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Abstract: The emergence of artificial intelligence and machine learning (ML) has revolutionized
the landscape of clinical medicine, offering opportunities to improve medical practice and research.
This narrative review explores the current status and prospects of applying ML to chronic kidney
disease (CKD). ML, at the intersection of statistics and computer science, enables computers to
derive insights from extensive datasets, thereby presenting an interesting landscape for constructing
statistical models and improving data interpretation. The integration of ML into clinical algorithms
aims to increase efficiency and promote its adoption as a standard approach to data interpretation
in nephrology. As the field of ML continues to evolve, collaboration between clinicians and data
scientists is essential for defining data-sharing and usage policies, ultimately contributing to the
advancement of precision diagnostics and personalized medicine in the context of CKD.

Keywords: machine learning; chronic kidney disease; diabetic nephropathy; IgA nephropathy;
hemodialysis

1. Machine Learning

The emergence of artificial intelligence (AI) has led to machines increasingly perform-
ing complex tasks with impressive outcomes. Within the context of medicine, machine
learning (ML) stands out as the most promising aspect of AI and is poised to become an
element of daily medical routines. Consequently, it is important for physicians to famil-
iarize themselves with ML and AI and view them as facilitators rather than adversaries.
Machines are already enhancing the decision-making processes of physicians [1]. ML, a
topic at the intersection of computer science and statistics, makes it possible for comput-
ers to extract knowledge from data. This fusion of mathematical theory and algorithmic
efficiency in computer science is necessitated by the demands of constructing statistical
models from extensive datasets, often comprising billions or trillions of data points [2].
In the following sections, we provide a brief overview of the standard workflow for the
development of ML models. Data preprocessing is an important step in the ML workflow
and poses unique challenges in healthcare, owing to the need for clean and comprehensive
datasets. The quality of data has a significant impact on the ability of a model to learn and
generalize effectively. It is essential to gather representative data for training the model,
adhering to the well-known principle of “garbage in, garbage out” [3]. Traditionally, many
of these preprocessing tasks have been performed manually, but powerful data science
applications have now emerged, accelerating these processes through automatization [4].
The development and validation of ML models involve a systematic approach using three
distinct datasets. Initially, a training dataset is used, where the model learns by adjusting
the weights to minimize the difference between the predicted and actual outcomes. Subse-
quently, a validation dataset aids in the model optimization and detection of overfitting.
Finally, a test dataset is used to evaluate the generalization capabilities of the model and
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performance on new, unseen data. Cross-validation, a refinement of this approach, involves
repeatedly dividing the data into different training and testing sets (or “folds”) to provide
an average estimate of the model performance and reduce the risk of overfitting. This
structured approach ensures that ML models are not only tailored to current data but are
also robust and effective in predicting future outcomes [5]. In the ML field, methodologies
are predominantly classified into supervised and unsupervised learning algorithms. Su-
pervised ML is used for forecasting predefined outcomes and centralizing its approach to
classification and prediction. These models operate by learning from labeled data, aiming
to establish a robust relationship between input variables and a target outcome, such as
classifying diagnoses [1,2,6]. In medical modeling, the generation of novel insightful fea-
tures is more crucial than relying solely on existing predictors or advanced algorithms, as
this is unlikely to lead to significant discoveries [2,4]. Unsupervised learning focuses on
extracting structures and patterns from unlabeled datasets. This methodology is useful
in identifying latent relationships and natural groupings within data. This approach is
valuable in the context of precision medicine, aiming to re-conceptualize diseases based
on underlying pathophysiological processes and facilitate the development of targeted
therapeutic strategies. The effectiveness of these models is evaluated to assess their capacity
to uncover biologically relevant patterns that inform diagnosis, treatment, and prognosis
in kidney diseases [2]. Achieving high-performance unsupervised models requires not
only the right features and model complexity but also a substantial volume of training data
to avoid overfitting and ensure generalization to new, unseen cases. In clinical settings,
this includes collecting extensive, unbiased data across multiple independent cohorts to
validate the predictive power of the model [2,7].

In clinical practice, most clinicians encounter ML primarily through application of the
latest research and guidelines. Thus, understanding commonly used performance metrics
for evaluating ML algorithms is more essential than a deep knowledge of the inner workings
of the algorithm. Although ML algorithms offer significant benefits, they are not without
limitations. A particularly crucial challenge is balancing overfitting and underfitting within
the datasets. An ideally fitted model demonstrates strong performance on the training,
validation, and test datasets. It is important to note that the quality of any predictive
model is fundamentally limited by inherent signals in the input datasets. This constraint
can be mitigated through orthogonal validation using independent datasets or different
data modalities, which can further corroborate ML-driven feature selection and predictive
analysis [8]. Model evaluation can vary but often focuses on prediction accuracy, F1-score,
sensitivity, specificity, and area under the ROC curve (AUROC) (Figure 1) [9]. We now
describe the selection of ML models commonly employed in the field of clinical medicine.
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distinct outcomes: true positives and true negatives, which represent the correctly identified instances
of the two classes, and false positives and false negatives, which are erroneous predictions where the
model incorrectly classifies the instances. The arrangement of these outcomes provides an immediate
visual assessment of the classification process of the model, particularly in terms of its precision
and recall capabilities. The ROC curve on the right serves as a graphical representation of the
diagnostic ability of the model. It contrasts the true positive rate (sensitivity) with the false positive
rate (1-specificity) across different thresholds. The diagonal dotted line represents the performance
of a random classifier with an AUC of 0.5. The substantial elevation of the ROC curves of the model
above this line of no-discrimination confirms the effective discriminative power between the two
outcome classes.

