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Abstract: Nephrology is an ever-evolving field of medicine. The importance of such a discipline is
related to the high clinical impact of kidney disease. In fact, abnormalities of kidney function and/or
structure are common in the general population, reaching an overall prevalence of about 10%. More
importantly, the onset of kidney damage is related to a strikingly high risk of cardiovascular events,
mortality, and progression to kidney failure which, in turn, compromises quality and duration of life.
Attempts to comprehend the pathogenesis and molecular mechanisms involved in kidney disease oc-
currence have prompted the development and implementation of novel drugs in clinical practice with
the aim of treating the ‘specific cause’ of kidney disease (including chronic kidney disease, glomerular
disease, and genetic kidney disorders) and the main immunological complications following kidney
transplantation. Herein, we provide an overview of the principal emerging drug classes with proved
efficacy in the context of the aforementioned clinical conditions. This can represent a simplified guide
for clinical nephrologists to remind them of the vast and heterogeneous armamentarium of drugs
that should be used in the present and the future to improve the management of patients suffering
from kidney disease.

Keywords: CKD; albuminuria; transplant immunology; prognosis; ESKD; target therapy

1. Introduction

Chronic kidney disease (CKD) is definitely gaining momentum as a public health
issue and non-communicable disease of the new millennium [1]. The onset of CKD re-
sults in, for each affected individual, a strikingly high risk of cardiovascular (CV) events,
hospitalizations, all-cause mortality, and other major outcomes, including kidney failure
(KF) [2]. In the last two decades, a doubling of the prevalence and incidence of CKD has
been observed due to the increase in average lifespan and the raising prevalence of risk
factors such as diabetes and hypertension. The chronicity of kidney disease is a significant
burden for each patient and for healthcare systems. The chronic condition is generally
linked to the presence of irreversible lesions in the kidney (including chronic inflammation
and fibrosis) and manifests with typical clinical signs like anemia, hyperkalemia, mineral
bone disorders, metabolic acidosis, and hypertension [3]. Despite this well-defined group
of complications, several heterogeneous causes may determine the initiation of kidney
damage. Moreover, the complexity is enhanced by the fact that most of these complications
can be the cause or the consequence of kidney function impairment. The recent expansion
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of randomized studies enrolling thousands of patients with kidney disease gave us two
very important lessons. (1) Treating complications is at least as important as treating the
cause of disease, but (2) treating the specific cause of disease remains the main goal for
clinical nephrologists. This concept can be extended to the field of kidney transplantation
(KT), where targeted therapy was recently introduced to improve the management of acute
rejection and desensitization approaches. Furthermore, the optimization of therapeutic
approaches in kidney disease requires particular consideration in relation to drug phar-
macokinetics and potential adverse drug reactions in this population, which could also
explain the difficulties encountered in the development of new treatments [4,5].

One other important point in the field of kidney disease is how to target and monitor
treatment effects. Albuminuria reduction in the first weeks after the start of treatment and
the slowing of eGFR decline in the first years are considered the most important endpoints
of novel drugs used in CKD patients. Other important therapeutic targets in these patients
are represented by increases in hemoglobin and decreases in parathyroid hormone and
serum potassium levels. The regulation of the immune system, complement activation,
and the blockade of endothelin receptors are the core targets of drugs implemented in
glomerular disease. Regulating the immune system and the cleavage of immunoglobulin
are innovative therapies used to improve the management of KT patients. The inhibition of
gene expression via RNA interference is a novel and interesting approach in the treatment
of genetic kidney disease.

The aim of the present review is to summarize recent discoveries in terms of drugs that
target a specific kidney disease or a specific pattern of damage, with the aim of individual
protection against CV and renal risk, and to present how these new findings are changing
nephrology toward a systematic and more organized discipline. The explored topics
concern chronic kidney disease, glomerular disease, kidney transplantation, and genetic
kidney disease.

2. Methods

We designed a narrative review of the literature. Article searching was conducted
using PubMed, running one research study for each area of interest: chronic kidney disease,
glomerular disease, kidney transplantation, and genetic kidney disease. For each area
we restricted the research to ‘clinical trials’ between 1 January 2000 and 21 March 2024.
We decided to report the results by area of research and by level of evidence, separately
depicting high-evidence studies (mainly phase 3 clinical trials) and low–moderate-evidence
studies (mainly phase 2 or weaker clinical studies). The main aim of the study was to
summarize the emerging therapies in the different abovementioned areas of nephrology.

3. Chronic Kidney Disease

In the past few years, there has been extraordinary development and implemen-
tation in the clinical practice of novel drugs aimed at slowing the progression of kid-
ney damage and reducing cardiovascular and all-cause mortality risk [6]. Before this,
the standard-of-care treatment for CKD consisted of the non-specific inhibition of the
renin–angiotensin–aldosterone system (RAAS), which was demonstrated to achieve
nephroprotection associated with a reduction in blood pressure and proteinuria in the
first weeks of treatment [7–10]. However, some patients with CKD do not respond to these
drugs or show a partial response, thus receiving no benefit but possibly adverse effects.
The advancement of knowledge has also highlighted the importance of treating the main
complications of CKD, i.e., the alterations linked to the decline in kidney function such as
anemia, inflammation, mineral bone disease, and in the most advanced stage, pruritus and
fatigue.

