, with contributions from both carotenoids and
proteins. The peak at 1004 cm−1 can be attributed to the characteristic phenylalanine of
proteins [26]. The Raman bands for phospholipids at 1078 and 1745 cm−1, as well as
tyrosine at 823 cm−1, exhibit a significant reduction in normalized intensity, suggesting
a lower proportion of phospholipids in relation to the total Raman-active constituents in
tumor tissue [27]. The peak at 1078 cm−1 in normal tissue, attributed to the C–C or C–O
stretching mode of phospholipids, nearly disappears in tumor tissue, indicating reduced
vibrational stability of lipid chains in tumors [28]. Cancerous spectral characteristics consist
of a wide and pronounced amide I peak at 1655 cm−1, a CH2 bending peak at 1450 cm−1,
broad peaks in the amide III range of 1265–1350 cm−1, and the distinct phenylalanine peak
at 1004 cm−1, all suggesting a significant protein contribution. Meanwhile, in normal tissue,
the sharp, weak band at 1655 cm−1 is attributed to the C=C bonds of lipids, rather than
amide I. The smaller peak at 1745 cm−1 in normal tissue indicates the lipid assignment
of phospholipids. A broad peak at 1220 cm−1 indicates a lipid assignment attributed to
the =CH bending. The scores of factors are linear combinations of original variables that
capture the maximum variance in the dataset while reducing dimensionality. The scores of
components offer quantitative insights into the biomolecules available, and this information
can be utilized to distinguish between the different groups in a large dataset.

Figure 2. Mean Raman spectra of oral normal and OSCC tissues.

3.2. Optimization of PLS Components and Evaluation

The classifier models were optimized using a training dataset to assess the classifi-
cation results, and their performance was subsequently evaluated using a separate test
dataset. The optimal number of PLS components is typically chosen based on the perfor-
mance measures obtained through the K-fold cross-validation (KFCV) method [29]. KFCV
was used to assess the prediction performance of PLS models with different numbers
of components, finally, it provides the optimal number of components that minimizes
the average prediction error (mean squared error) or provides the highest coefficient of
determination (R-squared) across the k-folds. The R-squared value and mean squared
error were 0.9166 and 0.1048 for 10 PLS components, respectively. k-fold cross-validation
usually provides an unbiased estimate of the true model accuracy; a larger validation
value is recommended due to the good balance between bias and variance [30]. The first
10 components had a strong correlation coefficient of 0.95 between the X and Y scores in
the PLS model. These PLS components were fed into the SVM classifier, and the analysis
primarily classified the patients into two groups: with OSCC and without OSCC. Table 2
illustrates the relationship between the number of PLS components and the corresponding
computation time needed to evaluate the model’s performance. The number of latent
variables (components) increased with computation time [31]. Computation time was
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calculated by running the PLS function multiple times and calculating the average com-
putation time. The initial “warm-up” run was executed before measuring the time. Once
10 PLS components were employed, the graph revealed that the explained variance for
both predictors and the response variable reached a saturation point, with a negligible
increase beyond that (Figure 3a). Figure 3b shows a scatter plot between the first three PLS
components, which can be used to visualize the relationships and patterns among the data
points in a reduced-dimensionality space. A ROC curve was employed to illustrate the
classification of tissue samples into non-OSCC and OSCC groups by plotting the sensitivity
(true positive rate) against the false positive rate (1-specificity).

Table 2. Computation Time (in milliseconds) for PLS-SVM Classifier with Varying PLS Components.

Number of PLS Components Computation Time (in msec) with Classifier

2 7.1

5 7.6

10 9.9

3.3. Training and Validation Procedure of SVM Model

Dividing the dataset into training and testing subsets is a crucial step in evaluating
the performance of a machine learning model. In our process, we split the dataset into two
parts: one for training the model (70% of the data) and the other for testing its performance
(30% of the data). This approach helps to assess the model’s ability to generalize to unseen
data, reducing the risk of over-fitting. To divide the dataset, we randomly shuffled the
data and then allocated 70% of the samples for training and the remaining 30% for testing.
This process ensures that both subsets have a representative distribution of the original
data. To further improve the reliability of the performance evaluation, we performed
the splitting procedure multiple times, each time creating a new training and testing set.
This approach is called repeated random sampling [32]. By averaging the performance
metrics (e.g., accuracy, precision, sensitivity) over multiple iterations, we can obtain a
more accurate and robust estimate of the model’s performance. Figure 4 displays the 2D
boundary plot for the SVM classifier after processing by PLS. The 2D boundary curve
for the SVM classifier provides a visual representation of the decision boundary that the
algorithm uses to distinguish between different classes in a two-dimensional feature space.
The curve was generated by considering the support vectors, which are the data points
closest to the decision boundary, and the margin, which represents the distance between
the support vectors and the decision boundary. The SVM algorithm aims to maximize this
margin to improve classification performance and robustness. Figure 4a represents the
plot for the training dataset, while Figure 4b illustrates the plot for the testing dataset. The
decision boundary effectively distinguishes between the two classes in this data.