1.1. Linear Regression

Linear regression is employed to establish a connection between the numeric features
and a single numeric target. This technique employs a linear model, typically represented
as y = ax + b, in univariate scenarios, where ‘a’ signifies the slope dictating the change in
the y-axis per unit increase in x, and ‘b’ denotes the y-axis intercept. Multivariate linear
regression extends this concept to include multiple features and their respective weights.
In practice, perfect fitting is rare, and the error in the fit is quantified using residuals, which
are deviations between the predicted and actual values [9–11]. Linear regression models
could enhance the prediction of disease progression and estimate the glomerular filtration
rate (GFR) in nephrology. They may enhance personalized care and preventive strategies
for patients progressing to chronic kidney disease.

1.2. Logistic Regression

Logistic regression is a classification algorithm that aims to establish a connection
between the features and the probability of a specific outcome. Unlike linear regression,
which uses a straight line, logistic regression employs a sigmoidal curve characterized
by a sigmoid function to estimate class probabilities. This curve transforms discrete or
continuous numeric features into numerical values within a range of 0 to 1. The key
advantage of this approach is that it ensures that probabilities remain suitable for binomial
(two possible outcomes) scenarios and is extensible to multinomial (three or more possible
outcomes) scenarios [9–11]. This statistical method may be beneficial in developing risk
assessment models for kidney disease progression and in identifying patients at a high risk
of developing complications.

1.3. Decision Trees

ML decision trees operate by creating a tree-like decision structure, where each node
represents a feature or attribute, while the branches represent decision rules. Interpreting
decision trees involves tracing the path from the root to a leaf node following the decision
criteria at each node. This interpretability is one of the key strengths of decision trees,
as it allows clinicians to understand the decision-making process, making them more
transparent and explainable than many other ML models. However, a significant limitation
is the tendency towards overfitting, particularly with complex or noisy datasets [9–11].
Decision trees in nephrology can classify patients into different risk categories based on
their clinical and demographic characteristics, offering a visual and interpretable model for
diagnosing and predicting kidney disease progression.

1.4. Random Forest

A random forest operates by creating multiple decision trees during the training phase
and then generates outputs based on the mode (in classification) or mean prediction (in
regression) of these trees. This method effectively amalgamates the outputs of individual
trees to yield accurate and stable predictions. While each tree in the forest is straightforward,
the collective model is often seen as a ‘black box’ because of the integration of the decisions
of multiple trees. However, interpretation is aided by using feature importance scores,
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which shed light on the most influential variables in the predictions of the model. The
random forest strikes a balance between accuracy and robustness in the analysis of clinical
data [9–11]. It can enhance diagnostic and prognostic accuracy in kidney disease through
its ability to handle complex interactions and nonlinear relationships among variables.

1.5. KNN

The k-nearest neighbor (k-NN) algorithm operates by measuring the similarity be-
tween data points and relies on the proximity of neighbors in a training dataset to make
predictions for new data. The choice of “k”, the number of neighbors considered, is crucial.
Smaller k values lead to flexible models, whereas larger values lead to smoother predictions.
However, k-NN has several drawbacks. It can be mathematically intensive, especially with
large datasets, and its performance is sensitive to the choice of k, which, if poorly selected,
can lead to reduced accuracy. In addition, k-NN lacks memory, requiring an algorithm to
reevaluate previously seen data [4]. It can aid in the diagnosis and prognosis of kidney
disease by classifying patients based on the similarity of their clinical features with those of
known cases.

1.6. SVM

Support vector machines (SVMs) represent a powerful class of supervised ML algo-
rithms employed for tasks involving classification and regression. The primary objective
of SVMs is to ascertain an optimal decision boundary, that is the hyperplane, which effec-
tively segregates data points into distinct categories or predicts continuous values. The
fundamental objective is to identify the hyperplane that optimally augments the margin.
SVMs classify new unseen data points by determining their positioning with respect to the
hyperplane [4]. The ability of a SVM to handle high-dimensional data makes it suitable
for prognostic modeling, predicting disease progression, and treatment outcomes, thereby
aiding the development of tailored therapeutic strategies.