3.1. Albuminuria-Lowering Therapies (High-Grade Evidence)

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are relatively new drugs that in-
hibit glucose absorption in the proximal tubule of the kidney. They exert nephroprotection
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by reducing blood glucose levels (inducing glycosuria), downregulating glomerular hy-
perfiltration, and improving oxygenation of the renal parenchyma [11]. Large phase 3
clinical trials demonstrated that the SGLT2 inhibitors dapagliflozin, empagliflozin, and
canagliflozin confer protection against fatal and non-fatal CV events and CKD progression
over time, when administered in addition to RAAS inhibition, in patients with reduced
eGFR (ranging from 20 to 90 mL/min/1.73 m2) and albuminuria (>200–300 mg/g) [12–14].
More importantly, this finding was confirmed in both diabetic and non-diabetic patients
with CKD. The recently published 2024 KDIGO Clinical Practice Guidelines for the Man-
agement of CKD strongly recommend treating CKD patients (eGFR > 20 mL/min) with
type 2 diabetes (T2D) or hearth failure (HF) with an SGLT2 inhibitor regardless of the
presence of albuminuria; the same level of recommendation is indicated for non-diabetic
CKD (eGFR > 20 mL/min) with increased albuminuria (>200 mg/g) [15].

Another class of drugs that have shown similar results are non-steroidal mineralo-
corticoid receptor antagonists (MRA). MRAs act through a selective and potent block-
ade of the MR receptor and induce a conformational change of the receptor–ligand com-
plex, leading to the downregulation of inflammatory genes [16]. These aspects are par-
ticularly innovative and combine the effects of MR antagonism, the anti-inflammatory
properties, and the low incidence of particularly fearful side effects related to the classic
steroidal MRA (i.e., gynecomastia and hyperkalemia). Two major phase 3 studies have
shown that the MRA finerenone reduces CV risk (especially hospitalization for heart
failure) and risk for CKD progression by about 20% in patients with albuminuric CKD
and type 2 diabetes [17,18], leading to grade 1A recommendation by the 2023 Update
of the ESC Guidelines for Hearth Failure [19]. Similarly, the 2024 KDIGO Guidelines on
CKD management [15] suggest the use on non-steroidal MRA in patients with T2D and
CKD (eGFR > 20 mL/min) and persistent albuminuria (>30 mg/g) despite maximal RAAS
inhibitor treatment.

In type 2 diabetes, the combination of drugs that simultaneously reduce residual CV
risk and CKD progression and enable a better control of diabetes per se has been eagerly
investigated. To this aim, a promising treatment could be represented by the receptor
agonisms (RAs) for two substrates, the glucose-dependent insulinotropic polypeptide
(GIP) and Glucagon-like peptide 1 (GLP-1). They stimulate glucose-dependent insulin
release from the pancreatic β-cells. Tirzepatide, a dual GLP-1/GIP-RA, was more effective
at slowing eGFR reduction and reducing albuminuria than antidiabetic agents such as
insulin [20]. The GLP1-RA semaglutide is now under investigation in patients with CKD
and type 2 diabetes given its important effect on hyperfiltration and glomerular damage,
as documented in pilot studies [21,22] and confirmed by the early stop for efficacy of the
FLOW-trial [23].

3.2. Hypoxia-Inducible Factor Stabilizers (High-Grade Evidence)

Another important step forward in the management of CKD is represented by the
transition from the subcutaneous to the oral route for the treatment of anemia, a frequent
complication in advanced stages of CKD [24]. Drugs that inhibit prolyl hydroxylase
(PH) enzymes and, in turn, stabilize hypoxia-inducible factor (HIF) have proven similar
efficacy to injectable preparations of recombinant erythropoiesis-stimulating agents (ESAs)
in correcting anemia and in maintaining hemoglobin concentration levels over time [25].
Even more importantly, HIF-PHs have comparable efficacy to ESAs, not only in immediate
control of anemia, but also in reducing CV risk over time, despite their more comfortable
and less invasive use [26].

The emergence of these novel anti-anemic therapeutics has been addressed in a recent
2023 KDIGO Controversies Conference [27] and practical recommendations will be released
in the upcoming 2024 KDIGO Guidelines on the management of CKD-related anemia.



Biomedicines 2024, 12, 828 4 of 19

3.3. Anti-Inflammatory Agents

The increase in the inflammatory milieu has always been considered an active and
significant prognostic factor of kidney failure and CV risk in CKD patients. Some prog-
nostic studies have also demonstrated these suggestions by associating the inflammatory
state with a worse prognosis [28]. The following step, namely to prove that reducing
inflammation may contribute to reducing the risk of events over time in CKD patients, is
ambitious.

