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Abstract: Monitoring antibiotic retention in human body fluids after treatment and controlling heavy
metal content in water are important requirements for a healthy society. Therefore, the approach
proposed in this study is based on developing new optical sensors using porphyrin or its bifunctional
hybrid materials made with AuNPs to accomplish the accurate detection of chloramphenicol and
cobalt. To produce the new optical chloramphenicol sensors, 2,7,12,17-tetra-tert-butyl-5,10,15,20-
tetraaza-21H,23H-porphine (TBAP) was used, both alone in an acid medium and as a hybrid material
with AuNPs in a water–DMSO acidified environment. The same hybrid material in the unchanged
water–DMSO medium was the sensing material used for Co2+ monitoring. The best results of
the hybrid materials were explained by the synergistic effects between the TBAP azaporphyrin
and AuNPs. Chloramphenicol was accurately detected in the range of concentrations between
3.58 × 10−6 M and 3.37 × 10−5 M, and the same hybrid material quantified Co2+ in the concentration
range of 8.92 × 10−5 M–1.77 × 10−4 M. In addition, we proved that AuNPs can be used for the
detection of azaporphyrin (from 2.66 × 10−5 M to 3.29 × 10−4 M), making them a useful tool to
monitor porphyrin retention after cancer imaging procedures or in porphyria disease. In conclusion,
we harnessed the multifunctionality of this azaporphyrin and of its newly obtained AuNP plasmonic
hybrids to detect chloramphenicol and Co2+ quickly, simply, and with high precision.

Keywords: azaporphyrin; chloramphenicol detection; Co2+ detection; UV–Vis; fluorescence; IR

1. Introduction

Azaporphyrins are used in many modern applications, such as photodynamic therapy
for cancer [1,2], light harvesting [3], and sensors [4]. The azaporphyrin 2,7,12,17-tetra-
tertbutyl-5,10,15,20-tetraaza-21H,23H-porphine (TBAP), known as a molecular organic
semiconductor, has been intensively studied [5,6] because its thin films were reported to
have a band gap of 1.75 eV, thus making them suitable for optoelectronic applications [7].
In this work, the TBAP azaporphyrin will be used to develop new UV–vis sensors for
chloramphenicol and Co2+ monitoring.

The resistance of bacterial strains to extensively used antibiotics has generated a
justified concern regarding a return to old treatment options based on chloramphenicol [8].
Chloramphenicol is well known as a very efficient antibiotic inhibiting both Gram-positive
and Gram-negative bacteria [9].

Nevertheless, the harmful side effects of chloramphenicol (CHL), such as neurotoxicity
and hematologic disorders [10], irreversible aplastic anemia [11], reversible bone marrow
suppression [12], and acute myeloid leukemia [13], warrant the careful monitoring of
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chloramphenicol levels in human biological fluids. Fortunately, bone marrow suppression
is a reversible side effect after treatment with chloramphenicol. Chloramphenicol only
produces a fall in hemoglobin levels if it reaches a concentration higher than 25 mg/mL in
plasma [14].

When large doses of chloramphenicol are given to premature neonates, it causes a
severe illness named “gray baby syndrome” that begins 2–9 days after treatment is started.
A similar “gray syndrome” has been encountered in adults who have overdosed on this
antibiotic [15,16].

Table S1 in the Supplementary Materials presents the most efficient and recently used
methods for chloramphenicol detection based on porphyrins or other materials. Despite
the fact that Table S1 reports few trace detection domains [17,18], the real purpose of
CHL detection is to discover medically relevant concentrations of CHL remaining in the
human body after treatment with this medicine. Thus, the real need is to identify toxic
concentrations that potentially endanger the patients, that is, a concentration in the range
of 1 × 10−6 M–5 × 10−5 M.

On the other hand, monitoring water and foods regarding their content of heavy
metals is a necessity in our society [19–21]. Among these metals, cobalt, especially the
frequently used cobaltous (Co2+) type, although needed as vitamin B12, can be considered
to be toxic to humans and the environment at increased levels of exposure [22]. Table S2
from the Supplementary Materials contains data concerning recent performances in Co2+

detection. Several methods for the determination of cobalt have been reported, which
mainly focused on spectrophotometry [23], flow injection [24], liquid chromatography [25],
and capillary electrophoresis [26]. Co2+ detection in different sources, such as water, milk,
spinach leaves, cabbage leaves, lettuce leaves, parsnip root, celery root, garlic root, white
onion root, red onion root, orange, tangerine, red grapefruit, apple, pear, milk, powder milk,
chicken liver, flour, cinnamon, coffee, and beer [27], is needed to control the content of this
metal in different foods [28]. The highest relevant Co2+ concentration is 5.92 × 10−3 M [29]
in baby milk; it is around 50 µM in water samples of different origins, such as drinking
water, lake water, seawater, and river water [30,31], and in the range from 5 to 300 µM
in different foods like instant coffee, lamb kidneys, Brazil nuts, chocolate milk, linseeds,
brewers’ yeast, millet seeds, buckwheat, kidney beans, dark chocolate, rice, chili powder,
sunflower kernels, bovine liver, curry powder, cashew nuts, peanut butter, potatoes, fresh
broccoli, and brown lentils.

By harnessing the multifunctionality and optical capabilities of 2,7,12,17-tetra-tertbutyl-
5,10,15,20-tetraaza-21H,23H-porphine (TBAP), both alone and of its hybrid materials ob-
tained with AuNPs in acidic and organic media, this study focuses on developing two new
simple methods for the detection of an antibiotic, chloramphenicol, and of cobalt, the latter
being appropriate for monitoring the water environment. Our approach is original and
based on new plasmonic materials; it is also fast and simply synthesized by complexing
the TBAP azaporphyrin with AuNPs.

2. Materials and Methods
2.1. Materials

The 2,7,12,17-Tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine (TBAP) was pur-
chased from Sigma-Aldrich® (Darmstadt, Germany); chloramphenicol (CHL) was acquired
from Northeast Pharmaceutical, Group Co. (Shenyang, China); HAuCl4 × 3H2O was sup-
plied by Roth (Karlsruhe, Germany); cobalt(II)acetate, HCl, NaOH, and dimethyl sulfoxide
(DMSO) were bought from Merck (Darmstadt, Germany); niacin, lactic acid (LA), BaCl2,
MnCl2, NaCl, calcium gluconate (CaGlu), SnCl2, β-Carotene, and KI were obtained from
Merck (Darmstadt, Germany); FeCl3 was provided by Fluka Chemie (Buchs, Switzerland);
glucose (Glu) was provided by Chimreactiv/Reactivul (Bucuresti, Romania), calcium lac-
tate (CaL) was purchased from DH Laboratory Chemicals (Poole, UK). All the reagents of
purrum analyticum grade were used as received, without further purification.
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2.2. Apparatus