1.7. ANN

An artificial neural network (ANN) is an ML algorithm inspired by biological neural
networks. In ANNs, nodes (like the cell bodies in biological neurons) communicate through
connections (akin to axons and dendrites). These transformations ultimately lead to the
representation of inputs predictive of the desired outcome. The choice between traditional
ML techniques (e.g., Random Forest) and ANNs depends on the nature of the task and data,
with traditional ML techniques offering transparency and simplicity for structured data,
whereas ANNs excel in capturing intricate patterns within unstructured data but require
greater resources. For image recognition, traditional feedforward ANNs process each pixel
individually, thereby losing the spatial context. Convolutional neural networks (CNNs)
overcome this problem by feeding image patches to specific nodes in the next layer, thereby
preserving the spatial relationships. When a neural network consists of two or more hidden
layers, it is called Deep Learning (DL). Beyond image classification, DL has shown potential
for image-segmentation tasks. Rather than classifying entire images, this approach aims to
identify objects within an image by classifying individual pixels based on information from
surrounding pixels. For instance, in diabetic retinopathy, a segmentation algorithm can
outline the retinal vasculature by assigning probabilities to each pixel, indicating whether it
belongs to a retinal blood vessel. A similar approach can be used for breast cancer detection
by marking pixels as part of a mass, allowing radiologists to further examine the output
image [9–11]. Their ability to learn from vast datasets enables the identification of subtle
patterns associated with disease progression and patient responses to treatment, thereby
facilitating personalized and predictive nephrology care.

2. Current Status of Machine Learning in CKD

Recent advancements in ML have opened up new horizons for precision medicine
in the field of nephrology. The Nephrotic Syndrome Study Network (NEPTUNE) is at
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the forefront of applying precision medicine by formulating novel disease definitions via
detailed, multi-layered analysis within observational cohort studies. Despite being at an
early stage, this approach holds promise for the future, particularly in renal pathology
research and forecasting the risk of kidney diseases or renal function deterioration [12,13].
The deployment of ML in biological image analysis has been robust and swift and it has
established itself as a dependable technique for identifying malignancies [14–19]. In the
field of nephrology, ML-based biological image analysis has shown promise in diagnosing
renal pathology and is considered the definitive standard for identifying kidney diseases.
This diagnostic approach directly influences the spectrum of treatment choices and patient
outcomes. Traditional glomerular evaluation methods (light microscopy, morphometric
analysis, and electron microscopy) are still manual, time-consuming, and lack standard-
ization. Consequently, recent initiatives have been aimed at automating glomerular injury
quantification [20]. Initially, Marée et al. [21] demonstrated a supervised learning approach
for detecting glomeruli, achieving a model with 95% precision rate and 81% recall. This
segmentation serves as the foundational step in automated renal pathological diagnosis,
enabling the precise recognition of glomerular and tubular structures within renal patho-
logical imagery. Preliminary investigations revealed that utilizing AI greatly improved
the accuracy of the estimated glomerular filtration rate (eGFR) [22]. Several studies col-
lectively highlight the successful application of AI and ML in improving the prediction
and management of CKD [23–25]. Tangri et al. [23] demonstrated a highly accurate Cox
proportional hazards model for predicting kidney failure by utilizing standard laboratory
data from electronic health records. Norouzi et al. [24] advanced this approach by using
a neuro-fuzzy system and a decade of clinical data to accurately predict kidney failure
timelines in patients with CKD. Perott et al. utilized an unsupervised learning method to
effectively predict the transition from CKD stages III to IV. These studies collectively sug-
gest that AI and ML, through various approaches, can significantly enhance the accuracy
of CKD prognosis and management, marking a promising direction for future research and
applications in nephrology.

2.1. Diabetic Kidney Disease

Diabetes mellitus (DM) is the primary cause of kidney failure in the Western hemi-
sphere [26–28]. The initial clinical sign of diabetic kidney disease (DKD) is typically the
emergence of microalbuminuria, defined as an excretion of ≥30 mg/day or 20 µg/min.
However, kidney biopsy studies indicate that microalbuminuria is not exclusively indica-
tive of type 2 DKD, as only 20–40% of patients with this condition progress to apparent
kidney disease without targeted treatment. Conversely, approximately 20% of individuals
with type 2 DM maintain normal urinary albumin levels while advancing to CKD stage 3,
characterized by a GFR below 60 mL/min/1.73 m2. This underscores the critical need for
the development of new non-invasive biomarkers that can more accurately detect the early
stages of DKD and forecast the progression to renal impairment or kidney failure [26].