Ziltivekimab (low-grade evidence), a human monoclonal antibody targeting interleukin-
6 (IL-6) ligand, was tested in CKD patients with inflammatory status and was shown to
improve the markers of anemia [29], whereas Canakinumab (high-grade evidence), an
antibody targeting IL-1β, has also been shown to reduce major CV events in CKD patients
and atherosclerosis and, particularly, in those with immediate anti-inflammatory response
to this drug [30].

3.4. Treatments of CKD Mineral Bone Disorders (High-Grade Evidence)

Although bisphosphonates are commonly used for osteoporosis, they are not recom-
mended for patients with severely reduced kidney function due to the high risk of adverse
effects [31]. Romosozumab, a humanized monoclonal antibody against sclerostin, an
endogenous cytokine that inhibits bone formation and stimulates bone resorption, demon-
strated superiority in reducing fractures compared to placebo and oral alendronate in large
phase 3 clinical trials. In the Fracture Study in Postmenopausal Women with Osteoporosis
(FRAME), treatment with romosozumab led to significant gains in bone mineral density
(BMD) and a lower relative risk of fractures compared to placebo [32]. Similar positive out-
comes were observed in the Active-Controlled Fracture Study in Postmenopausal Women
with Osteoporosis at High Risk (ARCH) comparing romosozumab to alendronate [33]. The
merged analysis of two trials involving a total of 11,224 patients confirmed the efficacy of
romosozumab in increasing BMD and reducing the relative risk of fractures across different
levels of kidney function. Adverse events and changes in kidney function were similar
across baseline kidney function groups, while concern about potential MACE led to a
black-box warning for patients with recent stroke or MI [34].

In the treatment of secondary hyperparathyroidism in patients with CKD, the goal
is to control parathyroid hormone levels in the early stages of disease, when parathyroid
cells are still sensitive to physiological 1,25(OH)2D signaling. Recent evidence suggests
that maintaining 25(OH)D levels above 50 ng/mL effectively reduces parathyroid hormone
levels. Guidelines recommend nutritional vitamin D supplements for CKD patients not
on dialysis, reserving active vitamin D for advanced CKD or uncontrolled parathyroid
hormone levels [35]. However, these interventions have limitations, including modest
effects and risks of hypercalcemia. Extended-release calcifediol emerges as a promising
option for intermediate stages of CKD, effectively reducing parathyroid hormone levels
comparable to active vitamin D analogues. Clinical trials show dose-dependent increases in
25(OH)D and physiological increases in 1,25(OH)2D, with sustained reduction in parathy-
roid hormone and minimal impact on mineral balance [36]. Meanwhile, emerging data
from real-world clinical experience with extended-release calcifediol for patients with stage
3 or 4 CKD suggest that it is comparable to active vitamin D analogues for controlling
parathyroid hormone levels, with the added benefit of replenishing 25(OH)D [37]. In prac-
tice, patients with serum 25(OH)D levels ≥ 30 ng/mL and normal calcium, phosphorus,
and parathyroid hormone may not require therapy. For those with 25(OH)D < 30 ng/mL
and normal calcium, phosphorus, and parathyroid hormone, nutritional vitamin D like
cholecalciferol is suggested. In cases of 25(OH)D < 30 ng/mL with elevated parathyroid
hormone, extended-release calcifediol is recommended, and if persistent elevation occurs,
a combination of nutritional and active vitamin D may be considered.
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3.5. Pruritus (High-Grade Evidence)

Pruritus is associated with CKD, particularly in patients with KF or those undergoing
hemodialysis (HD) [38,39]. CKD-associated pruritus (CKD-aP) is a common and often
overlooked condition, affecting 26–48% of HD patients, negatively impacting their quality
of life (QoL) and leading to various complications such as sleep disturbances, depression,
and increased mortality [40]. Despite the importance of managing pruritus in CKD patients,
treatment options are limited [41,42]. Off-label treatments such as antihistamines and corti-
costeroids are used, but their effectiveness can be hampered by side effects [43]. Only one
treatment, nalfurafine, has been approved in Japan and South Korea. Several experimental
therapies are being evaluated, but well-designed clinical studies are required to assess their
efficacy and safety [44,45]. In August 2021, difelikefalin, a novel κ-opioid receptor agonist,
received approval from the US Food and Drug Administration (FDA) for treating moderate
to severe CKD-aP in adults undergoing HD [46]. In 2022, it also gained approval from
the European Medicines Agency (EMA). The approval was based on evidence from the
KALM-1 and KALM-2 phase 3 studies, in which difelikefalin demonstrated significant
reductions in itch intensity compared to a placebo [47].

3.6. New Potassium Binders (High-Grade Evidence)

Standard-of-care treatment with ACE inhibitors and/or angiotensin receptor blockers
is known to be characterized by a higher risk of hyperkalemia, which was the main reason
for early discontinuation of this nephroprotective therapy. Moreover, classical potassium-
lowering therapies, such as sodium polystyrene sulfonate, were not indicated for long-term
use due to potential serious gastrointestinal adverse effects, such as intestinal necrosis and
colitis. In recent years, patiromer and sodium zirconium cyclosilicate have been developed
and recommended for the long-term prevention of recurrent hyperkalemia [48]. They are
non-absorbed cation exchange polymers which increase fecal excretion of potassium and
reduce gastrointestinal absorption of free potassium, leading to decreased serum potassium
levels. The use of these new potassium binders has been shown to enable the optimal
administration of RAAS inhibitor drugs [49].