In order to record the UV–Vis spectra (1 cm wide quartz cuvettes), a V-650 JASCO
spectrometer (Pfungstadt, Germany) was used. For atomic force microscopy (AFM) images,
a Nanosurf® EasyScan 2 Advanced Research AFM microscope (Liestal, Switzerland) was
used, equipped with a piezoelectric ceramic cantilever. The AFM measurements were per-
formed in ambient conditions at a temperature of 21 ± 2 ◦C (relative humidity: 50–70%) in
contact mode. The samples were prepared by drop-casting from the DMSO or DMSO/water
solutions. The emission spectra were recorded on a Perkin–Elmer Model LS 55 apparatus
(Waltham, MA, USA), using 1 cm path length cells, a scan speed of 100 nm/min, excitation
of λ = 364 nm, excitation slits of 10 nm, emission slits of 5 nm, at ambient temperature
(22–24 ◦C), without cut-off filters. To register FT-IR spectra, KBr pellets or the ATR mode
were used on a JASCO 430 FT-IR (Hachioji, Tokyo, Japan) spectrometer, working in the
range 4000–400 cm−1. A 400 MHz Bruker Avance NEO Spectrometer (Rheinsteitten, Ger-
many) equipped with 5 mm four nuclei (1H/13C/19F/29Si) provided the 1H-NMR spectra,
registered in CDCl3. The chemical shifts are expressed in ppm, using tetramethylsilane
(TMS) as a reference. The interaction mechanisms between TBAP, CHL, and Co2+ were
plotted by UCSF Chimera (software version 1.16) using a Structure Analysis tool, Find-
HBond, and electrostatic surface analysis, respectively. Error bars were calculated using
the standard deviation of three individual experiments in an Excel worksheet [32,33]. A
Titan G2 80–200 TEM/STEM microscope (FEI Company, Eindhoven, The Netherlands)
was used in TEM and STEM modes at 80 and 200 kV acceleration voltages, using Digital
Micrograph v. 2.12.1579.0 and TEM Imaging and Analysis v.4.7 software. TEM/STEM
samples preparations were performed as follows: gold colloid solutions were deposited by
drop casting on TEM copper grids covered with carbon film.

3. Results and Discussion
3.1. UV–Vis Study Regarding 2,7,12,17-Tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine
(TBAP)

The UV–Vis spectra of the TBAP in DMSO solution, presented in Figure 1, contain
the typical Soret around 330 nm and two Q-bands in the ranges of 550−630 nm, respec-
tively. The Soret band, displayed at 335.5 nm, exhibits higher molar coefficients due to
π-conjugation. This azaporphyrin has a D2h symmetry, and as expected, shows the splitting
of the Q-band, due to its lower symmetry.
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Figure 1. UV–Vis spectra of 2,7,12,17-Tetra-tert-butyl-5,1-,15,20-tetraaza-21H,23H-porphine (TBAP)
in DMSO (c = 6.691 × 10−5 M); λmax(logε): 335.5 (4.383); 355.5 (4.132); 620.5 (4.297).

The Q band is associated with π−π* HOMO-LUMO doubly degenerated transition
from the ground state of a1u symmetry to the first excited state, which is of eg symmetry.
A Qx band that is read at 620.5 nm is attributed to a single electronic transition and has
higher intensity than Qy band, read at 554.5 nm, that might be attributed to vibronic
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transitions [7,34–36]. The last Q band located around 680 nm can be attributed to potential
J-type aggregation [37].

In comparison with usual porphyrins, in TBAP azaporphyrin, the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels
are significantly stabilized by introducing nitrogen atoms instead of carbon atoms at the
meso-positions [38,39]. The stabilization degree is higher in the LUMO than in the HOMO,
which decreases the HOMO–LUMO gap [40].

Extended UV–Vis studies regarding aggregation for TBAP in DMSO solution at differ-
ent concentrations (Figure S1) and its optical behavior in acid-based media (Figure S2) and
in base medium (Figure S3) are presented in the Supplementary Materials.

3.2. Fluorescence Study of 2,7,12,17-Tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine (TBAP)

The capacity of porphyrins to release fluorescence makes them desired compounds for
imaging diagnostics, especially for tumors [41]. As can be seen from Figure S4, the TBAP
azaporphyrin demonstrates intense fluorescence, looking like a light-red glowing material
during exposure to λ = 366 nm [42].

The emission and excitation spectra of TBAP registered in DMSO solutions are given
in Figures 2 and 3.
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wavelength: 639 nm, excitation slit of 10 nm, emission slit of 5 nm, and no filter. The scanning rate
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The emission spectrum of TBAP azaporphyrin in DMSO (Figure 2) is characterized
by a strong band with the highest maximum around 640 nm. This intense Q(0,0) band is
accompanied by a less intense Q(1,0) band at 686 nm, thus mirroring the shape of Q-bands
from the absorption spectrum.

A comparison of the emission and excitation spectra at different pH of DMSO solutions
are presented in Figures 4 and 5.
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Figure 5. Comparison of excitation spectra between a solution of acidulated TBAP to pH = 1.77 and a
basic solution of TBAP (pH = 14), in both DMSO (c = 3.941 × 10−5 M), λem = 639 nm; excitation slit
of 10 nm, emission slit of 5 nm, and no filter. The scanning rate was 100 nm/min; 2D and 3D images
recorded in AFM (contact mode) of supramolecular architectures created by TBAP in DMSO solution
at pH = 14 are presented in detail.

The significant increase in the intensity of the Q band located around 750 nm in
the solution environment at pH = 14 can be explained due to symmetry changes in the
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azaporphyrin core; these are caused by the interactions with the OH- groups from the
base [43].

The band around 750 nm, displayed in Figure 4, might also be explained by significant
orbital mixing and excited stated properties that are solvent dependent and that also imply
torsional motions and oscillator strength of the S0→S1 transition. In addition, the molecule
axes might not coincide with the directions of the polarization of the S0→S1 transition [44].
All these contributions might produce a redistribution of intensity; thus, the visible bands
now have similar or higher intensity compared with the band located around 430 nm [45].

The distinct peak on emission spectrum, shown in Figure 5, located at 320 nm in
DMSO solution at pH = 14, is an indication for the well-constructed H-type aggregates.
These sandwich type aggregates are also confirmed by 2D and 3D AFM microscopy that
present large strow-like supramolecular architectures. Helicoidal organization of the corn
grains type aggregates is visible in the 2D AFM image and leave room for large voids that
are suitable for interactions with different analytes.

The calculated Stokes shift (λem–λabs) [46] for acid solutions is 299 nm and the Stokes
shift for basic solution is a little higher at 304 nm. The large Stokes shifts, both in basic and
acid solutions, might indicate that the structures of porphyrin are different in the excited
state as compared with the ground state. A reorganization of the porphyrin electronic state
and its geometry might occur in the excited state, producing the distortion of the planar
structure. A large Stokes shift thus suggests better fluorescence properties because the
shift allows for the easy separation of the emission from scattered light, indicating a small
resonance energy transfer [47,48].

The energy diagram of H and J aggregates transitions is presented in Figure 6.
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In the H-type aggregates, the Soret band is hypsochromically shifted due to a face-
to-face arrangement of monomers. Instead, the J-type aggregates show a narrow Soret
band red shifted compared with the monomer and the porphyrin monomers are aligned
head-to-tail [49].

Thus, only the transition to the higher energetic exciton level is allowed for the H-
aggregates. In the case of the J-aggregates [50,51], the only allowed transition is that to the
lower energetic state [52,53].

3.3. 1H-NMR Study of the TBAP Azaporphyrin

The most important aspects in the 1H-NMR spectrum (Figure 7) of the TBAP are
the shifting of the signals due to induced magnetic field. The strong shielding effect of
internal NH is moving the signal to −2.69 ppm and the strong de-shielding effect of the
β-pyrrolic protons, produces a doublet signal between 8.72 and 8.68 ppm, respectively. This
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shielding/de-shielding phenomenon is caused by the induced ring current as a result of
the induced magnetic field [32,54], also known in the literature as an effect of diamagnetic
anisotropy [55], manifested when paramagnetic states with nonzero spin multiplicity have
magnetic-field-dependent state energies [56].
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phenomena in detail due to the induced ring current, which is a consequence of the induced magnetic
field. The starred marked signals are impurities from the deuterated solvent.