First, in individuals with DM and kidney disorders, it is crucial to accurately distin-
guish between DKD and non-diabetic kidney disease (NDKD) to direct treatment strategies
and enhance patient outcomes. The meta-analysis conducted by Liang et al. [29] high-
lighted that the lack of diabetic retinopathy, a brief duration of diabetes, along with lower
levels of HbA1c and systolic blood pressure, serve as relatively effective indicators for
differentiating NDKD from DKD [29]. Although numerous markers have been identified
in the literature as significant for differentiating DKD from NDKD, establishing a method
to accurately, safely, and scientifically diagnose DKD remains a challenge. Kidney biopsy is
the most definitive approach for diagnosing DKD. However, not all patients are suitable
candidates for this procedure for various reasons, including anticoagulation therapy, previ-
ous unilateral nephrectomy, or reluctance to undergo a biopsy. Utilizing logistic regression
analysis based on five key differential indicators (duration of DM, systolic blood pressure,
HbA1c levels, presence of hematuria, and diabetic retinopathy), Zhou et al. [30] tried to
create a differential diagnostic model (Table 1). Their AUC of 0.968 nearly reached the
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ideal score of 1.0, indicating an exceptional predictive capability. Subsequent testing on a
validation cohort maintained impressive results, with a sensitivity of 80% and specificity
of 100%, underscoring the promising predictive potential. Using electronic health records,
deep feature learning, and supervised classification techniques, numerous diabetes studies
have been able to forecast diabetes occurrence and identify contributing risk factors [31].
Given the significant influence of diabetic complications on quality of life and mortality
rates, a multitude of researchers are dedicated to exploring the use of ML to enhance the
diagnosis and management of these diabetic complications [20]. In a pioneering study by
Cho et al. [32], medical data from 4321 diabetic patients over a 10-year period were used
to create a support vector machine classification-based visualization system. This model
could predict the onset of DKD with high accuracy (AUC of 0.969), approximately 2 to
3 months before clinical diagnosis. Although not entirely accurate, it marked the first use of
data mining and advanced ML algorithms for predicting DKD, offering a novel approach
to early-stage treatment strategies. Several ML algorithms using data from 10,251 patients
from the ACCORD trial were generated to model the risk of DKD. The study highlighted
that the random forest and logistic regression models outperformed others in prediction
accuracy, with sensitivity and accuracy exceeding 0.72 and 0.73, respectively, for random
forest, and 0.76 and 0.8, for logistic regression. A decrease in eGFR was identified as a
significant indicator of DKD progression. Moreover, these ML models identified additional
indicators such as creatinine phosphokinase, fasting plasma glucose, and potassium. It
also recognized shifts in fasting plasma glucose and changes in GFR after the first year as
early and subsequent biomarkers of DKD, respectively [33]. However, these models did
not undergo external validation. Further advancing the field, a logistic regression-based
Roche/IBM algorithm and real-world data to predict CKD onset in patients with DM
achieved an AUC of 0.794. The performance of this model was better than that of large
randomized controlled trials. Data from 522,416 patients were used for model building
and cross-validation, with additional external validation from the data of 82,912 patients
from the Indiana Network for Patient Care database [34]. Adding a genetic dimension, ML
models alongside phenotypic features significantly improved the prediction accuracy to
0.9 [35]. Age, age at diagnosis, and lipid levels have emerged as key clinical indicators,
whereas genetic polymorphisms associated with inflammation and lipid metabolism are
among the genetic predictors. Validating these genetic markers in individuals without
clinical signs of kidney disease could pave the way for identifying high-risk individuals.
This would facilitate regular monitoring and personalized management strategies, partic-
ularly focusing on controlling inflammation and dyslipidemia, as proactive measures to
prevent DKD.

2.2. IgA Nephropathy

IgA nephropathy (IgAN), also known as Berger’s disease, is the most common form
of primary glomerulonephritis worldwide. Its epidemiology varies geographically, with
a higher prevalence in Asia and Southern Europe. It typically presents in the second and
third decades of life and more often affects males [36]. Clinically, IgAN is characterized
by the presence of IgA-dominant immune deposits in the glomerular mesangium, leading
to variable clinical presentations [37,38]. The hallmark symptom is hematuria, which may
be episodic and often coincides with upper respiratory tract infections. Proteinuria is also
common, ranging from mild to nephrotic. Hypertension and edema may occur, particu-
larly in advanced cases [37]. The diagnosis is primarily based on kidney biopsy, which
reveals mesangial proliferation and IgA deposition. Supportive diagnostic markers include
elevated serum IgA levels and presence of IgA-containing immune complexes. Kidney
function tests and imaging are used to assess the extent of renal impairment [39]. Geddes
et al. [40] demonstrated that an artificial neural network, when trained with standard
clinical data collected at diagnosis, had the potential to predict kidney function decline
over a 7-year period in patients with IgAN more precisely than seasoned nephrologists.
The application of ML algorithms to predict kidney failure progression in IgAN patients
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has evolved significantly over the years [40–43]. In an early attempt in 1998, an artificial
neural network was employed to create a predictive model for kidney failure progression
in patients with IgAN, achieving a sensitivity of 86.4% and specificity of 87.5%. Despite out-
performing experienced nephrologists in predicting kidney function decline, the limitation
of this model was its small sample size of 54 patients and lack of validation [40].