4. Glomerular Disease

Glomerular diseases (also known as ‘glomerulonephritis’) are inherited or acquired dis-
orders which manifest with urinary abnormalities, systemic signs, and symptoms leading to
CKD of variable severity. The pathogenesis of glomerular disease is heterogeneous and, in
most cases, may involve immunological pathways. In the past few years, a number of novel
drugs have been introduced in order to treat the etiological cause of glomerular damage.

4.1. Belimumab (High-Grade Evidence)

One of the most common and severe manifestations of systemic lupus erythematosus
(SLE) is lupus nephritis (LN), a condition that progresses to ESKD in approximately 5–20%
of patients [50]. Conventional immunosuppressive treatment of LN includes glucocorti-
coids, azathioprine, mycophenolate mofetil, or cyclophosphamide; however, the efficacy is
not uniform among patients and drug toxicity is also a major concern. To address these
unmet needs, belimumab was approved by FDA in 2020 for the treatment of both SLE and
active LN in adults [51]. Belimumab is an IgG-1λ monoclonal antibody that specifically
targets B-lymphocyte activating factor (BAFF), also called B-lymphocyte stimulator (BlyS),
inhibiting the maturation and survival of autoantibody-producing B cells, which play a
driving role in SLE pathogenesis. The randomized phase III BLISS-LN trial demonstrated
that belimumab added to standard therapy improved renal response to treatment and re-
duced the risk of kidney-related events (HR 0.51), compared to standard therapy alone [52].
A post hoc analysis of this trial confirmed the risk reduction of LN flare and eGFR decline
with belimumab [53]. The use of belimumab with glucocorticoids plus mycophenolate or
low-dose cyclophosphamide has been recommended as a possible first-line treatment for
Class III/IV LN [54].
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4.2. Complement Inhibitors

The complement system is an integral part of innate immunity and plays a key role
in host defense and tissue clearance of damaged cells and immunocomplexes. Three
main activation pathways have been described: “classic”, “lectin” (LP), and “alternative”
(AP), which converge in the cleavage of C3 factor into its active form by a C3-convertase
and proceed in a common “terminal pathway” (TP). Pathological stimulation of these
pathways has been linked to a broad spectrum of kidney diseases [55]. Over recent decades,
the evolving comprehension of complement system involvement in the pathogenesis of
kidney diseases has led to the development of targeted therapies designed to modulate
aberrant activation, acting as “immunomodulators” rather than “immunosuppressors” [56].
The following is a brief description of anti-complement therapy currently approved or in
late-stage clinical development (also summarized in Table 1).

Table 1. Brief overview of complement inhibitor currently approved and in late-stage clinical
development for kidney diseases.

Targeted Pathway Drug Type of Inhibitor Inhibition Target Clinical Trial
Phase

Target Kidney
Diseases

Lectin Narsoplimab mAb MASP-2 III (failed) IgAN

Alternative

Danicopan Small molecule Factor D II C3G, IC-MPGN

Vemircopan Small molecule Factor D II IgAN, LN

Iptacopan Small molecule Factor B III IgAN, C3G,
IC-MPGN, aHUS

Pegcetacoplan Pegylated pepetide C3 III C3G, IC-MPGN

Terminal

Eculizumab mAb C5 Approved aHUS

Ravulizumab mAb C5 II
Approved

IgAN, LN
aHUS

Crovalimab mAb C5 III aHUS

Cemdisiran siRNA C5 II (no further
development) IgAN

Avacopan Small molecule C5aR II–III
Approved

C3G
AAV

MASP-2, mannose-binding protein-associated serine protease 2; mAb, monoclonal antibody; IgAN, IgA-
Nephropathy; C3G, C3-glomerulopathy; IC-MPGN, immune-complex-mediated membranoproliferative glomeru-
lonephritis; aHUS, atypical hemolytic uremic syndrome; AAV, antineutrophil cytoplasmic antibody-associated
vasculitis; LN, lupus nephritis; siRNA, silencing-RNA; C5aR, C5a receptor.

4.2.1. Targeting LP (Low-Grade Evidence)

Binding of mannose-binding lectin (MBL), ficolins, and collectin-11 to glycosylated
antigens—both on pathogens and abnormal Ig—initiates this pathway through the recruit-
ing of specific serine-proteases (MASP1-2) which cleave C4 and C2 factors, resulting in the
formation of C4bC2a complex, namely the C3-convertase of LP [55].