The strongest signal appearing at 1.99 ppm is attributed to the 36 protons from the
tert-butyl peripheral groups (-CH3).

The singlet resonating at 7.01 ppm* is attributed to non-deuterated chloroform residues
from CDCl3. Purification of the TBAP sample required extraction with THF; this fact
produced the appearance of the two triplet type signals between 3.50 and 3.42 ppm** (4H,
-O-CH2-CH2-) and between 1.52 and 1.68 ppm** (4H, O-CH2-CH2-), caused by traces of
THF [57].

3.4. The Optical Detection of CHL by UV–Vis Spectroscopy Used as a Sensitive Substance, TBAP,
in Acid Medium

To the 5 mL 2,7,12,17-tetra-tet-butyl-5,1-,15,20-tetraaza-21H,23H-porphine solution
in DMSO (c = 6.691 × 10−5 M) with 0.1 mL HCl 37% (to obtain a pH = 1.9 from initial
pH = 9.5 of porphyrin), 0.1 mL portions of chloramphenicol in H2O (c = 5.124 × 10−5 M)
were added. Each mixture was vigorously stirred for 60 s and the UV–Vis spectra were
recorded. Chloramphenicol does not absorb in the region of interest for its detection by
using an azaporphyrin derivative.

As displayed in Figure 8 by continuously adding CHL, the intensity of all bands is
decreased and an isosbestic point is formed at around 640 nm. There is a good polynomial
sigmoidal correlation between the CHL concentration and the absorption intensity of
acidulated azaporphyrin, in a narrow range from 3.64 to 10.20 µM; according to [16], this is
suitable for the determination of CHL from food products [58].
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UV–Vis spectrum of chloramphenicol (CHL) in water (c = 5.124 × 10−5 M).

Because the range of detection is so narrow (Figure 9), even if the precision is very
high, we developed a plasmonic material based on TBAP to use as a sensitive material for
CHL detection in a wide range of concentrations.
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UV–Vis read at 335.5 nm.

3.5. The Detection of CHL Using a Plasmonic Complex Formed between Acidified TBAP and AuNPs
3.5.1. Obtaining and Characterization of AuNPs

The synthesis of gold nanoparticles was performed according to the previously re-
ported recipe [59], as follows: 0.035 g HAuCl4 × 3H2O (0.088 × 10−3 mole) dissolved in
116.2 mL doubly distilled water was brought to reflux into a three-necked flask of 150 mL
equipped with mechanical stirrer and refrigerator. Then, a 12.25 mL (1 wt %) solution of
trisodium citrate (0.122 g, 0.41 × 10−3 mole) in doubly distilled water was added at once
and the mixture was vigorously stirred and further refluxed for 15 min. The molar ratio
of HAuCl4/citrate salt was 1:5 [60,61]. Besides acting as reduction agent, the citrate ions
also act as stabilizers. The UV–Vis spectrum of AuNPs at a concentration of 6.85 × 10−4 M
is presented in Figure 10, showing a typical plasmonic alure with a maximum absorption
located at 520 nm. The narrowly tailored size of the obtained spherical gold nanoparticles
ranges from 15 to 17 nm, as illustrated by the STEM and TEM images in the detail presented
in Figure 10.
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3.5.2. Method for Obtaining the Complex between TBAP and AuNPs

To 5 mL TBAP in DMSO solution (c = 5.124 × 10−5 M), 0.1 mL HCl (37%) was added.
The resulting pH of the solution was 2. To this obtained solution, different portions of
AuNPs (c = 6.85 × 10−4 M) were added in the range of 0.05 mL–0.20 mL.

As can be seen in Figure 11, the complex between TBAP and AuNPs exhibit an
enlarged absorption band from 340 nm to 800 nm; during the complex formation, all the
bands of azaporphyrin are slightly red-shifted. The five isosbestic points that are displayed
on the UV–Vis spectra (at 375 nm, 535 nm, 566 nm, 612 nm, and 630 nm) demonstrate the
existence of some intermediate species between the AuNPs and azaporphyrin that affect
the entire macrocycle.
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The synergistic effect between AuNPs and porphyrins generally provides an enlarged
absorption domain [62–64] that is useful for improving optical applications. In the formed
complex, the gold nanoparticles that are negatively surface charged easily interact with the
partially positively charged nitrogen atoms of the porphyrin core in the porphyrin base, or
with the diprotonated porphyrin that forms in the acid medium.

3.5.3. The Optical Detection of CHL Using the Hybrid Material AuNPs–TBAP

To a quantity of 5 mL complex in DMSO/acidified water, portions of 0.05 mL of CHL
solution in water (c = 5.12 × 10−4 M) were added. After each addition, the mixture was
stirred for 90 s and the UV–Vis spectra were recorded.
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The addition of CHL to the complex caused a decrease in the intensity of all the bands,
Soret and Q; the location of the three bands was preserved, but the whole bands were
enlarged, as can be observed from Figure 12.
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stepwise addition of CHL.

The linear dependence between the intensity of the absorption of the AuNPs–TBAP
complex read at 637 nm and the CHL concentration in the range between 3.58 × 10−6 M
and 3.37 × 10−5 M is characterized by a very good coefficient of correlation (99.44%), as
presented in Figure 13.
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As can be concluded from the two experiments, the first one using the solely acidified
TBAP–azaporphyrin and the second one being based on the same porphyrin synergistically
complexed with AuNPs, these two methods are complementary, extending the detection
of chloramphenicol from 3.58 × 10−6 M to 3.37 × 10−5 M, a domain that represents the
relevant field for detecting the CHL levels in the human body fluids [65,66] and food [67–69],
and in the industries where one must monitor for environmental control [70].

The sensitivity of the CHL detection method, that is the intensity of absorbance per
concentration of chloramphenicol, is given by the slope of the fitting curve [71].
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The limit of detection (LOD) was calculated for both the CHL and Co2+ detections
using Equation (1).

LOD = 3.3 × N/B (1)

where N is standard deviation of the peak areas of the chloramphenicol or Co2+ and B is
the slope of the corresponding calibration curve [72].

The value of LOD for CHL detection using the acidified AuNPs–TBAP complex,
calculated by using Equation (1), is 0.98 × 10−6 M.

The intra-assay and inter-assay levels found for CHL security levels in milk (2.8–11.6 g kg−1),
poultry (5–10.5 g kg−1), honey (4.7–5.6 g kg−1), and prawn (5.5–8.8 g kg−1) are highly
recommended; we advise the use of our acidified AuNPs–azaporphyrin-based optical
sensor for these screenings, because this sensor is covering these interest domains (values
around 10−5 M) [73].

The CHL content in the blood for the “toxic” group was 2.8 µg/mL; this represents
a concentration of 8 mM, meaning that our sensor can quantify the CHL levels in blood,
a decade before becoming dangerous. The level of CHL concentration detected in urine
that is putting human bodies in danger is 10–20 µg /mL, representing 6.19 × 10−5 M; this
overlaps with the detection domain of our sensor, which is based on acidified AuNPs–
azaporphyrin [74].

3.5.4. Presumptions for the Mechanism of Detection of CHL Using a Plasmonic Complex
Formed between Acidified TBAP and AuNPs

Speaking about the mechanism of detection, we performed a comparison of the FT-IR
spectra (Figure 14) for all the involved compounds: the acidulated TBAP azaporphyrin, the
complex between the AuNPs–TBAP, the complex after treatment with chloramphenicol
AuNPs–TBAP-CHL, and the CHL alone. These comparisons provided evidence of some
important differences, which are highlighted by circles in Figure 14.
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Figure 14. Comparison of the FT-IR spectra of all the involved compounds: the acidulated TBAP
azaporphyrin, the complex between the AuNPs–TBAP, the complex AuNPs–TBAP after treatment
with chloramphenicol TBAP–AuNPs-CHL, and the CHL alone. The differences between the Ft-IR
spectra, marked in purple circles, are discussed in the text below.