Although as many as 40% of IgAN patients may develop kidney failure, determining
which patients will progress remains a challenge. A convenient and efficient approach
that can accurately predict long-term kidney prognosis would be highly beneficial for
nephrologists, enhancing their ability to make informed clinical decisions [37]. The absolute
renal risk (ARR) model is a well-known prognostic tool for predicting kidney failure or
death in IgAN patients. It utilizes factors, such as hypertension, proteinuria ≥1 g/24 h,
and severe histopathological renal lesions [44]. However, it does not consider the initial
eGFR or serum creatinine, which is known to be a significant indicator of renal outcomes
in IgAN. An artificial neural network model has shown enhanced predictive accuracy for
IgAN compared to the artificial neural network model. This artificial neural network model
was converted into an online clinical decision-support system, designed for quantitative
risk assessment of kidney failure and its timing in IgAN patients, factoring in six predictors,
including initial serum creatinine. Notably, eGFR was not incorporated into the model.
While the artificial neural network model was trained on diverse population cohorts, the
representation of the Asian population was smaller. This discrepancy suggests that the
universal applicability of the clinical decision support system, particularly in Asian patients,
may require additional validation and consideration [41]. Advancements in data handling
and ML have led to the development of robust artificial neural network models. This
model was integrated into an online clinical decision support system for patients with
IgAN to provide quantitative risk assessments and time predictions for kidney failure.
The model, which relied on three variables (urine protein excretion, global sclerosis, and
tubular atrophy/interstitial fibrosis) yielded a C statistic of 0.84 (with a 95% confidence
interval of 0.80–0.88). The risk stratification ability of the statistical shape modeling was
further validated through Kaplan–Meier analysis, which clearly identified significant risk
differences among the patients [45]. Other ML approaches have been explored, showing
that the random forest model was superior in predicting kidney failure progression, with
a sensitivity of 80.6% and a specificity of 95.3% [37,39]. Liu et al. [39] further refined the
random forest model to achieve an impressive AUC of 97.3% by including the C3 staining
results, demonstrating the utility of the random forest algorithm in staging and managing
various progressive diseases. However, the focus of current research is predominantly on
predicting kidney failure in patients with existing IgAN, and there is a gap in modeling
risk prediction of developing IgAN, which may be an avenue for future research.

2.3. Hemodialysis

ML is being increasingly utilized across a wide spectrum of activities in dialysis
treatment, ranging from prescription and monitoring to managing complications and
predicting patient mortality, and holds significant potential in the domain of pediatric
dialysis [46–48]. Notable insights into the expansive use and promising future of AI in
dialysis were shared at a pioneering scientific conference at the Hospital Universitari de
Bellvitge, where discussions revolved around deployment, challenges, and prospective
advancements of AI in the dialysis sector [49]. Regarding prescription management, the
challenge of defining and measuring dialysis adequacy is also being addressed by AI [46].
Techniques such as direct dialysate quantification (DDQ) for assessing urea nitrogen (UN)
removal provide accurate real-time data on urea removal. Urea kinetic modeling is a
method used in nephrology to assess and individualize dialysis treatment in patients
undergoing hemodialysis or peritoneal dialysis. In this way, it offers the additional benefit
of predicting the necessary dialysis dose for achieving the desired treatment goals, making it
a valuable tool for personalized patient care. Advances in AI, particularly neural networks,
have enhanced the prediction accuracy of solute concentration fluctuations and UN removal
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rates during and post hemodialysis sessions [50,51]. The predictive neural network model
developed by Akl et al. [46] demonstrated no substantial discrepancy from the actual
time intervals needed to achieve the same solute removal index under identical patient
conditions (such as blood urea nitrogen concentration and patient weight). The only
exception was in predicting symptomatic rapid intradialytic during the initial 30 min
interval of dialysis, where a notable difference was observed (p = 0.001). This deviation
arises because following the first 30 min of dialysis there is a consistent time delay before
the equilibrated urea concentration (i.e., the average concentration across the body) aligns
with the blood concentration. Nonetheless, larger and more comprehensive datasets are
necessary for model optimization.

Anemia is a prevalent complication in dialyzed patients, presenting a multifaceted chal-
lenge for nephrologists [52]. Numerous strategies have been implemented aimed at achiev-
ing accurate hemoglobin predictions [47,49,52–57]. Although erythropoiesis-stimulating
agents (ESAs) have been effective in treatment, the variability in patient response necessi-
tates a personalized approach to dosing. To assist nephrologists in determining the dosages
of ESAs and iron, an AI-based tool was created. The anemia control model is composed of
two parts: (1) an artificial neural network model that forecasts future hemoglobin levels
based on current clinical data from the patient and (2) an algorithm that proposes the
most suitable ESA and iron dosages to meet the hemoglobin target. It is crucial to note
that the anemia control model offers treatment suggestions and requires validation. It has
shown efficacy in not only managing but also improving treatment outcomes [52,54,58].
The implementation of the anemia control model in clinical settings has resulted in an
increase in the percentage of patients achieving their target hemoglobin levels (from 70.6%
to 83.2%), a decrease in hemoglobin fluctuation (from 0.95 to 0.83 g/dL), a marked decrease
in instances of hemoglobin levels exceeding 12 g/dL (from 18.1% to 7.5%), and a reduction
in the usage of ESA and iron. However, challenges persist in precise dose determination,
underscoring the complexity of treatment personalization.
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Table 1. Overview of the studies investigating several machine learning methods in diabetic kidney disease, IgA nephropathy, and hemodialysis patients.
Abbreviations: DN: Diabetic Nephropathy; NDRD: Non-Diabetic Renal Disease; AUC: Area Under the Curve; DM: Diabetes Mellitus; CKD: Chronic Kidney
Disease; IgAN: IgA Nephropathy; ESKD: End-Stage Kidney Disease; eGFR: estimated Glomerular Filtration Rate; SRI: Solute Removal Index; DDQ: Direct dialysate
quantification; Hb: Hemoglobin; MAE: Mean Absolute Error.