Numerous data have highlighted the role of LP in the pathogenesis of IgA Nephropa-
thy (IgAN). Up to 50% of kidney biopsies show mesangial staining of MBL together
with IgA1; furthermore, elements such as MASP1-2 and C4d are usually co-localized.
Glomerular deposition of these factors has been associated with more severe histologi-
cal damage and worse kidney outcome [57]. Only one inhibitor has been tested so far:
Narsoplimab, a fully human monoclonal antibody against MASP-2, the effector enzyme
of LP. Although the Phase-II trial on 16 high-risk IgAN patients [58] initially described
an anti-proteinuric effect, the Phase-III RCT [ARTEMIS-IgAN] did not meet its primary
endpoint in proteinuria reduction.
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4.2.2. Targeting AP (Low-Grade Evidence)

AP is constitutively active by spontaneous low-level hydrolysis of C3 (“tickover
mechanism”), which allows its interaction with FactorB and FactorD to form a temporary
C3-convertase complex that promotes the generation of C3b, the effector of AP. The presence
of microbial products triggers further amplification via the cleavage of loop C3. An
adequate level of AP activation relies on a balance between positive (e.g., Properdin) and
negative (e.g., Factor H and Factor I) regulator proteins. Dysregulation of this delicate
system—both congenital and acquired—is a key pathogenetic factor in C3-glomerulpathy
(C3G), immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN),
and atypical hemolytic–uremic syndrome (aHUS) and results in tissue damage in many
other kidney diseases, such as IgAN and ANCA-associated vasculitis (AAV) [55].

Drugs targeting C3 convertase formation or function have reached late-stage
clinical trials:

- Danicopan is a small molecule acting as a Factor D inhibitor tested in two phase-II
trials for C3G and IC-MPGN, respectively, showing incomplete and unsustained AP
inhibition due to pharmacokinetic/pharmacodynamic limitations [59]. A similar
agent, Vemircopan, is currently being studied in a phase-II trial enrolling patients with
IgAN and lupus nephritis (LN).

- Iptacopan is designed to target factor B, inhibiting the formation of both C3 and C5
convertases, thus suppressing AP and TP. Promising antiproteinuric effect from phase-
II studies in IgAN [60] and C3G [61] led to four phase-III trials starting, respectively, for
IC-MPGN [APPARED], C3G [APPEAR-C3G], IgAN [APPLAUSE-IgAN], and aHUS
[APPELHUS].

- Pegcetacoplan, a direct inhibitor of C3 and C3b, was tested in an open-label phase-II
trial [DISCOVERY] on 21 patients affected by complement-mediated kidney diseases
(including eight C3Gs), showing a favorable 50% proteinuria reduction at 48 weeks in
the C3G subgroup [62]. Results of another phase-II trial [NOBLE] on post-transplant
recurrent C3G/IC-MPGN are expected soon, and a phase-III RCT [VALIANT] is
ongoing with approximately 90 patients with both native and recurrent disease.

4.2.3. Targeting TP

As stated previously, the constitution of a complex with C3-convertase activity is
the core of complement activation regardless of the pathway originally involved. Further
incorporation of C3b into existing C3-covertases leads to the formation of a C5-convertase,
which marks the initiation of TP. Cleavage of C5 ultimately promotes the assembling
of effector cytolytic Membrane Attack Complex (MAC). The concomitant inflammatory
response occurs when anaphylatoxin C3a and C5a, generated through cleavage of C3 and
C5, bind to specific receptors (e.g., C5aR) on leukocytes [55].

The first complement inhibitor tested and then approved in nephrology was DB01257,
a monoclonal antibody targeting C5, commonly known as Eculizumab. Its use marked a
milestone in the management of previously prognostic-unfavorable complement-mediated
diseases such as aHUS.

Drugs with high-grade evidence:

- Following the legacy of Eculizumab and preserving the target epitope, Ravulizumab
was engineered to increase antibody half-life (52 vs. 11 days) through a “re-cycling”
mechanism. In this way, the dosing interval was extended to 8 weeks, enhancing
treatment adherence. Preliminary studies on aHUS demonstrated efficacy and safety
in adults naïve to complement therapy [63], and in children either naïve [64] or
previously treated with eculizumab [65]. Patients who switched to ravulizumab
maintained stable kidney function and blood count. Since a direct head-to-head
comparison of both anti-C5 antibodies would have been limited due to the rarity of
the disease, a retrospective propensity-matched analysis was performed; outcome
comparison between naïve adult patients treated with ravulizumab and a matched
cohort from eculizumab trials did not show a significant difference [66]. Beyond
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approved use in aHUS, ravulizumab is being tested for both IgAN and LN in a
phase-II study [SANCTUARY].

- Avacopan is an antagonist of the neutrophil C5a receptor, the activation of which is
involved in the pathogenesis of AAV. A randomized phase III trial [ADVOCATE]
in 331 patients compared avacopan to tapering doses of prednisone in addition to
standard-of-care induction therapy (Rituximab or Cyclophosphamide) for new-onset
or relapsing AAV, with disease remission at week 26 being the primary outcome.
Non-inferiority in remission at 26 weeks (73% vs. 70%) and superiority in sustained re-
mission at 52 weeks (66% vs. 55%) were achieved, leading to regulatory approval [67].
Furthermore, the 2024 KDIGO Guidelines for Management of AAV [68] suggest ava-
copan to be an alternative to glucocorticoids for induction of remission.