The aliphatic C-H stretching vibrations from tert-butyl groups around 2950–2860 cm−1

are very visible and obvious in the spectrum of acidified TBAP; these shift towards blue
and are less intense in the complex with gold and in the AuNPs–TBAP-CHL due to the
intake of water from the gold colloid. This phenomenon of shifting and reduction in the
C-H bands is explained in the literature due to intermolecular hydrogen bonding [75,76].
The source of the broad absorption band at 3000–3500 cm−1 is the O-H stretching in the
water molecules, as well as H-bonds and N-H stretching.
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The band at around 1060 cm−1 from azaporphyrin, attributed to C-N vibrations in
the ring, shifted to 1000 cm−1 in the AuNPs–TBAP complex after treatment with chloram-
phenicol; this means that there is an extended vibration to the C-N meso-C bonds that is
caused by external interactions. On the other hand, the shifting of the IR peaks to lower
wavenumbers is caused by the increased resonance that delocalize the electrons over more
atoms than the two that were implied in the C-N bond, thus weakening this bond [77].

The band at around 900 cm−1 that is attributed to acidulated azaporphyrin, and which
is assigned to the cycle of out-of-plane deformation, shifted to 960 cm−1 in the TBAP-
AuNPs complex after treatment with chloramphenicol; this suggests that the bending
of the C-C groups is taking place [6] and that the porphyrin is no more planar after
interaction with CHL. The reduction in symmetry can generate the coupling of in-plane
and out-of-plane vibrations; those around 960–980 cm−1 provide proof for the distortion
of the macrocycle [78]. This distortion of the azaporphyrin might offer a suitable place
for electronic interactions with CHL, as illustrated in Figure 15. These interactions take
place between positively charged hydrogens linked to internal nitrogen atoms from the
azaporphyrin core and the negatively charged oxygen atoms from CHL.
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3.5.5. Effect of Potentially Interfering Species in the CHL Detection

The influence of species that can interfere in the detection of chloramphenicol—such
as niacin, lactic acid (LA), calcium gluconates (CaGlu), potassium iodide (KI), barium
chloride (BaCl2), β-carotene, and ferric chloride (FeCl3)—was evaluated in the presence of
chloramphenicol, using 100 times more concentrated solutions than that of CHL.

To the 3 mL AuNPs–TBAP complex solution in DMSO–water with CHL (c = 3.54 × 10−6 M),
0.1 mL solutions of anions and cations were added, which can interfere during the detection
of chloramphenicol at a concentration of 1 × 10−3 M. Each sample was stirred for 1 min
and the UV–Vis spectra were recorded.

The average percentage errors for the detection of chloramphenicol [32] is calculated
according with Equation (2).

|∆I|/I × 100 (2)

where I is the absorbance intensity of the sample containing CHL and |∆I| is the difference
between the absorbance intensity of chloramphenicol and each of the studied interfering
species, expressed in absolute value [79].
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From Figures 16 and 17, it can be concluded that the only significant interference is
produced by FeCl3, introducing a percentage deviation of 6.49.
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3.6. Detection of Co(II) from Aqueous Media Using the AuNPs–TBAP Complex, Generated in
Water–DMSO Solution

Our first approach was to realize Co2+ detection by using acidified TBAP azaporphyrin
alone. This study is presented in the Supplementary Materials and in Figures S5–S7.

3.6.1. AuNPs–TBAP Complex Formation in Water–DMSO

The synergistic optical behavior of the hybrid materials formed between porphyrins
and AuNPs have been previously analyzed and reported [62,63,80,81]; thus, we tried to
obtain a new complex between the azaporphyrn and AuNPs in water–DMSO solution.

Method for obtaining AuNPs–TBAP complex:
To 5 mL AuNPs in water (c = 6.918 × 10−4 M), different portions of TBAP in DMSO

solution (c = 5.12406 × 10−5 M) were added. After every adding, the mixture was stirred for
90 s and the UV–Vis spectra were recorded. As can be observed in Figure 18, the plasmonic
band of AuNPs is red-shifted from 518 nm to 525 nm; this occurs simultaneously with the
decreasing intensity of the bands. A new peak shows up at 623 nm.
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As can be seen from the linear dependence shown in Figure 19, the azaporphyrin can
be recognized and detected by AuNPs plasmon in a fast and simple way.
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The linear dependence between the intensity of absorption of AuNPs plasmon (this
time, read the newly formed peak at 623 nm) and TBAP concentration is presented in the
Supplementary Materials, Figure S7, in the same concentration interval from 2.66 × 10−5 M
to 3.29 × 10−4 M; this shows that, in this simple way, the azaporphyrin can be quantified
after being used in the imaging of cancer cells [82–87].

3.6.2. UV–Vis Detection of Co2+ Using AuNPs–TBAP Complex

The spectrophotometric detection of Co2+ ions was performed using the complex
obtained between AuNPs and TBAP in water–DMSO.

To 5 mL solutions of AuNPs–TBAP, different portions of cobalt acetate in water were
added (c = 1 × 10−3 M). The obtained mixtures were stirred for 1 min at room temperature,
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and the UV–Vis spectra were recorded (Figure 20). A selection of the UV–Vis spectra
of AuNPs–TBAP complex in water–DMSO during the increasing concentrations of Co2+,
offering fitted values for linear dependence, is shown in Figure 21.
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Figure 21. (a) Selected UV–Vis spectra of AuNPs–TBAP complex in water–DMSO after stepwise
addition of Co2+; (b) linear dependence between intensity of absorption of AuNPs–TBAP in water–
DMSO read at 555 nm and Co2+ concentration (5.55 × 10−5 to 1.28 × 10−4 M). Standard deviation
ranges from 0.02 to 0.016.

The value of the LOD for Co2+ detection when using the AuNPs–TBAP complex,
calculated using Equation (1), is 1.3 × 10−5.

Despite the fact that cobalt has been reported to have a low oral toxicity, reports
regarding cardiomyopathy [88], due to excessive cobalt intake, have asked for its strict
monitoring in different foods.

With respect to Co2+ analysis, our sensor might be appropriate for fast and accurate
detection of its content in the following seeds, spices, vegetables, milk, and meat products:
instant coffee, lamb kidney, Brazil nuts, chocolate milk, linseeds, brewers’ yeast, millet
seeds, buckwheat, kidney beans, chocolate, dark, rice, chili powder, sunflower kernels, liver,
bovine, curry powder, cashew nuts, peanut butter, potato, fresh, broccoli, and brown lentils.
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3.6.3. Potential Mechanism of Co2+ Detection Based on Compared FT-IR Spectra of
AuNPs–TBAP Complex and AuNPs–TBAP-Co2+

Figure 22 represents FT-IR spectra of the AuNPs–TBAP complex and the AuNPs–
TBAP complex after being exposed to Co2+. The band situated around 1057 cm−1 that
belongs to the AuNPs–TBAP complex is shifted to lower wavenumbers (1010 cm−1) after
the complex is treated with Co2+, thus revealing the formation of a potential coordinative
bond formation between Co2+ and the internal nitrogen atoms. As a consequence, the
bond strength has increased. This band is reported [89] to be metal-sensitive and to contain
significant Co-N stretching and N-Co-N in-plane bending vibrations.
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Figure 23. The detection mechanism cause by electronic interactions between Co2+ and azaporphyrin.
The color code for the atoms is as follows: carbon—grey; nitrogen—blue; Co2+—pink.