Disease ML Model Dataset Outcome Metrics Bottlenecks Data Availability Reference

DKD Logistic regression
110 patients: 60 DN

patients and 50 NDRD
patients

DN vs. NDRD
Sensitivity of 90%
Specificity of 92%

AUC of 0.968

Monocentric study.
Less effective for

non-linear problems.
Requires careful feature selection.

No data availability [30]

Support vector
machines 4321 diabetic patients Predict DN AUC of 0.969 Difficult to tune hyperparameters.

Not ideal for very large datasets. No data availability [32]

Random forest 10,251 patients Risk of DN Sensitivity 72%
Accuracy of 73%

No external validation.
Can lead to overfitting in

complex models.
Interpretation can be challenging.

Data available [33]

Logistic regression 10,251 patients Risk of DN Sensitivity of 76%
Accuracy of 80%

No external validation.
Less effective for

non-linear problems.
Requires careful feature selection.

Data available [33]

Logistic regression

522,416 DM patients in the
training set and 82,912 DM

patients in the
validation set

Predict CKD AUC of 0.794
Less effective for

non-linear problems.
Requires careful feature selection.

No data availability [34]

Support vector
machines

119 subjects with DN and
554 without DN at

enrolment
Predict DN Accuracy of 95.0% Difficult to tune hyperparameters.

Not ideal for very large datasets.
Limited data
availability [35]

Random forest
119 subjects with DN and

554 without DN at
enrolment

Predict DN Accuracy of 90.0%
Can lead to overfitting in

complex models.
Interpretation can be challenging.

Limited data
availability [35]

IgA
nephropathy Random forest 262 Asian IgAN patients Predict ESKD AUC of 97.29%

F-score of 83.0%

Can lead to overfitting in
complex models.

Interpretation can be challenging.

Limited data
availability [39]
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Table 1. Cont.

Disease ML Model Dataset Outcome Metrics Bottlenecks Data Availability Reference

Artificial neural
network 54 patients with IgAN Predict outcome at

7 years

Accuracy of
87.0% patients

Sensitivity of 86.4%
Specificity of 87.5%

Lack of validation.
Small sample size.

Requires substantial
computational resource.

Model complexity can obscure
interpretability.

No data availability [40]

Artificial neural
network

1040 biopsy-proven IgAN
patients (from Italy,
Norway, and Japan)

Risk and timing of
ESKD

AUC of 0.899–1.000 in
different

geographic cohorts
F-score of 70.8–90.7%

in different
geographic cohorts

Requires substantial
computational resources.

Model complexity can obscure
interpretability.

Data available [41]

Decision tree 790 Japanese IgAN
patients

Risk stratification
for renal

deterioration

AUC of 0.830 (95%
confidence interval,

0.777–0.883)

Prone to overfitting.
Simplicity can lead to less

nuanced decisions.

Limited data
availability [43]

Logistic regression 790 Japanese IgAN
patients

Risk stratification
for renal

deterioration

AUC of 0.808 (95%
confidence interval,

0.754–0.861)

Less effective for non-linear
problems.

Requires careful feature selection.

Limited data
availability [43]

Gradient boosting
Validation cohort of 1025
patients with IgAN from

18 renal center

Combined event of
ESKD or 50%

reduction in eGFR

C-statistic of 0.840 (95%
confidence interval,

0.80–0.88)

Sensitive to overfitting with small
datasets.

Long training times.

Limited data
availability [45]

Hemodialysis Artificial neural
network

15 chronic hemodialysis
patients

Predict
hemodialysis
session time

needed to reach a
target SRI in

patients

Prediction error of 10.9%
(compared to DDQ

model)

Requires substantial
computational resource.

Model complexity can obscure
interpretability.

Limited data
availability [46]
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Table 1. Cont.

Disease ML Model Dataset Outcome Metrics Bottlenecks Data Availability Reference

Random forest 27,615 US veterans with
incident ESKD Risk of death

C-statistic of 0.7185
(95% confidence interval:

0.6994–0.7377)
C-statistic of 0.7446

(95% confidence interval:
0.7346–0.7546)

C-statistic of 0.7504
(95% confidence interval:

0.7425–0.7583)
C-statistic of 0.7488

(95% confidence interval:
0.7421–0.7554) for

predicting risk of death
30-, 90-, 180-, and
365-day all-cause

mortality after dialysis
initiation, respectively

Can lead to overfitting in
complex models.

Interpretation can be challenging.

Limited data
availability [48]

Artificial neural
network

52 patients undergoing
hemodialysis therapy Hb fluctuation

The percentage of Hb
values within target
range increased from

70.6% to 76.6%

Requires substantial
computational resources.

