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Abstract: The signal transducer and activator of transcription (STAT) family of proteins has been
demonstrated to perform pivotal roles downstream of a myriad of cytokines, particularly those that
control immune cell production and function. This is highlighted by both gain-of-function (GOF) and
loss-of-function (LOF) mutations being implicated in various diseases impacting cells of the immune
system. These mutations are typically inherited, although somatic GOF mutations are commonly
observed in certain immune cell malignancies. This review details the growing appreciation of STAT
proteins as a key node linking immunodeficiency, autoimmunity and cancer.
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1. Introduction

The signal transducer and activator of transcription (STAT) proteins were initially
discovered in the context of interferon (IFN) signaling, being identified as the major tran-
scription factor utilized to induce IFN-responsive genes to enable antiviral immunity [1].
Subsequently, other related proteins were identified, ultimately comprising a family of
seven members: STAT1, STAT2, STAT3, STAT4, the closely related STAT5A and STAT5B, as
well as STAT6. Each of the STAT proteins has subsequently been shown to play important
but distinct roles downstream of specific cytokines that are involved in the development
and function of immune cells, with several STATs having additional functions outside of the
immune system [2]. Here, we provide an overview of the structure, function and both the
canonical and non-canonical mechanisms of action of these proteins and also describe their
normal physiological roles. The various classes of STAT mutations identified in human
immune cell diseases are then detailed, with a discussion of their clinical implications.

2. Structure and Function of STAT Proteins

STAT proteins possess a conserved six-domain structure that underpins the ability of
these proteins to generate appropriate transcriptional changes in response to cytokines or
other factors (Figure 1A) [3]. The N-terminal domain (NTD) facilitates the nuclear transport
of these proteins, as well as contributing to the formation of STAT dimers through reciprocal
interactions. The coiled-coil domain (CCD) mediates interactions with other proteins, which
include negative regulators as well as other STAT proteins. The DNA-binding domain
(DBD) enables the binding of STAT proteins to roughly palindromic DNA sequences that
are present at specific sites adjacent to target genes across the genome to enable their
transcriptional regulation. The DBD is connected to a unique linker domain (LD) that
is presumed to provide structural support, which in turn connects to a Src homology 2
(SH2) domain. This protein interaction domain is common to a myriad of other signaling
proteins and facilitates specific binding to phosphorylated tyrosine residues found on other
proteins. In the case of STAT proteins, these are predominantly found in the intracellular
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region of cytokine receptors following cytokine binding. Additionally, the SH2 domain
facilitates the formation of STAT homodimers and heterodimers via an interaction with a
phosphotyrosine residue on a partner STAT protein. Finally, STAT proteins contain a highly
variable transactivation domain (TAD) at the C-terminus, which mediates their ability to
stimulate transcription through interactions with a range of transcriptional coactivators,
as well as containing the critical tyrosine residue that is phosphorylated to enable STAT
dimerization [3,4].
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receptor (CytoR, light blue) activates JAK kinases (purple), which is associated with the intracellular 
domains of these receptors that phosphorylate receptor tyrosine (Y) residues. STAT proteins are 
depicted in a schematic representation of their 3D structure with their respective domains being 
color-coded. These are initially latent, as cytoplasmic unphosphorylated STAT (uSTAT) molecules 
dock at these sites and become tyrosine-phosphorylated STAT (pSTAT) molecules that are mediated 
by the activated JAKs. These subsequently dissociate from the receptor and form pSTAT dimers that 
migrate to the nucleus to stimulate transcription of target genes encoding proteins impacting cell 
differentiation, proliferation, survival and function. Nuclear protein tyrosine phosphatase (PTP) 
proteins dephosphorylate pSTAT molecules to reform uSTAT molecules that are able to move back 
to the cytoplasm. Other negative regulators of the pathway include cytoplasmic PTPs that 
dephosphorylate cytokine receptor components, inducible suppressor of cytokine signaling (SOCS) 
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Figure 1. STAT protein structure and canonical function. (A). The common domain structure of
STAT proteins, which comprises an N-terminal domain (NTD), coiled-coil domain (CCD), DNA-
binding domain (DBD), linker domain (LD), SH2 domain (SH2) and transactivation domain (TAD),
including a conserved tyrosine (Y) residue that is able to be phosphorylated. (B). Overview of the
canonical mode of STAT signaling. Binding of a cytokine (Cyto, dark blue) to its specific cytokine
receptor (CytoR, light blue) activates JAK kinases (purple), which is associated with the intracellular
domains of these receptors that phosphorylate receptor tyrosine (Y) residues. STAT proteins are
depicted in a schematic representation of their 3D structure with their respective domains being
color-coded. These are initially latent, as cytoplasmic unphosphorylated STAT (uSTAT) molecules
dock at these sites and become tyrosine-phosphorylated STAT (pSTAT) molecules that are mediated
by the activated JAKs. These subsequently dissociate from the receptor and form pSTAT dimers
that migrate to the nucleus to stimulate transcription of target genes encoding proteins impacting
cell differentiation, proliferation, survival and function. Nuclear protein tyrosine phosphatase
(PTP) proteins dephosphorylate pSTAT molecules to reform uSTAT molecules that are able to move
back to the cytoplasm. Other negative regulators of the pathway include cytoplasmic PTPs that
dephosphorylate cytokine receptor components, inducible suppressor of cytokine signaling (SOCS)
proteins (green) that create a negative feedback loop by interfering with STAT docking, inhibiting
JAKs and/or mediating degradation of cytokine receptor components, as well as protein inhibitors of
activated STAT (PIAS) proteins that act via blocking STAT dimerization and nuclear entry.