3.6.4. Effect of Interfering Species for the UV–Vis Detection of Co2+

The reference sample is comprised of 3 mL AuNPs–TBAP complex plus 0.1 mL Co2+

solution, in which 0.1 mL bi-distilled water was added. In each of the other samples, 0.1 mL
solution of each interfering compound was added instead of 0.1 mL water in order to avoid
false results due to dilution when measuring the interferences effects. The appropriately
selected interfering compounds, with concentrations of 10−2 M, are as follows: NaCl
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(natrium chloride), CaL (calcium lactate), KCl (potassium chloride), Glu (glucose), MnCl2
(manganese chloride), and KI (potassium iodide). Every mixture was stirred for 90 s and
the UV–Vis spectra were recorded. Each added interfering compound lead to a 100-fold
higher concentration in the solution when compared to that of Co2+ acetate.

The interference species that were chosen are frequently found in human serum and
water environments; therefore, they might influence the detection of the Co2+ ions. In our
case, the only significant effect that was found to be disturbing the accurate measurement
was produced by KI. The rest of the selected species generated interference effects that
were lower than 5%.

From Figures 24 and 25, it can be concluded that the only significant interference is
produced by KI, with a percentage deviation of 9; this means that this method cannot be
applied for thyroid-dysfunctional people.
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The average percentage errors for the detection of Co2+ ions are calculated with
Equation (2).
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4. Conclusions

The purpose of this work was to develop two new optical sensors for the detection of
an antibiotic (chloramphenicol) and of cobalt from water environment. This was performed
using the same porphyrin or its plasmonic hybrid materials, made with AuNPs. The TBAP
showed multifunctionality and optical capabilities, both on its own and as a synergic com-
ponent for hybrid materials obtained with AuNPs, both in acid and in organic media. The
results attained in the detection of CHL, using an acidified TBAP–AuNPs complex, showed
a linear correlation between the intensity of the sensitive material and CHL concentrations
in a range between 3.58 × 10−6 M and 3.37 × 10−5 M. For the Co2+ ions, the detection was
also linear in a range from 5.55 × 10−5 to 1.28 × 10−4 M using the AuNPs–TBAP complex.

The detection mechanism of CHL is based on the electronic interactions that take place
in acid media between positively charged hydrogens linked to internal nitrogen atoms
from azaporphyrin core and the negatively charged oxygen atoms from CHL. In addition,
the distortion of TBAP–azaporphyrin might offer a suitable place for electronic interactions
with CHL to occur.

The detection mechanism of Co2+ can be explained based on the new IR band formed
around 1010 cm−1 after the AuNPs–TBAP complex is treated with Co2+, revealing the
formation of coordinative bonds (Co-N stretching and N-Co-N in-plane bending vibra-
tions [89]) between Co2+ and the internal nitrogen atoms from TBAP azaporphyrin.

Taking the detection domain of our best formulated sensors into consideration, they
might be appropriate for quantifying the CHL levels in blood a decade before this antibiotic
becomes dangerous; this could also be performed in urine, where the concentration that is
putting human bodies in danger overlaps with the detection domain of our sensor based
on acidified AuNPs–azaporphyrin [74].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines12040770/s1. Figure S1: UV–Vis spectra of TBAP
solutions in DMSO, with different concentrations. Determining the concentration level that evidences
the formation of aggregates (c = 1.15 × 10−4 M, where the splitting is taking place). Figure S2:
Overlapping UV–Vis spectra of TBAP in DMSO upon increasing acidity from pH = 9.5 to pH = 1.77
by addition of HCl (c = 37%). Figure S3: UV–Vis spectra of TBAP at basic pH in DMSO/water.
The blue-shifted and split Soret band and generation of only one Q band. Figure S4: The color of
a solution of TBAP in DMSO (c = 4.6 × 10−5 M) under illuminating at UV–Vis lamp at different
selected wavelengths. Figure S5: Overlapping spectra of acidified TBAP solution in DMSO after
stepwise addition of Co2+ in a large range of concentrations, 9.70 × 10−6 M−1.77 × 10−4 M. Figure S6:
Linear dependence between intensity of absorption of acidified TBAP read at 335.5 nm and Co2+

concentration, validated in a range of Co2+ concentrations: 8.92 × 10−5 M–1.77 × 10−4 M. Figure S7:
Linear dependence between intensity of absorption of AuNPs read at 623 nm and TBAP concentration.
Table S1: The most efficient and recently used methods for chloramphenicol detection. Table S2:
Various methods for Co2+ detection from different samples. Detection domains, detection limits, and
areas of application. References [17,18,23–28,58,77,90–123] are citied in the Supplementary materials.
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49. Zannotti, M.; Giovannetti, R.; Minofar, B.; Řeha, D.; Plačková, L.; D’Amato, C.A.; Rommozzi, E.; Dudko, H.V.; Kari, N.; Minicucci,
M. Aggregation and metal-complexation behaviour of THPP porphyrin in ethanol/water solutions as function of pH. Spectrochim.
Acta A Mol. Biomol. Spectrosc. 2018, 193, 235–248. [CrossRef] [PubMed]

50. Kasha, M.; Rawis, H.R.; El-Bayoumi, M.A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 1965, 11, 371–392.
[CrossRef]

https://doi.org/10.1021/acs.analchem.3c05864
https://www.ncbi.nlm.nih.gov/pubmed/38359085
https://doi.org/10.3390/biology12101335
https://www.ncbi.nlm.nih.gov/pubmed/37887045
https://doi.org/10.1016/j.snb.2015.12.028
https://doi.org/10.1016/j.snb.2018.10.020
https://doi.org/10.1039/C4RA11704B
https://doi.org/10.3390/nano12111930
https://www.ncbi.nlm.nih.gov/pubmed/35683785
https://doi.org/10.1175/JCLI3499.1
https://doi.org/10.1007/s10854-021-05665-4
https://doi.org/10.6060/mhc2010.1.63
https://doi.org/10.3390/ijms160922415
https://www.ncbi.nlm.nih.gov/pubmed/26389895
https://doi.org/10.1002/adom.202001701
https://doi.org/10.1021/ja411016f
https://www.ncbi.nlm.nih.gov/pubmed/24328229
https://doi.org/10.1039/C9CC02151E
https://www.ncbi.nlm.nih.gov/pubmed/31062005
https://doi.org/10.1002/chem.202005042
https://www.ncbi.nlm.nih.gov/pubmed/33913188
https://doi.org/10.3390/molecules24142669
https://www.ncbi.nlm.nih.gov/pubmed/31340553
https://doi.org/10.1002/anie.202116174
https://www.ncbi.nlm.nih.gov/pubmed/35030286
https://doi.org/10.1021/cb700248m
https://www.ncbi.nlm.nih.gov/pubmed/18355003
https://doi.org/10.1021/acs.jpca.2c06040
https://doi.org/10.1007/s10895-019-02471-4
https://doi.org/10.3390/molecules14041370
https://www.ncbi.nlm.nih.gov/pubmed/19384269
https://doi.org/10.1016/S1010-6030(99)00013-1
https://doi.org/10.1016/j.saa.2017.12.021
https://www.ncbi.nlm.nih.gov/pubmed/29247920
https://doi.org/10.1351/pac196511030371


Biomedicines 2024, 12, 770 21 of 23

51. Patnaik, A. Non-covalent approaches to facile synthesis of dimension-specific H and J-aggregates. In J-Aggregates; Kobayashi, T.,
Ed.; World Scientific Publishing: Singapore, 2012; Volume 2, pp. 343–402.