Model complexity can obscure
interpretability.

No data
availability. [52]

Artificial neural
network

688 patients (21,866
records) from Italian
clinics, 1397 patients
(24,565 records) from

Spanish clinics, and 2050
patients (55,487 records)
from Portuguese clinics

formed part of this study

Hb prediction
MAE ranging from 0.548
to 0.613 across different

countries

Requires substantial
computational resources.

Model complexity can obscure
interpretability.

No data
availability. [54]

Random forest 826 hemodialysis patients
of 66 years or older

Sudden cardiac
death the day of or
day after a dialysis

session

C-statistic of 0.799
including both
predialysis and

postdialysis information

Can lead to overfitting in complex
models.

Interpretation can be challenging.

No data
availability. [59]
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Models developed for short-term mortality prediction post-dialysis show good predic-
tive reliability, although the need for broader external validation is recognized [48,59,60]. In
a large study involving 27,615 U.S. veterans newly diagnosed with kidney failure, a random
forest model yielded C-statistics with 95% confidence intervals of 0.7185 (0.6994–0.7377),
0.7446 (0.7346–0.7546), 0.7504 (0.7425–0.7583), and 0.7488 (0.7421–0.7554), corresponding to
the ability to predict mortality risk within four distinct time frames (30, 90, 180, and 365 days
after beginning dialysis). These models demonstrated solid internal consistency and were
effectively replicated across patients with various demographic and clinical backgrounds.
They offer comparable or superior predictive performance relative to other ML algorithms.
However, the applicability of these results beyond the veteran population may be limited.
Moreover, reliance on electronic medical records for predictor variables constrains the
breadth of the predictor assessment. These models utilize the characteristics of patients
before dialysis, potentially assisting in the decision-making process before starting dialytic
treatments. They provide patients and health care professionals with an understanding of
the expected short-term mortality risk associated with choosing this treatment option. Hav-
ing a quantifiable risk assessment could simplify the decision-making process for patients
when comparing dialysis with other treatment options such as medication-only approaches
or palliative care. This could lead to improved outcomes centered on the quality of life of
the patients, particularly for those with a high risk of short-term mortality, and might also
contribute to healthcare cost savings [48].

Moreover, the utility of ML in predicting sudden cardiac death, a critical risk for
dialysis patients, further exemplifies its potential. A robust random forest model was
established using the data available before the start of the dialysis session (C-statistic
0.782). The accuracy of this model was modestly enhanced when it incorporated data
gathered during and after the dialysis session, reaching a C-statistic of 0.80 in the validation
dataset (p < 0.001). Intriguingly, the key indicators for short-term predictions are metrics
that vary considerably between dialysis sessions, such as blood pressure and changes in
weight during dialysis. In contrast, serum albumin stands out as an exception, given its
relative stability over time. However, the accuracy of the model decreased over longer time
ranges [59]. The predictive capacity of ML models offers valuable insights for early clinical
decision making, enhancing patient care and treatment strategies.

3. Future Prospects of Machine Learning in CKD

While most nephrologists currently lack familiarity with the fundamental principles
of medical AI, there is a promising future potential for collaborative efforts between
nephrologists and AI researchers. This collaboration could lead to the creation of an
extensive database for CKD research and development of a highly efficient model for CKD
diagnosis and treatment. One notable initiative involves Google DeepMind and the U.S.
Department of Veterans Affairs, culminated in the creation of an AI system capable of
predicting AKI up to 48 h before its clinical manifestation. By leveraging electronic health
record (EHR) data, this system exemplifies how integrating data science into nephrology
can yield practical tools for the early detection and prevention of kidney damage, potentially
saving lives and optimizing resource allocation in healthcare [61].

The intricacy of pathological presentations of different kidney diseases and their tight
interaction with clinical indicators have led to the rapid investigation of AI. Nonetheless,
the automated pathological diagnosis of kidney diseases based on photographs has not yet
been documented. With thorough patient information, pathologists cannot fully use it as a
substitute for the renal pathological diagnosis of all types of kidney disorders. This needs
to be supported by a large amount of data and verified by future research. To confirm this
technique in the distribution and spectrum of all lesions found in typical renal pathology
services, additional validation of the DKD framework and image processing across various
clinical practices and image datasets is required [20]. Through advancements in clinical
data storage and processing technology, and the establishment of a resource-sharing plat-
form, kidney disease risk models based on extensive multicenter data may become more
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dependable. When these models achieve a sufficiently high level of performance, they may
eventually replace the need for kidney biopsy, enabling noninvasive diagnoses. While the
future remains uncertain, it appears that these developments are increasingly likely [20].