3. Mechanism of Action

The canonical mode of STAT signaling involves their major function as inducible
transcriptional activators [4]. In this modality, unphosphorylated STAT (uSTAT) monomers
remain in an inactive state in the cytoplasm until they are recruited to phosphotyrosine
residues on cytokine and other receptors via their SH2 domain, which determines the cy-
tokine specificity of the STAT activation (Figure 1B). Once docked, these uSTAT molecules in
turn become tyrosine-phosphorylated, typically mediated by cytokine receptor-associated
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Janus kinase (JAK) proteins, thereby becoming “activated” tyrosine-phosphorylated STAT
(pSTAT) molecules. These pSTATs then dissociate from the receptor and subsequently
associate together to form dimers through reciprocal interactions of SH2 domains and phos-
photyrosine residues on partner pSTAT proteins. Active pSTAT dimers then translocate
into the nucleus, where they bind to specific DNA sequences to stimulate transcription of
target genes. The consensus STAT recognition sequence is TTCN2–4GAA. However, the
exact sequences recognized by each STAT protein differ from one another, providing a
further layer of specificity [3,4].

The pSTAT proteins are inactivated by nuclear protein tyrosine phosphatases (PTPs),
with the regenerated uSTATs returning to the cytoplasm [5,6]. The canonical STAT signaling
pathway is also negatively regulated by cytoplasmic PTPs, which dephosphorylate various
receptor components to inhibit STAT activation [7], by members of the suppressor of
cytokine signaling (SOCS) family of negative feedback regulators, which are induced by
STAT signaling and then act to inhibit further signaling via a number of mechanisms [8,9],
and protein inhibitors of activated STAT (PIAS) proteins that can directly bind to STAT
proteins to suppress nuclear entry.