Avacopan also underwent successful phase II testing in 71 patients with C3G [ACCO-
LADE trial], demonstrating reduction in progression of chronic lesions at protocol biopsy
compared to placebo [69].

Drugs with low-grade evidence:

- Crovalimab is another anti-C5 antibody, designed to allow subcutaneous rather than
intravenous administration. Phase-III trials on aHUS [COMMUTE-A, COMMUTE-P]
are currently recruiting.

- Cemdisiran is an RNA interference therapeutic (see Section 6) designed to inhibit
hepatic C5 synthesis. Despite the positive results from a phase II trial on 31 IgAN
patients [70], no further developments have been planned.

4.3. Targeting B-Cell Dysregulation: APRIL System Inhibitors (Low-Grade Evidence)

A proliferation-inducing ligand (APRIL) is a growth factor of the tumor necrosis
factor (TNF) super family involved in the proliferation and differentiation of the B cells.
Recent evidence indicates a role of for APRIL in the pathogenesis of IgAN, thought to be
responsible for the B cell dysregulation, IgA isotype switching, and overproduction of
nephrotoxic galactose-deficient IgA1 (Gd-IgA1). Elevated serum levels of APRIL are found
in patients with IgAN when compared to controls and have been associated with higher
plasmatic Gd-IgA1, hence poor prognosis. The previously described BAFF is a member of
the same superfamily as APRIL. Despite both factors exhibiting a partial structural analogy
and an overlapping receptor affinity, a slightly different biological role in the regulation of
B cells is hypothesized [71].

Anti-APRIL therapies are currently being investigated in clinical trials. Early findings
indicate decreased Gd-IgA1 levels and proteinuria, suggesting for the first time a potentially
disease-modifying role of these agents in IgAN.

- Atacicept and Telitacicept are dual BAFF/APRIL inhibitors and have reported a possi-
ble anti-proteinuric effect in randomized placebo-controlled phase 2 trials, JANUS [72]
and NCT04291781, respectively [73]. The primary analysis of the phase 2b ORI-
GIN trial of atacicept on 116 IgAN showed a significant mean uPCR reduction from
baseline in the pooled atacicept arms compared to placebo (31% vs. 7%, delta 25%,
p = 0.037) [74].

- Sibeprenlimab is a monoclonal antibody that neutralizes APRIL. In a double-blind,
placebo-controlled, parallel-group phase 2 trial, 155 patients with IgAN were ran-
domized in a 1:1:1:1 ratio to receive sibeprenlimab at increasing doses (2–4–8 mg/Kg)
on top of supportive therapy or placebo. In terms of reduction in proteinuria from
baseline, a significant linear dose effect was observed at 12 months (24 h-based-uPCR
47.2 ± 8.2%, 58.8 ± 6.1%, 62.0 ± 5.7%, 20 ± 12.6%), reaching the primary endpoint.
The annualized eGFR slope seemed to be attenuated compared to placebo (−4.1 ± 1.7,
0.1 ± 1.6, −0.8 ± 1.6, −5.9 ± 1.7) [75]. A phase 3 RCT is underway [VISIONARY].

4.4. B-Cell Depletion Therapy (Anti-CD20)

The approval of Rituximab—a monoclonal antibody targeting CD20—in 1997 for
non-Hodgkin lymphoma marked a milestone in the treatment of B-cell-related disorders,
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such as hematological malignancies and autoimmune diseases, due to its ability to induce
sustained depletion of CD-20 cells. The use of Rituximab is currently recommended by 2021
KDIGO Glomerular diseases guideline [76] as a feasible first line therapy in primary MN,
AAV, and class III/IV lupus nephritis, and can be considered when approaching steroid-
resistant nephrotic syndrome (MCD or FSGS), IgA-vasculitis, anti-glomerular basement
membrane disease, and other rapid progressive glomerulonephritis.

Resistance to Rituximab and the development of anti-drug antibodies led to novel
anti-CD20 drugs that have recently gained approval: ofatumumab and ublituximab for
relapsing multiple sclerosis and obinutuzumab for chronic lymphocytic leukemia and
follicular lymphoma. The effector mechanisms on targeted CD-20 cells vary depending on
the generation, structural aspects, and binding sites of the antibody (Table 2) [77]. Their
use in current nephrological practice is off-label and limited to little low-grade evidence,
such as the following:

- A case series by Podestà et al. [78] described the use of Ofatumumab as rescue treat-
ment in ten rituximab-resistant and seven rituximab-intolerant patients affected by
primary MN, showing greater remission of proteinuria in intolerant patients. Similarly,
Haarhaus et al. [79] reported the successful use of Ofatumumab in four refractory LN
patients who developed an infusion reaction to rituximab at re-treatment.