52. Dehghani Sanij, M.; Bahrampour, A.; Bahrampour, A.R. Resonant Light Scattering toward Optical Fiber Humidity Sensors.
Photonic Sens. 2018, 9, 60–68. [CrossRef]

53. Bhopate, D.P.; Kim, K.; Mahajan, P.G.; Gore, A.H.; Patil, S.R.; Majhi, S.M.; Naik, G.K.; Liang, T.-T.; Ahemad, J.-M.; Yu, Y.-T.; et al.
Fluorescent chemosensor for quantitation of multiple atmospheric gases. J. Nanomed. Nanotechnol. 2017, 8, 1000436. [CrossRef]

54. El Bakouri, O.; Szczepanik, D.W.; Jorner, K.; Ayub, R.; Bultinck, P.; Solà, M.; Ottosson, H. Three-Dimensional Fully π-Conjugated
Macrocycles: When 3D-Aromatic and When 2D-Aromatic-in-3D? J. Am. Chem. Soc. 2022, 144, 8560–8575. [CrossRef] [PubMed]

55. Matamala-Cea, E.; Valenzuela-Godoy, F.; González, D.; Arancibia, R.; Dorcet, V.; Hamon, J.R.; Novoa, N. Efficient preparation of
5, 10, 15, 20-tetrakis (4-bromophenyl) porphyrin. Microwave assisted v/s conventional synthetic method, X-ray and hirshfeld
surface structural analysis. J. Mol. Struct. 2020, 1201, 127139. [CrossRef]

56. Xu, H.; Wang, M.; Yu, Z.G.; Wang, K.; Hu, B. Magnetic field effects on excited states, charge transport, and electrical polarization
in organic semiconductors in spin and orbital regimes. Adv. Phys. 2019, 68, 49–121. [CrossRef]

57. Cartigny, B.; Azaroual, N.; Imbenotte, M.; Sadeg, N.; Testart, F.; Richecoeur, J.; Vermeersch, G.; Lhermitte, M. 1H NMR
Spectroscopic Investigation of Serum and Urine in a Case of Acute Tetrahydrofuran Poisoning. J. Anal. Toxicol. 2001, 25, 270–274.
[CrossRef] [PubMed]

58. Yi, W.; Li, Z.; Dong, C.; Li, H.W.; Li, J. Electrochemical detection of chloramphenicol using palladium nanoparticles decorated
reduced graphene oxide. Microchem. J. 2019, 148, 774–783. [CrossRef]

59. Fagadar-Cosma, E.; Sebarchievici, I.; Lascu, A.; Creanga, I.; Palade, A.; Birdeanu, M.; Taranu, B.; Fagadar-Cosma, G. Optical and
electrochemical behavior of new nano-sized complexes based on gold-colloid and Co-porphyrin derivative in the presence of
H2O2. J. Alloys Compd. 2016, 686, 896–904. [CrossRef]

60. Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis
Spectra. Anal. Chem. 2007, 79, 4215–4221. [CrossRef] [PubMed]

61. Tran, M.; DePenning, R.; Turner, M.; Padalkar, S. Effect of citrate ratio and temperature on gold nanoparticle size and morphology.
Mater. Res. Express 2016, 3, 105027. [CrossRef]

62. Epuran, C.; Fratilescu, I.; Macsim, A.M.; Lascu, A.; Ianasi, C.; Birdeanu, M.; Fagadar-Cosma, E. Excellent Cooperation between
Carboxyl-Substituted Porphyrins, k-Carrageenan and AuNPs for Extended Application in CO2 Capture and Manganese Ion
Detection. Chemosensors 2022, 10, 133. [CrossRef]

63. Fringu, I.; Lascu, A.; Macsim, A.-M.; Fratilescu, I.; Epuran, C.; Birdeanu, M.; Fagadar-Cosma, E. Pt(II)-A2B2 metalloporphyrin-
AuNPS hybrid material suitable for optical detection of 1-anthraquinonsulfonic acid. Chem. Pap. 2022, 76, 2513–2527. [CrossRef]

64. Lascu, A.; Vlascici, D.; Birdeanu, M.; Epuran, C.; Fratilescu, I.; Fagadar-Cosma, E. The Influence of the Nature of the Polymer
Incorporating the Same A3B Multifunctional Porphyrin on the Optical or Electrical Capacity to Recognize Procaine. Int. J. Mol.
Sci. 2023, 24, 17265. [CrossRef] [PubMed]

65. Yue, X.; Wu, C.; Zhou, Z.; Fu, L.; Bai, Y. Fluorescent Sensing of Ciprofloxacin and Chloramphenicol in Milk Samples via Inner
Filter Effect and Photoinduced Electron Transfer Based on Nanosized Rod-Shaped Eu-MOF. Foods 2022, 11, 3138. [CrossRef]
[PubMed]

66. Gao, Z.; Du, X.; Ding, Y.; Li, H. Establishment of a dual-aptasensor for simultaneous detection of chloramphenicol and kanamycin.
Food Addit. Contam. Part A 2021, 38, 1148–1156. [CrossRef] [PubMed]

67. Dhayanithi, C.A.; Palpandi, K.; Raman, N.; Babu, S.G. Development of amine-based transition metal MOFs as efficient electro-
chemical sensors for the detection of chloramphenicol in food and pharmaceutical samples. Electrochim. Acta 2023, 470, 143358.
[CrossRef]

68. Hassan, M.M.; He, P.; Xu, Y.; Zareef, M.; Li, H.; Chen, Q. Rapid detection and prediction of chloramphenicol in food employing
label-free HAu/Ag NFs-SERS sensor coupled multivariate calibration. Food Chem. 2022, 374, 131765. [CrossRef] [PubMed]

69. Mou, S.A.; Islam, R.; Shoeb, M.; Nahar, N. Determination of chloramphenicol in meat samples using liquid chromatography–
tandem mass spectrometry. Food Sci. Nutr. 2021, 9, 5670–5675. [CrossRef]

70. Liu, H.; Zhang, G.; Liu, C.Q.; Li, L.; Xiang, M. The occurrence of chloramphenicol and tetracyclines in municipal sewage and the
Nanming River, Guiyang City, China. J. Environ. Monit. 2009, 11, 1199. [CrossRef] [PubMed]

71. Li, F.; Wang, X.; Yang, M.; Zhu, M.; Chen, W.; Li, Q.; Sun, D.; Bi, X.; Maletskyi, Z.; Ratnaweera, H. Detection Limits of Antibiotics
in Wastewater by Real-Time UV–VIS Spectrometry at Different Optical Path Length. Processes 2022, 10, 2614. [CrossRef]

72. Jain, P.S.; Chaudhari, A.J.; Patel, S.A.; Patel, Z.N.; Patel, D.T. Development and validation of the UV-spectrophotometric method
for determination of terbinafine hydrochloride in bulk and in formulation. Pharm. Methods 2011, 2, 198–202. [CrossRef] [PubMed]

73. Ferguson, J.; Baxter, A.; Young, P.; Kennedy, G.; Elliott, C.; Weigel, S.; Gatermann, R.; Ashwin, H.; Stead, S.; Sharman, M. Detection
of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon
resonance biosensor and Qflex® kit chloramphenicol. Anal. Chim. Acta 2005, 529, 109–113. [CrossRef]

74. Lindberg, A.A.; Nilsson, L.H.; Bucht, H.; Kallings, L.O. Concentration of chloramphenicol in the urine and blood in relation to
renal function. BMJ 1966, 2, 724–728. [CrossRef] [PubMed]