However, it is important to note that alternative non-canonical modalities of STAT
signaling exist [4,10] (Figure 2). Thus, pSTAT dimers can also facilitate transcriptional
repression of specific nuclear genes, as well as mediate transcriptional activation of mito-
chondrial genes. Alternatively, uSTAT proteins can dimerize without the need for tyrosine
phosphorylation, with some uSTATs also exhibiting DNA-binding capabilities [11]. In this
manner, uSTAT proteins can facilitate both gene transcription and repression in the nucleus,
but also perform additional non-nuclear, non-transcriptional functions impacting the cell
membrane, microtubules and endoplasmic reticulum in particular cell settings [10,11].
Finally, alternate splicing and post-translational modifications such as serine phosphoryla-
tion, acetylation and ubiquitination can also impact the activity of specific STAT proteins in
particular cellular contexts [4].Biomedicines 2024, 12, x FOR PEER REVIEW 4 of 16 
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Figure 2. Non-canonical STAT functions. Schematic representation of non-canonical STAT functions,
with pSTAT dimers able to facilitate nuclear transcriptional repression and mitochondrial transcrip-
tional activation and uSTAT molecules with the potential to mediate both transcriptional activation
and repression in the nucleus, as well as a variety of non-nuclear, non-transcriptional roles impacting
the cell membrane, microtubules or endoplasmic reticulum.
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4. Physiological Roles of STAT Proteins

The majority of documented roles for STAT proteins in normal physiology relate to
their canonical modality as inducible transcription factors that are responsible for switching
on the expression of specific target genes. This is especially true in the immune system,
where STATs serve as the preeminent mechanism for rapidly stimulating gene expres-
sion in response to external stimuli, principally cytokines that are active in immune cell
regulation [2].

Individual STAT proteins have unique functions, playing critical roles downstream of
specific cytokines (Figure 3). For instance, both STAT1 and STAT2 are principally involved
in IFN signaling. The most significant roles of STAT1 relate to its ability to facilitate
appropriate cellular changes in response to the entire family of IFN proteins [12], while the
involvement of STAT2 is limited to responses downstream of IFNα and IFNβ, particularly
mediating immunity to viral infections [12–14].
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Figure 3. Specificity of STAT protein activation and impacts of different classes of mutation. Schematic
of key immune cytokines activating specific STAT protein combinations in order to mediate appropri-
ate transcriptional changes and cellular responses. The pathological consequences of the indicated
mutational classes for each relevant STAT protein are shown below. Abbreviations: AD: autosomal
dominant; AR: autosomal recessive; CMC: chronic mucocutaneous candidiasis; GOF: gain-of-function;
HIES: hyper IgE syndrome; HL: Hodgkin lymphoma; IFN: interferon; IL: interleukin; LOF: loss-of-
function; MSMD: Mendelian susceptibility to mycobacterial diseases; MZBL: marginal zone B cell
lymphoma; NHL: non-Hodgkin lymphoma; STAT: signal transducer and activator of transcription;
T-LGL: T cell large granular lymphocytic leukemia.

STAT3, by contrast, exerts its major functions downstream of the interleukin 6 (IL-6)
family of cytokines, but is also activated by IL-22 and members of the IL-2 and IL-3 families.
It plays a pivotal role in mediating leukemia inhibitory factor (LIF) signaling in stem
cell self-renewal during early development [15]. STAT3 also plays a number of roles
in T cell homeostasis, including facilitating IL-6-mediated survival [16] and impacting
Th1/Th2 polarization and Th17 generation downstream of several cytokines [17–19]. It is
also required for IL-2-mediated T cell proliferation [20,21], IL-10-mediated suppression of
inflammation [17,22], as well as the mobilization, activation and emergency production of
neutrophils, principally via a granulocyte colony-stimulating factor (G-CSF) [23,24].
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STAT4 and STAT6 play more restricted roles, principally relating to the differentiation
and polarization of T helper (Th) cells into either Th1 or Th2 subtypes by regulating
interleukin (IL)-12/IL-23 and IL-4/IL-13 signaling, respectively [25,26], with additional
functions in the control of neutrophil activation [27] and B cell fate [28].

Finally, the two STAT5 genes, STAT5A and STAT5B, show divergent functions despite
a high sequence similarity. STAT5A is responsible for regulating lactation and differenti-
ation of the mammary gland downstream of prolactin (PRL) signaling, whereas STAT5B
is involved in growth hormone (GH) signaling impacting on growth and sexual dimor-
phism [29]. Both STAT5B and STAT5A play roles in immunity, including IL-2-mediated
activation and differentiation of T cells, IL-7-mediated B cell development, as well as
regulating the development and function of myeloid cells downstream of IL-3 family mem-
bers like granulocyte macrophage-colony-stimulating factor (GM-CSF), as well as other
cytokines [30,31].