- The effect of Obinutuzumab on proliferative LN was assessed in a phase II trial
[NOBILITY] on 125 patients randomized to receive Obinutuzumab or placebo in
combination with standard therapies. Complete renal remission at 104 weeks was
greater in the treatment group compared to placebo (41% vs. 23%, p = 0.026) despite
the fact that the primary endpoint at 52 weeks was not statistically significant [80].
In a post hoc analysis, Obinutuzumab demonstrated superiority in preservation of
kidney function and prevention on LN flares compared to SoC [81]. A global phase-III
study is ongoing [NCT04221477].

Table 2. Brief overview of anti-CD20 antibodies and their main effector mechanisms.

Rituximab Ofatumumab Ublituximab Obinutuzumab

Generation I I I II

Type Chimeric Humanized Chimeric Humanized

ADCC Intermediate Intermediate Very high Very high

Direct Cytotoxicity Low Low Intermediate Very high

CDC Intermediate High Intermediate Low

ACDP Intermediate High Very High Very High
ADCC, antibody-dependent cellular cytotoxicity; CDC, complement-dependent cytotoxicity; ACDP, antibody-
dependent cellular phagocytosis.

4.5. Daratumumab (Low-Grade Evidence)

Abnormal immunoglobulin production by plasma cell clones is involved in the patho-
genesis of a wide range of kidney diseases, and the role of the anti-CD38 antibody daratu-
mumab has been investigated. The use of daratumumab in refractory lupus nephritis (LN)
has been reported to be associated with significant clinical and serologic responses (reduc-
tion in urine protein, serum creatinine levels, and a reduction in anti-double-stranded DNA
of about 50–60%) [82,83]. Similarly, experiences of daratumumab in refractory antineu-
trophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) were limited, but clinical
reports have shown an effective remission of AAV with stabilization of kidney function [84].
Furthermore, the use of daratumumab in light chain amyloidosis (AL amyloidosis) has
provided encouraging results; the phase III ANDROMEDA study [85] revealed that the
addition of daratumumab to the standard of care was associated with better hematologic,
renal, and cardiac responses. Further phase III clinical studies of daratumumab in LN, AL
amyloidosis with renal involvement, and AAV are warranted.
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4.6. Endothelin Receptor Antagonists (High-Grade Evidence)

It has been demonstrated that endothelin plays a central role in the regulation of
glomerular filtration and in acid–base and hydro-sodium balances; endothelin increases in
conditions of acidosis and hyperglycemia and in the presence of inflammatory cytokines
and insulin, and causes sustained vasoconstriction of afferent arterioles, leading to hyper-
filtration and proteinuria [86]. Therefore, the use of endothelin receptor antagonist (ERA)
has been studied as a strategy to reduce protein loss with urine and, eventually, to slow
the progression of kidney disease. Interim results from the ongoing phase 2 AFFINITY
study [87] revealed the safety and efficacy of the ERA atrasentan in reducing proteinuria
in patients with proteinuric glomerular diseases. Similarly, interim analysis of the phase
3 ALIGN study [88] demonstrated superiority of atrasentan versus placebo in reducing
proteinuria in patients with IgA nephropathy receiving standard of care (RAS inhibitor). In
2023, the first-in-class dual endothelin–angiotensin receptor antagonist sparsentan received
approval in the US for IgAN, based on the milestone results from the phase 3 PROTECT
trial, which demonstrated the clinically meaningful reduction in proteinuria and stability
of kidney function, compared to irbesartan [89]. Moreover, sparsentan was shown to
be superior to irbesartan in reducing proteinuria, even in patients with focal segmental
glomerulosclerosis (DUPLEX trial), however, without significant differences in the slope of
eGFR [90].

5. Kidney Transplantation

Renal replacement therapies have seen a change in epidemiology in recent years, with
shorter duration of dialysis time and improved quality of life for patients undergoing
dialysis. In the same period, there has been an increase in the rate of kidney transplantation,
a type of renal replacement therapy that offers the best prognosis and quality of life when
compared with peritoneal and hemodialysis [91]. This trend stimulated research around
the treatment of the main complications of KT, and in particular, acute and chronic rejection,
which are considered the most fearsome and frequent medical complications after KT. The
result is a continuous innovation in terms of comprehension of mechanisms of damage and
novel drugs to treat the aforementioned complications.

5.1. Imlifidase (Low-Grade Evidence)

One of the most intriguing challenges in kidney transplantation is overcoming the ob-
stacle of hyperimmunization, which consists of the presence of high levels of donor-specific
antibodies (DSAs) against human leukocyte antigens (HLAs) in the candidate recipient
serum, which limits the possibility of transplantation due to the extremely high risk of early
humoral rejection. In 2020, European Medicines Agency has approved imlifidase as a desen-
sitization agent in highly sensitized patients (≥80% panel reactive antibody) with a positive
cross-match to a deceased kidney donor. Imlifidase is a recombinant protease derived
from Streptococcus pyogenes that cleaves all four subclasses of human IgG into F(ab′)2
and Fc fragments, inhibiting Fc-mediated complement-dependent cytotoxicity (CDC) and
antibody-dependent cellular cytotoxicity (ADCC) [92]. Within a few hours after administra-
tion, elimination of DSA allows for obtaining a negative cross-match and therefore enables
transplantation with HLA-incompatible donors. Recipients of imlifidase-enabled allografts
showed comparable outcomes to that of other highly sensitized patients who underwent
HLA-incompatible transplantation at 3 years post-transplantation (84% graft survival and
38% antibody-mediated rejection rate) [93].