75. Kudo, S.; Nakashima, S. Changes in IR band areas and band shifts during water adsorption to lecithin and ceramide. Spectrochim.
Acta A Mol. Biomol. Spectrosc. 2019, 228, 117779. [CrossRef] [PubMed]

https://doi.org/10.1007/s13320-018-0519-4
https://doi.org/10.4172/2157-7439.1000436
https://doi.org/10.1021/jacs.1c13478
https://www.ncbi.nlm.nih.gov/pubmed/35523019
https://doi.org/10.1016/j.molstruc.2019.127139
https://doi.org/10.1080/00018732.2019.1590295
https://doi.org/10.1093/jat/25.4.270
https://www.ncbi.nlm.nih.gov/pubmed/11386640
https://doi.org/10.1016/j.microc.2019.05.049
https://doi.org/10.1016/j.jallcom.2016.06.246
https://doi.org/10.1021/ac0702084
https://www.ncbi.nlm.nih.gov/pubmed/17458937
https://doi.org/10.1088/2053-1591/3/10/105027
https://doi.org/10.3390/chemosensors10040133
https://doi.org/10.1007/s11696-021-02047-2
https://doi.org/10.3390/ijms242417265
https://www.ncbi.nlm.nih.gov/pubmed/38139093
https://doi.org/10.3390/foods11193138
https://www.ncbi.nlm.nih.gov/pubmed/36230213
https://doi.org/10.1080/19440049.2021.1914871
https://www.ncbi.nlm.nih.gov/pubmed/34006198
https://doi.org/10.1016/j.electacta.2023.143358
https://doi.org/10.1016/j.foodchem.2021.131765
https://www.ncbi.nlm.nih.gov/pubmed/34896956
https://doi.org/10.1002/fsn3.253
https://doi.org/10.1039/b820492f
https://www.ncbi.nlm.nih.gov/pubmed/19513451
https://doi.org/10.3390/pr10122614
https://doi.org/10.4103/2229-4708.90364
https://www.ncbi.nlm.nih.gov/pubmed/23781456
https://doi.org/10.1016/j.aca.2004.11.042
https://doi.org/10.1136/bmj.2.5516.724
https://www.ncbi.nlm.nih.gov/pubmed/5917389
https://doi.org/10.1016/j.saa.2019.117779
https://www.ncbi.nlm.nih.gov/pubmed/31732473


Biomedicines 2024, 12, 770 22 of 23

76. Joseph, J.; Jemmis, E.D. Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation. J. Am. Chem. Soc. 2007, 129,
4620–4632. [CrossRef] [PubMed]

77. Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar!
Chem. Rev. 2015, 115, 11718–11940. [CrossRef] [PubMed]

78. Gorski, A.; Gawinkowski, S.; Starukhin, A.; Gladkov, L.; Chizhova, N.; Mamardashvili, N.; Scheblykin, I.; Waluk, J. Resonance
Raman and FTIR spectra of Mg-porphyrazines. J. Mol. Struct. 2014, 1058, 197–204. [CrossRef]

79. Epuran, C.; Fratilescu, I.; Anghel, D.; Birdeanu, M.; Orha, C.; Fagadar-Cosma, E. A Comparison of Uric Acid Optical Detection
Using as Sensitive Materials an Amino-Substituted Porphyrin and Its Nanomaterials with CuNPs, PtNPs and Pt@CuNPs.
Processes 2021, 9, 2072. [CrossRef]

80. Fagadar-Cosma, E.; Lascu, A.; Shova, S.; Zaltariov, M.F.; Birdeanu, M.; Croitor, L.; Balan, A.; Anghel, D.; Stamatin, S. X-ray
Structure Elucidation of a Pt-Metalloporphyrin and Its Application for Obtaining Sensitive AuNPs-Plasmonic Hybrids Capable
of Detecting Triiodide Anions. Int. J. Mol. Sci. 2019, 20, 710. [CrossRef]

81. Zeng, J.; Yang, W.; Shi, D.; Li, X.; Zhang, H.; Chen, M. Porphyrin Derivative Conjugated with Gold Nanoparticles for Dual-
Modality Photodynamic and Photothermal Therapies In Vitro. ACS Biomater. Sci. Eng. 2018, 4, 963–972. [CrossRef] [PubMed]

82. Huang, H.; Huang, D.; Li, M.; Yao, Q.; Tian, R.; Long, S.; Peng, X. NIR aza-pentamethine dyes as photosensitizers for photodynamic
therapy. Dyes Pigment 2020, 177, 108284. [CrossRef]

83. Tian, J.; Huang, B.; Nawaz, M.H.; Zhang, W. Review of porphyrin-based photodynamic therapy materials. Coord. Chem. Rev.
2020, 420, 213410. [CrossRef]

84. Swamy, C.A.P.; Sivaraman, G.; Priyanka, R.N.; Raja, S.O.; Ponnuvel, K.; Shanmugpriya, J.; Gulyani, A. Near Infrared (NIR)
absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord. Chem. Rev. 2020, 411, 213233. [CrossRef]

85. Liu, Z.; Li, H.; Tian, Z.; Liu, X.; Guo, Y.; He, J.; Wang, Z.; Zhou, T.; Liu, Y. Porphyrin-Based Nanoparticles: A Promising
Phototherapy Platform. ChemPlusChem 2022, 87, e202200156. [CrossRef]

86. Queirós, C.; Leite, A.; Moura, N.M.M.; Cerqueira, A.F.R.; Serra, V.V.; Neves, M.G.P.M.S.; Tomé, A.C.; Silva, A.M.G. Exploring the
reactivity of formylporphyrins with 3-(diethylamino)phenol. Synthesis, spectroscopic properties and singlet oxygen generation
of a new porphyrin–rosamine conjugate. Dyes Pigment 2023, 217, 111431. [CrossRef]

87. Kudoh, Y.; Suzuki, E.; Ochiai, H.; Ise, K.; Kimura, Y.; Minoura, M.; Nakano, H.; Matano, Y. Synthesis, Structure, and Redox and
Optical Properties of 5,10,15,20-Tetraaryl-5-azaporphyrinium Salts. Chem. Eur. J. 2023, 29, e202302148. [CrossRef] [PubMed]

88. Hokin, B.; Adams, M.; Ashton, J.; Louie, H. Analysis of the cobalt content in Australian foods. Asia Pac. J. Clin. Nutr. 2004, 13,
284–288. [PubMed]

89. Zhang, X.; Zhang, Y.; Jiang, J. Infrared spectra of metal-free, N′,N-dideuterio, and magnesium porphyrins: Density functional
calculations. SSA 2005, 61, 2576–2583. [CrossRef] [PubMed]

90. Liu, S.; Bai, J.; Huo, Y.; Ning, B.; Peng, Y.; Li, S.; Han, D.; Kang, W.; Gao, Z. A zirconium-porphyrin MOF-based ratiometric
fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosens Bioelectron. 2019, 149, 111801. [CrossRef]
[PubMed]

91. Li, J.; Qu, L.; Li, H.; Zhao, L.; Chen, T.; Liu, J.; Gao, Y.; Pan, H. An electrochemical aptasensor for the detection of chloramphenicol
based on ultra-small Au-inserted hollow PCN-222 MOF. Microchim Acta 2023, 190, 366. [CrossRef] [PubMed]

92. Wang, K.P.; Zhang, Y.C.; Zhang, X.; Shen, L. Green preparation of chlorine-doped graphene and its application in electrochemical
sensor for chloramphenicol detection. SN Appl. Sci. 2019, 1, 157. [CrossRef]