5. Disruption of STAT Protein Function in Human Disease

A large number of human diseases impacting immune cells have been associated with
the disruption of normal STAT protein functionality, particularly through mutations. These
include both gain-of-function (GOF) and loss-of-function (LOF) germline mutations that
yield a spectrum of inherited diseases from primary immunodeficiency to autoimmune
diseases to immune cell cancers, as well as acquired GOF mutations observed in immune
cell cancer and other malignancies (Table 1). These disorders are characterized by intriguing
similarities as well as important differences between them, reflecting the distinct but
overlapping nature of cytokine specificity (Figure 3), as well as the delicate balance that is
required to maintain a healthy state [32,33]. In addition, single nucleotide polymorphisms
(SNPs) in STAT genes have been associated with a similar range of diseases, while STAT
hyperactivation mediated by mutations in other genes is also commonly observed in
immune cell cancer and other cancers.

Table 1. Mutations in STATs and their immune-cell-related clinical manifestation.

STAT
Protein

Mutation
Type

Immune-Cell-Related
Manifestation

Key Signals
Impacted References

STAT1

LOF
AR + AD

Susceptibility to intracellular pathogens and
herpetic infection, MSMD, lymphadenopathy,

osteomyelitis
↓ IFNs [32,34]

GOF
AD

CMC, recurrent respiratory infection, cancer,
autoimmune thyroid disease, cytopenias,

lymphoid cancer
↑ IFNs, IL-27 [35–37]

STAT2

LOF
AR Susceptibility to viral disease ↓ type I IFNs [38]

GOF
AR Various autoinflammatory disorders ↑ type I IFNs [38,39]

STAT3

LOF
AD HIES, cutaneous and respiratory infections ↓ IL-6, IL-10, IL-22 [32]

GOF
AD

Multiorgan autoimmunity,
lymphoproliferation, cytopenias, susceptibility

to infections and NHL

↑ IL-6
+ others [40,41]

GOF
somatic T-LGL, HL, MZBL [42]

STAT5B LOF AR + AD Immunodeficiency, eczema ↓ IL-2, GM-CSF [32,43]

STAT6 GOF
AD Severe atopy, lymphoma ↑ IL-4 [44,45]

Abbreviations: AD: autosomal dominant; AR: autosomal recessive; CMC: chronic mucocutaneous candidiasis;
GOF: gain-of-function; HIES: hyper IgE syndrome; HL: Hodgkin lymphoma; IFN: interferon; IL: interleukin;
LOF: loss-of-function; MSMD: Mendelian susceptibility to mycobacterial diseases; MZBL: marginal zone B cell
lymphoma; NHL: non-Hodgkin lymphoma; STAT: signal transducer and activator of transcription; T-LGL: T cell
large granular lymphocytic leukemia; ↓: decreased; ↑: increased
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5.1. Germline Mutations
5.1.1. STAT1 Mutations

Several distinct classes of germline STAT1 LOF mutations have been identified. These
include complete LOF mutations with no functional protein and partial LOF with reduced
levels of functional STAT1, both with autosomal recessive (AR) inheritance [46], although
the partial LOF mutations can cause disease in compound heterozygous individuals [47]. In
addition, LOF mutations with autosomal dominant (AD) inheritance have been described
with typically normal STAT1 levels, but these proteins are dysfunctional and serve to
abrogate wild-type STAT1 function [46,48], and so are perhaps better described as dominant–
negative (DN) mutations. The complete LOF AR form results in defective signaling across
all IFNs, whereas the partial LOF AR and LOF AD forms principally impact aspects of
immunity that are mediated solely by IFNγ [46]. As a consequence, patients harboring
all forms of STAT1 LOF mutations display an increased susceptibility to intracellular
pathogens, including a Mendelian susceptibility to mycobacterial disease (MSMD) [34]
and herpetic infection [32]. However, the disease presentation is milder in patients with
the partial LOF AR form, where susceptibility to viral infections is normal, and those with
the LOF AD form, which is essentially only associated with MSMD [46]. Other clinical
phenotypes observed in STAT1 LOF patients are osteomyelitis and lymphadenopathy [34].