3.4. Evaluation of Model Using Testing Set

To ensure the reliability and generalizability of the SVM classifier’s performance,
k-fold cross-validation was employed during the model evaluation process. In k-fold cross-
validation, the dataset is divided into k equally sized folds. The model is then trained on
k-1 folds and tested on the remaining fold. This process is repeated k times, with each fold
being used as the test set exactly once. The average performance metric, such as accuracy,
precision, recall, or F1-score, is calculated by aggregating the results from all k iterations. By
using k-fold cross-validation, we can obtain a more robust estimate of the SVM classifier’s
performance, minimizing the risk of overfitting and providing a better understanding of
how the model is expected to perform on unseen data. The tissue Raman spectra from
cancer patients, including both the operated tumor regions and adjacent normal sites,
were analyzed to develop a differential diagnosis model. The performance table of the
SVM classifier using testing data is shown in Table 3. The model’s performance was
assessed using various evaluation metrics, such as sensitivity, specificity, accuracy, F1-score,
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balanced accuracy, Matthews correlation coefficient, and area under the curve (AUC).
Cross-validation was employed as the method for evaluating the model, ensuring a robust
and reliable assessment of its diagnostic capabilities. In the tissue sample analysis, we
obtained an accuracy of 94.7% for distinguishing between the squamous carcinoma tissue
and the normal tissue. The sensitivity and specificity were 95.7% and 93.3%, respectively.
These results suggest that the diagnostic model is stable and can be effectively employed
for identifying tissue samples from patients at various stages of disease.

(a) (b)

Figure 3. PLS. (a) Variance of x (predictors) and y (response variable) vs. the number of PLS
components in the tissue sample dataset; (b) 3D scatter plot.

(a) (b)

Figure 4. SVM decision boundary curve for (a) training data, (b) testing data.

A PLS–SVM model was used to analyze the statistical efficiency of this tool. PLS
is a dimensionality reduction technique used to extract the most relevant features from
the data, while SVM is a supervised machine learning algorithm used for classification
or regression tasks. The PLS data were calculated for tumorous and normal tissue in the
fingerprint region 500–1800 cm−1. The spectral data were analyzed according to the first
ten PLS components. The PLS–SVM model is preferable to spectral data and is the most
effective multivariate statistical technique [33]. In this study, an ROC curve was used to
evaluate the clinical potential of the PLS–SVM model, with the AUC offering an estimation
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of sensitivity and specificity at various significance levels. The ROC curve was generated
using both training and testing datasets. The training dataset yielded an accuracy of
99% with 99.7% AUC, while the testing dataset provided an accuracy of 97.5% with
98.9% AUC, as exhibited in Figure 5. These results suggest that the classification model
has great potential for accurate and reliable diagnosis in clinical settings. However, further
validation with larger datasets is recommended to ensure the robustness and applicability
of the model in real-world scenarios. According to the model, most of the biomolecular
information from tissue samples is vital for distinguishing OSCC tissue from healthy tissue.
All tissue samples in this study were obtained from oral surgery patients, and the goal was
to achieve higher sensitivity and specificity using the PLS–SVM classification model.

Table 3. Performance table of SVM classifier: SEN (sensitivity), SPE (specificity), AC (accuracy), PRE
(precision), F1 (F1-score), BAC (balanced accuracy), MCC (Matthews correlation coefficient).

PLS-SVM SEN SPE AC PRE BAC F1-Score MCC

Parameters 95.65 93.33% 94.74% 95.65% 94.49% 95.65% 0.889

(a) (b)

Figure 5. ROC curve of the classification results for the PLS–SVM model using (a) training data and
(b) testing data.

4. Discussion

Tissue samples can provide crucial insights into the molecular, cellular, and histolog-
ical features of various diseases, which can aid in the development of novel diagnostic
tools, therapies, and prevention strategies. By investigating the molecular, cellular, and
histological features of tissue samples, researchers can gain important insights into disease
mechanisms, identify novel diagnostic and therapeutic targets, and evaluate the effective-
ness of treatments. In this study, we used the cryopreserved technique to preserve the
tissue samples. Cryopreserved tissue samples play a crucial role in biomedical research and
diagnostic applications. The process of cryopreservation involves preserving tissue samples
at extremely low temperatures, typically using liquid nitrogen or ultra-low freezers, to
maintain their structural integrity, molecular composition, and biological function. this
also minimizes the degradation of cellular components and biomolecules, such as DNA,
RNA, proteins, and metabolites, ensuring that the samples remain representative of their
original state. This preservation of biological information is vital for accurate data analysis
and interpretation.