93. Umamaheswari, R.; Manavalan, S.; Chen, S.M.; Govindasamy, M.; Chen, T.W.; Maiyalagan, T. Microwave-assisted synthesis of
europium(III) oxide decorated reduced graphene oxide nanocomposite for detection of chloramphenicol in food samples. Compos
B Eng. 2018, 161, 29–36. [CrossRef]

94. Jayan, H.; Sun, D.W.; Pu, H.; Wei, Q. Mesoporous silica coated core-shell nanoparticles substrate for size-selective SERS detection
of chloramphenicol. Spectrochim. Acta A Mol. Biomol. 2023, 284, 121817. [CrossRef] [PubMed]

95. Liu, S.; Lai, G.; Zhang, H.; Yu, A. Amperometric aptasensing of chloramphenicol at a glassy carbon electrode modified with a
nanocomposite consisting of graphene and silver nanoparticles. Microchim. Acta 2017, 184, 1445–1451. [CrossRef]

96. Gao, L.L.; Li, S.P.; Wang, Y.; Wu, W.N.; Zhao, X.L.; Li, H.J.; Xu, Z.H. Quinoline-based hydrazone for the colorimetric detection
of Co2+ and fluorescence turn-on response of Zn2+. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 230, 118025. [CrossRef]
[PubMed]

97. Shi, L.; Chang, D.; Zhang, G.; Zhang, C.; Zhang, Y.; Dong, C.; Chu, L.; Shuang, S. Co2+ detection, cell imaging, and temperature
sensing based on excitation-independent green-fluorescent N-doped carbon dots. RSC Advances 2019, 9, 41361–41367. [CrossRef]
[PubMed]

98. Ismail, H.; Ahmad, M.N.; Normaya, E. A highly sensitive and selective thiosemicarbazone chemosensor for detection of Co2+ in
aqueous environments using RSM and TD/DFT approaches. Sci Rep. 2021, 11, 20963. [CrossRef] [PubMed]

99. Temel, N.K.; Çöpür, M. Determination of trace cobalt (II) in spices samples by ultrasonic assisted cloud point extraction with
spectrophotometry. J. Mol. Struct. 2023, 1284, 135433. [CrossRef]

100. Tavallali, H.; Deilamy-Rad, G.; Parhami, A.; Mousavi, S.Z. A novel development of dithizone as a dual-analyte colorimetric
chemosensor: Detection and determination of cyanide and cobalt (II) ions in dimethyl sulfoxide/water media with biological
applications. J. Photochem. Photobiol. B Biol. 2013, 125, 121–130. [CrossRef] [PubMed]

https://doi.org/10.1021/ja067545z
https://www.ncbi.nlm.nih.gov/pubmed/17375920
https://doi.org/10.1021/acs.chemrev.5b00263
https://www.ncbi.nlm.nih.gov/pubmed/26492387
https://doi.org/10.1016/j.molstruc.2013.10.066
https://doi.org/10.3390/pr9112072
https://doi.org/10.3390/ijms20030710
https://doi.org/10.1021/acsbiomaterials.7b00886
https://www.ncbi.nlm.nih.gov/pubmed/33418778
https://doi.org/10.1016/j.dyepig.2020.108284
https://doi.org/10.1016/j.ccr.2020.213410
https://doi.org/10.1016/j.ccr.2020.213233
https://doi.org/10.1002/cplu.202200156
https://doi.org/10.1016/j.dyepig.2023.111431
https://doi.org/10.1002/chem.202302148
https://www.ncbi.nlm.nih.gov/pubmed/37559155
https://www.ncbi.nlm.nih.gov/pubmed/15331341
https://doi.org/10.1016/j.saa.2004.09.023
https://www.ncbi.nlm.nih.gov/pubmed/16043050
https://doi.org/10.1016/j.bios.2019.111801
https://www.ncbi.nlm.nih.gov/pubmed/31726276
https://doi.org/10.1007/s00604-023-05949-y
https://www.ncbi.nlm.nih.gov/pubmed/37615746
https://doi.org/10.1007/s42452-019-0174-4
https://doi.org/10.1016/j.compositesb.2018.10.043
https://doi.org/10.1016/j.saa.2022.121817
https://www.ncbi.nlm.nih.gov/pubmed/36084581
https://doi.org/10.1007/s00604-017-2138-y
https://doi.org/10.1016/j.saa.2020.118025
https://www.ncbi.nlm.nih.gov/pubmed/31927511
https://doi.org/10.1039/C9RA09405A
https://www.ncbi.nlm.nih.gov/pubmed/35540082
https://doi.org/10.1038/s41598-021-00264-z
https://www.ncbi.nlm.nih.gov/pubmed/34697346
https://doi.org/10.1016/j.molstruc.2023.135433
https://doi.org/10.1016/j.jphotobiol.2013.05.013
https://www.ncbi.nlm.nih.gov/pubmed/23811160


Biomedicines 2024, 12, 770 23 of 23

101. Gore, A.H.; Gunjal, D.B.; Kokate, M.R.; Sudarsan, V.; Anbhule, P.V.; Patil, S.R.; Kolekar, G.B. Highly Selective and Sensitive
Recognition of Cobalt(II) Ions Directly in Aqueous Solution Using Carboxyl-Functionalized CdS Quantum Dots as a Naked Eye
Colorimetric Probe: Applications to Environmental Analysis. ACS Appl Mater Interfaces. 2012, 4, 5217–5226. [CrossRef] [PubMed]

102. Xie, Z.; Zhang, F.; Pan, Y. Chemiluminescence detection of trace amounts of cobalt (II) with the 2,6,7-trihydroxy-9-(4′-
chlorophenyl)-3-fluorone–hydrogen peroxide–cetyltrimethylammonium bromide system. The Analyst 1998, 123, 273–275.
[CrossRef]

103. Farahani, T.Z.; Bagherian, G.; Chamjangali, M.A.; Ashrafi, M. On-line determination of the trace amount of cobalt(II) in real
samples by flame atomic absorption spectrometry method after pre-concentration by modified polyvinyl chloride. SN Appl. Sci.
2023, 5, 183. [CrossRef]

104. Antohe, I. Cobalt Ions Detection Using an Evanescent Wave Optical Fiber Sensor. Rom. Rep. Phys. 2022, 74, 505.
105. Talio, M.C.; Alesso, M.; Acosta, M.G.; Acosta, M.; Fernández, L.P. Sequential determination of lead and cobalt in tap water and

foods samples by fluorescence. Talanta 2014, 127, 244–249. [CrossRef] [PubMed]
106. Zafer, M.; Keskin, C.S.; Özdemir, A. Highly sensitive determination of Co(II) ions in solutions by using modified silver nanoparti-

cles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 239, 118487. [CrossRef] [PubMed]
107. El-Feky, H.H.; Amin, S.A.; Moustafa, E.M.I. Utilization of a plasticized PVC optical sensor for the selective and efficient detection

of cobalt (II) in environmental samples. RSC Adv. 2022, 12, 18431–18440. [CrossRef] [PubMed]
108. Ojeda, C.B.; Rojas, F.S.; Pavón, J.M.C. Determination of Cobalt in Food, Environmental and Water Samples with Preconcentration

by DispersiveLiquid-Liquid Microextraction. Am. J. Anal. Chem. 2012, 3, 125–130. [CrossRef]
109. Wang, S.; Meng, S.; Guo, Y. Cloud Point Extraction for the Determination of Trace Amounts of Cobalt in Water and Food Samples

by Flame Atomic Absorption Spectrometry. J. Spectrosc. 2013, 2013, 735702. [CrossRef]
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