STAT1 GOF mutations are all AD and result in an increased responsiveness to both
type I and type II IFNs, as well as IL-27 [46], as a consequence of more rapid and sus-
tained STAT1 tyrosine phosphorylation and nuclear accumulation mediated by several
mechanisms, including increased levels of STAT1 and other signaling proteins [46,49–51].
This results in augmented transcription of those genes that are typically activated, but
also of additional genes [49–51]. This leads to patients presenting with disturbed IL-17
immunity, with significant Th17 cytopenia [36,48,50] with an associated impairment in
IL-17A and IL-22 production [52], but also defects in B cell differentiation [53]. There is
proinflammatory skewing, with reduced tolerogenic function of dendritic cells (DCs) [54],
monocytes polarized toward a proinflammatory state with enhanced responsiveness to Toll-
like receptor (TLR) 7/8 stimulation [55] and neutrophils with inflammatory markers [56].
Patients with these mutations represent around 50% of all cases of chronic mucocutaneous
candidiasis (CMC), which is characterized by recurrent/persistent mucocutaneous infec-
tion by Candida fungi [36,57], but also exhibit increased susceptibility to bacterial, viral and
other fungal infections of the lower respiratory tract, autoimmune manifestations, such
as enterocolitis, systemic lupus erythematosus and relevant thyroid diseases [46]. These
patients also have an enhanced cancer risk [36], including of Hodgkin lymphoma [58] and
esophageal neoplasia [59], along with a propensity for cerebral aneurysm [32,46].

5.1.2. STAT2 Mutations

Germline AR STAT2 LOF mutations, either homozygous or compound heterozygous,
have been identified. This ablates the action of type I IFNs causing defective expression
of interferon-stimulated genes (ISGs) and compromised antiviral induction, with STAT2
LOF patients exhibiting enhanced susceptibility to viral diseases, including potential
susceptibility to attenuated viral strains used in vaccines [38,60]. These patients also display
hyperinflammatory features, including hemophagocytic lymphohistiocytosis [38,60].

GOF STAT2 mutations are also AR, but in contrast results in hypersensitivity to type I
IFN, which is mediated at least in part by preventing the USP18 protein from negatively
regulating IFN receptor signaling, leading to prolonged phosphorylation of not only STAT2,
but also STAT1 and JAK1 [39], with enhanced late IFN responses [61]. Patients that are
homozygous for these mutations present with multisystem autoinflammation including
neurological features that are typical of other type I interferonopathies [38,39].

5.1.3. STAT3 Mutations

Germline STAT3 LOF mutations are also inherited in an AD manner, although many
mutations are not familial and instead arise de novo [62]. These can affect the SH2 domain
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to interfere with dimerization or DBD to disrupt DNA binding, and can also act as DN
mutants to reduce transcriptional responses mediated by wild-type STAT3 proteins [32].
These mutations result in impaired responses to IL-6, IL-10 and potentially IL-21 and
IL-22 [32,63,64]. This results in defective Th17 cell production, reduced memory T and B
cells, and impaired tolerogenic DCs and induced regulatory T (iTreg) cells [64,65], as well
as elevated levels of circulating immunoglobulin E (IgE) antibodies that impact normal
immune function [66]. Such STAT3 LOF mutations are a major cause of hyper IgE syndrome
(HIES), particular the AD form, characterized by cutaneous and respiratory infections,
mucocutaneous candidiasis and eczema, as well as skeletal muscle and connective tissue
disorders [41,67]. These patients also exhibit an elevated risk of lymphoma, mainly non-
Hodgkin lymphoma (NHL) [68].