The Raman spectra of OSCC specimens revealed significantly higher nucleic acid,
protein, carotenoids, and various amino acid contents compared to adjacent healthy tissues.
Conversely, the Raman spectra of healthy specimens showed a significantly higher lipid
content than tumorous tissue. The substantial differences between cancerous and healthy
tissues led to a high discrimination rate in this study, even when using a testing dataset with
the cross-validation technique, which is a fair approach for assessing model performance.
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One possible reason for these findings is that most cancer patients in this study were at an
advanced stage, resulting in more significant variations between the two types of spectra.

We have demonstrated that Raman spectroscopy is a useful tool for diagnosing OSCC
from tissue samples. Despite the limited number of oral cancer patients included in this
study, we were able to differentiate between various stages of the disease solely using
Raman spectroscopy, without resorting to any classifier models. The mean Raman spectra
of each stage, when compared with normal tissues as depicted in Figure 6, provides initial
insight into stage-specific variations. This represents our preliminary results towards
a stage-biased classification approach. In Figure 6, we observed that the protein and
carotenoid peaks (at 1156 and 1523 cm−1, respectively) were more pronounced in the
stage 4 OSCC tissue samples compared to others. However, stage 3 spectra seemed to
deviate from this trend. This inconsistency could potentially be due to dominant subsites,
as different stages of the disease manifest in different subsites [34]. Similarly, the Amide
I peak at 1655 cm−1 was more prominent in stage 1 and stage 3 samples than in stages
2 and 4. This observation aligns with our finding that most tissue samples from stages
T1 and T3 originate from the buccal mucosa subsite, which characteristically presents a
more intense peak than tongue and gingiva subsites [12]. The phenylalanine peak, situated
at 1004 cm−1, exhibited the highest intensity in stage 4 cancer. The CH2 bending peak at
1450 cm−1 showed higher intensity in stage 3 patients. From these observations, it became
clear that when classifying OSCC by stages, it is crucial to consider subsites as well. As we
expand our tissue sample collection, future research could delve deeper into the impact of
different subsites on OSCC stages using Raman spectroscopy.

(a) (b)

(c) (d)
Figure 6. Comparison of Average Raman Spectra Between Normal Tissue and Various Stages of
OSCC: (a) Normal vs. Stage 1 OSCC (T1), (b) Normal vs. Stage 2 OSCC (T2), (c) Normal vs. Stage 3
OSCC (T3), and (d) Normal vs. Stage 4 OSCC (T4).

Despite significant advancements in the medical field, emerging diseases and com-
plications continue to pose considerable threats to human life. While our understanding
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of the complexities associated with OSCC is more extensive compared to novel diseases,
treatment may sometimes be delayed due to late detection or diagnostic errors, leading
to severe consequences or even patient mortality. By employing Raman spectroscopy, the
rapid analysis of biomolecules present in tissue samples becomes possible, potentially
reducing the occurrence of such delays and improving patient outcomes. The use of Raman
spectroscopy in clinical practice is an area of active research and development. While it
is not yet a widely established clinical tool, there is growing interest in its potential appli-
cations. Researchers are investigating the integration of Raman spectroscopy into clinical
workflows to enhance diagnostic accuracy, enable real-time tumor margin assessment
during surgery, and provide valuable information for personalized treatment decisions.

Raman spectroscopy is advantageous in surgical applications due to its high accuracy
and rapid analysis capabilities. It can be utilized to differentiate between healthy and
cancerous tissues during surgery, ensuring more precise tumor resection and improved
surgical outcomes. In oral cavity cancer, obtaining adequate surgical margins can sometimes
be challenging; however, Raman analysis could be particularly helpful in this aspect by
providing real-time feedback on tissue composition, enabling surgeons to make informed
decisions and minimize the risk of leaving behind residual cancerous cells.

5. Conclusions

This study introduces a non-invasive, fast, and straightforward method for identifying
healthy tissue adjacent to tumors in OSCC patients. The observed spectral differences
between healthy and OSCC patients’ tissues could be attributed to alterations in the
distribution and conformation of tissue metabolites, including amino acids, nucleotides,
sugars, lipids, and organic acids. The PLS–SVM analysis of the spectral data yielded an
accuracy of 94.7%, sensitivity of 95.7%, and specificity of 93.3%. Future research should
expand the sample size to validate these preliminary findings and aim to delve deeper
into how different subsites influence OSCC’s Raman spectra. This methodical approach
will improve OSCC diagnostic precision, possibly directing customized treatment plans for
varying OSCC stages and subsites to facilitate the early diagnosis of oral cancer.
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