However, integrating AI into healthcare, particularly nephrology, presents unique
challenges. Data drift, where the input data evolve over time and diverge significantly
from the initial training data, poses a significant challenge. Active or continuous learning
methods can enable AI models to adapt and improve. The adoption of Machine Learning
Operations (MLOps) is critical for automating deployment processes and ensuring the
ongoing maintenance of ML models, thereby supporting a data-driven approach to health-
care [4]. Safeguarding patient confidentiality necessitates adherence to established ethical
frameworks and regulations such as the General Data Protection Regulation (GDPR) in
Europe and the Health Insurance Portability and Accountability Act (HIPAA) in the United
States. These frameworks mandate strict data anonymization processes, patient consent for
data usage, and the establishment of data sharing agreements that ensure confidentiality
and security. Ethically, it is crucial to balance the potential benefits of ML in nephrology
with respect for patient autonomy and privacy and the minimization of potential harm.
The Belmont Report’s principles of respect for persons, beneficence, and justice provide a
foundational ethical guideline for conducting research that involves patient data, empha-
sizing the need for transparency, patient consent, and equitable access to the benefits of
research advancements. Additionally, the probabilistic nature of ML necessitates setting
predefined thresholds of acceptable errors before engaging in ML projects. The complexity
of some ML algorithms makes it challenging for physicians to interpret results, highlighting
the importance of Explainable AI (XAI). XAI provides transparency in AI decision-making
processes, fostering trust and ensuring compliance with regulations such as GDPR. XAI
aids in identifying and correcting biases and errors in AI systems, ensuring ethical, fair, and
safe operations. It enhances human–AI collaboration by making the actions of AI systems
understandable and predictable for their human users. Clinicians traditionally exercise
caution in uncertain diagnostic scenarios, a practice that is not mirrored by machines. This
discrepancy underscores the importance of clinicians being well versed in AI technolo-
gies, recognizing their limitations, and maintaining patient safety. Examples such as the
limitations of pulse oximetry devices in detecting carbon monoxide poisoning illustrate
the potential pitfalls of overrelying on automated systems without understanding their
limitations [1,62]. Furthermore, mitigating biases in datasets and ensuring the generaliza-
tion of ML models is important. Firstly, the collection of data from a broad spectrum of
demographics, healthcare settings, and geographic locations is imperative. Secondly, the
identification and quantification of biases within datasets through statistical techniques
and data visualization are essential. The application of fairness metrics, including equality
of opportunity, predictive parity, and demographic parity, serves as a third step. These
metrics facilitate the evaluation of the performance of ML models across various groups,
guiding the adjustment of models to enhance fairness. Fourthly, external validation of ML
models on datasets from diverse populations and settings is crucial for assessing generaliz-
ability. This process helps identify and rectify biases that were not evident during the initial
training phase. By implementing these steps, researchers and practitioners in nephrology
can advance the development of ML models that are not only scientifically robust but also
ethically responsible and inclusive, thereby maximizing the potential benefits of ML in
improving healthcare outcomes across diverse global populations. To enhance the develop-
ment of guidelines and policy implementation in public health and medicine through the
synthesis of evidence from multiple studies and meta-analyses, there is a need for a new
approach to disseminating and reporting ML models in medicine. This approach should
include the provision of all model parameters, the use of standard ontologies to describe
variables, and the disclosure of data transformations and sampling methods. Collaboration
between clinicians and data scientists is crucial for defining data-sharing and usage policies,
aiming to improve the generalizability and credibility of ML algorithms in nephrology [63].



Biomedicines 2024, 12, 568 14 of 17

Figure 2 shows an example of how ML models are designed and how they can be valuable
in CKD progression.
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Figure 2. Overview of the standard machine-learning workflow with its integration in clinical practice.
The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a robust cyclic methodology
that guides the data-mining process. The process initiates with the business understanding phase,
which is dedicated to grasping the business aspects of the project and translating them into a data
analytical framework. Progressing to data understanding, this stage involves an initial acquisition
of data followed by an exploration to familiarize itself with the data characteristics, quality, and
potential of the datasets. During this phase, preliminary insights are gleaned and the groundwork for
hypothesis formation is laid. Subsequently, data preparation constitutes a critical phase in which raw
data undergo transformation and cleansing, ensuring that they are primed for analysis. The modeling
phase sees the application of various algorithmic techniques, fine-tuned to model the data effectively
on the training and validation set. In the evaluation phase, the models and the entire process undergo
scrutiny to ascertain their efficacy in meeting the defined business objectives on the test set. Finally,
the deployment phase represents the culmination of the process, where the insights and findings are
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operationalized [64]. Next, the ML model can be integrated into clinical workflows. These mod-
els must be seamlessly incorporated into existing clinical workflows to augment clinical decision
making and effectively enhance CKD patient management. This involves embedding the ML model
interface within electronic health record (EHR) systems, allowing clinicians to access predictive
insights alongside comprehensive patient data without disrupting routine practices. As part of a
clinical decision support system (CDSS), the ML model provides clinicians with predictions of CKD
progression, identifying patients at high risk of advancing to kidney failure and suggesting potential
interventions. These can range from medication adjustments and dietary modifications to discussions
about initiating dialysis, enabling earlier and more targeted interventions with the potential to slow
disease progression, improve patient outcomes, and reduce healthcare costs. This iterative process is
supported by interdisciplinary collaboration that brings together nephrologists, data scientists, IT
specialists, and patients to align the model with clinical needs and patient care goals.
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