STAT3 GOF mutations are also AD, and while their tyrosine phosphorylation is
rarely enhanced, it is prolonged due to increased DNA binding and/or nuclear retention
leading to increased transcriptional responses, some of which may negatively impact STAT5
activity [32,69]. These mutations cause decreased numbers and function of Treg cells in
concert with perturbation of other T cell populations, including excess proliferation and
defective CD8+ T cell tolerance [69–71], as well as disrupted differentiation of subsets of
monocytes and myeloid DCs [72]. STAT3 GOF mutations are associated with early-onset
multiorgan autoimmune disease, principally manifesting as arthritis and diabetes, as well
as primary immunodeficiency that is associated with an increased susceptibility to recurrent
severe infections [32,41,73]. In addition, patients also present with short stature, as well as
increased risk of malignancy [32,41,74,75].

5.1.4. STAT5B Mutations

A spectrum of germline STAT5B LOF mutations have been identified. There are
classic AR forms, which are not phosphorylated and possess no transcriptional activity.
Alternatively, there are AD DN forms, in which tyrosine phosphorylation occurs, but
the mutants cannot enter the nucleus or fail to bind DNA, yet retain the ability to bind
wild-type STAT5B and disrupt its normal transcriptional activity [76,77]. Collectively, these
mutations are thought to abrogate aspects of signaling by IL-2, IL-15, growth hormone (GH)
and potentially thymic stromal lymphopoietin (TSLP) [77–80]. This leads to a decreased
number and functionality of Treg, gamma-delta T cells (γδT), CD8+ memory T cells and NK
cells, along with B cell hyperactivity and elevated IgE [43,78,81,82] and reduced postnatal
growth, with patients presenting with immunodeficiency and autoimmunity, characterized
by chronic infections, diarrhea and eczema along with short stature, with patients with the
AD form having milder symptoms, particularly with respect to immunodeficiency [77,80].

5.1.5. STAT6 Mutations

STAT6 GOF mutations have recently been identified with AD inheritance, resulting in
enhanced IL-4 responses, with sustained STAT6 phosphorylation and increased transcrip-
tion of STAT6 target genes, augmented by a concomitant elevation in overall STAT6 protein
levels [44,45]. Patients possessing these mutations display a strong Th2 skewing, which
mediates early-onset atopic disease, including food allergy, eosinophilic asthma and atopic
dermatitis [44], as well as an increased risk of follicular lymphoma [45].

5.2. Other Germline Variants

Single nucleotide polymorphisms (SNPs) in STAT gene loci have also been identified
and are associated with a similar spectrum of immune cell diseases, including in STAT4 and
STAT5A, where disease-causing germline mutations have yet to be identified. Thus, STAT3
SNPs have been associated with autoimmune thyroid diseases (AITD) [83], STAT4 SNPs
with early disease onset and severity of autoimmune diseases, including systemic lupus
erythematosus [84] and rheumatoid arthritis [85], STAT5A SNPs with atopic dermatitis [86]
and STAT6 SNPs with asthma [87]. This extends to a susceptibility to immune cell cancers,
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with SNPs in STAT3 and STAT5A being implicated in B cell lymphoma risk and SNPs in
STAT3 and STAT6 in Hodgkin lymphoma risk [88].

5.3. Somatic STAT Mutations

Acquired somatic mutations in several STATs have also been identified and contribute
to a variety of proliferative disorders and cancers [89]. However, it is important to note
that these can be GOF mutations that are associated with oncogenesis or LOF mutations
underpinning the ablation of a tumor suppressor role depending on the cellular context [89].
Somatic STAT3 GOF mutations have been identified as key driver mutations in T cell large
granular lymphocytic leukemia (T-LGLL) and chronic NK lymphoproliferative disease
(CLPD-NK), and STAT5B GOF mutations are also present in both T-LGLL and CLPD-NK
at a lower frequency [42], as well as other T cell neoplasms [90] and myeloid neoplasm
with eosinophilia and hypereosinophil syndrome (HES)/early onset eosinophilia [91,92],
and has also been observed in chronic neutrophilic leukemia [93]. Somatic STAT6 GOF
mutations are commonly observed in follicular lymphoma [94] and primary mediastinal
large B-cell lymphoma [95].

5.4. Hyperactivated STAT Proteins

STAT proteins, particularly STAT1, STAT3, STAT5A and STAT5A, have been found to
be hyperactivated in many cancers [96]. Indeed, STAT3 is considered an oncogene, being
hyperactivated in approximately 50% of all human cancers [97,98], with its hyperactivation
correlating with enhanced tumor progression [99] and poor prognosis [100–102]. Hyperac-
tivation of STAT3 is particularly common in T-LGL [42] and of STAT5A in peripheral T cell
lymphoma and leukemia [103], irrespective of their mutation status. STAT hyperactivation
in such instances can be due to several factors, such as mutations in upstream regulators
and high levels of inflammatory cytokines like IL-6 in the tumor microenvironment [99].
However, STATs can also be activated in other immune cell diseases. For example, STAT1
hyperactivation is associated with the immune dysfunction that is observed to be secondary
to adenosine deaminase deficiency [104] and, indeed, in patients harboring STAT3 LOF
mutations [105].

6. Clinical Implications of STAT Perturbations in Disease

The identification of causative STAT gene mutations has greatly impacted diagnosis
of the related diseases. Thus, STAT1 GOF mutations have become diagnostic for AD-
CMC [106], LOF mutations in STAT3 (and other components of the IL-6 signaling pathway)
for HIES [64], and LOF mutations in STAT1 (and other components of the IFNγ signaling
pathway) for MSMD [46]. However, given the symptom overlap between GOF and LOF
mutations, functional analysis is necessary for precise diagnosis [46]—for example, analysis
of IFN-induced STAT1 phosphorylation in patient PBMCs as an adjunct to genetic testing
in interferonopathies [35].

The clear elucidation of specific STAT mutations has additionally underpinned a
myriad of relevant possibilities for therapeutic targeting, especially for the GOF STAT
mutations [107,108]. These therapeutics can be focused on multiple levels, from upstream
cytokines, cytokine receptors and JAKs, to the STATs themselves, with agents targeting
the latter being able to be directed toward particular functional aspects (Figure 4). For
example, anti-IL-6R antibodies have shown promise in the treatment of STAT3 GOF dis-
ease [74] including malignancy [109], and anti-IL-4RA antibodies have demonstrated high
effectiveness in the context of STAT6 GOF mutations [44]. Conversely, small-molecule
JAK inhibitors have been demonstrated to reduce in vivo STAT activation [110] and im-
prove clinical symptoms in patients harboring STAT1 GOF [34,57], STAT2 GOF [61], STAT3
GOF [111] or STAT6 GOF [45] mutations. Therapeutic agents have also been developed
that directly target STATs, particularly small molecules and peptides directed to their
SH2 domain to inhibit dimerization [112], oligonucleotide “decoys” to block DNA bind-
ing [113]. Alternatively, a number of strategies aim to reduce STAT protein levels, such



Biomedicines 2024, 12, 45 9 of 14

as siRNA-mediated knockdown [114]. Several of the STAT inhibitors have shown effec-
tiveness in vitro and in mouse tumor models [99]. A small molecule inhibitor that targets
the phosphotyrosine-binding pocket of the STAT3 SH2 domain was able to block cell pro-
liferation mediated by STAT3 GOF mutants [115]. However, the clinical reality has so far
been that multiple therapeutics are typically required [41], or alternative strategies need
to be employed, such as hematopoietic stem cell transplantation, including for patients
harboring STAT1 GOF [57] or STAT3 GOF [69] mutations.
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7. Conclusions

STATs are principally activated by the JAK kinases, named after the two-faced Roman
god Janus, a fitting description from both a structural and functional perspective, where
they also sit at the cusp of health and disease. It is perhaps then not surprising that STATs
are also part of a similar Goldilocks paradigm, where either too little or too much STAT
activity is able to alter the balance from a healthy state toward disease. This explains how
both LOF and GOF variants can impact, including both germline and somatic mutations,
particularly in the context of immune cells, where cytokine signaling via JAKs is especially
important. However, it also provides a sound basis for the development of therapeutic
approaches that can rebalance the equilibrium in a manner that might restore health in
affected patients.
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