5.2. Daratumumab (Low-Grade Evidence)

Daratumumab is a human IgG1κ monoclonal antibody directed against CD38, a
transmembrane glycoprotein highly expressed on the surface of immune cells such as plas-
macells and natural killer cells. Targeting CD38 causes depletion of CD38-expressing cells
via apoptosis, complement-dependent cytotoxicity, and antibody-dependent cellular cyto-
toxicity. Although the use of daratumumab as treatment for multiple myeloma is widely
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consolidated, its use in kidney transplantation to reduce nonmalignant HLA antibody-
producing plasmacells needs further research [94]. The presence of donor-specific anti-
bodies is critical in antibody-mediated rejection, and depletion of alloantibody-producing
plasmacells may be an effective therapeutic strategy for recipient desensitization prior to
kidney transplantation [95] and for chronic active antibody-mediated rejection [96].

5.3. Tocilizumab (Low-Grade Evidence)

Kidney transplant graft survival depends on several factors, among which immuno-
logical complications contribute significantly to both short- and long-term damage. In the
pathway of antibody-mediated rejection (AMR), the cytokine interleukin 6 (IL-6) plays a
key role in the regulation of the inflammatory process and in the stimulation of T and B cells
and plasma cells. Initially approved for the treatment of rheumatoid arthritis and juvenile
idiopathic arthritis, the IL-6 receptor antagonist Tocilizumab was subsequently proposed
as a therapeutic strategy to treat AMR in kidney transplantation and to desensitize highly
HLA-sensitized kidney transplant candidates. In fact, inhibition of IL-6 receptor leads to
a decrease in the production of alloantibodies by activated B cells [97] and a reduction in
inflammation through the regulation of T cell response [98]. Although clinical experiences
in small studies have demonstrated a reduction in donor-specific antibodies and interstitial
inflammation and a stabilization of long-term graft function in patients with chronic active
AMR [99], results from large phase 3 clinical trials are lacking [NCT04561986].

5.4. Belatacept (High-Grade Evidence)

Calcineurin inhibitor (CNI) nephrotoxicity is recognized to affect the long-term out-
comes of kidney transplants; chronic endothelial injury and arteriolar vasoconstriction
lead to an irreversible and progressive decline in allograft function [100]. In order to in-
crease allograft survival, a new non-nephrotoxic immunosuppressive regimen without
calcineurin inhibitor was developed. Belatacept is a protein produced by the fusion of the
Fc fragment of human IgG1 immunoglobulin and the extracellular domain of cytotoxic
T-lymphocyte-associated antigen 4, and it can block the costimulation of T lymphocytes
by the inhibition of the interaction between CD28 and CD80/86. Results from the studies
BENEFIT and BENEFIT-EXT demonstrated that patient and graft survival with belatacept
was comparable to cyclosporine, and long-term use of belatacept was associated with
sustained improvement in renal function (higher GFR) versus cyclosporine [101]. However,
a higher occurrence of acute rejection and post-transplant lymphoproliferative disorders
was reported with belatacept; therefore, a low-intensive belatacept regimen was approved
for use in EBV-seropositive patients [102].

6. Genetic Kidney Disease

Although it is widely accepted that genetics play a role in the pathogenesis of kidney
diseases, their real contribution remains challenging to estimate, especially when dealing
with multifactorial and/or polygenic nephropathies [103]. Monogenic kidney diseases
make up approximately 50% and 30% of non-diabetic CKD, respectively, in pediatric and
adult cohorts, respectively [104], with more than 600 genes linked to single-gene disor-
ders [105]. Recent findings in molecular genetics prompted new perspectives in assessing
disease susceptibility and risk factors, as well as predicting diagnosis and therapeutic
response in both monogenic and multifactorial afflictions [103].

6.1. RNA Interference (RNAi)

One of the most promising strategies relies on “RNAi interference”, an endogenous
mechanism of post-transcriptional gene regulation described by 2006 Nobel Scientists Fire
and Mello. RNAi-based therapeutics mimic this natural process by targeting a specific
mRNA transcript through a recombinant complementary nucleotide sequence that inhibits
gene expression, and hence protein synthesis. The interfering RNA can be administered
intravenously (formulated inside a lipid nanoparticle) or subcutaneously (conjugated
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with Gal-NAC residues), and is engineered to be taken up by hepatocytes that arrest the
production of a specific liver-derived protein [106].

RNA-therapy has gained increasing attention over the last decade as a potential
weapon against genetic diseases, as stated by the high number of drugs being tested
in clinical trials. Moreover, the large-scale production of a vaccine against severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) during the recent pandemic brought
this technology into the spotlight [107].

6.1.1. Rare Nephrolithiasis (High-Grade Evidence)

Primary Hyperoxaluria (PH) is a rare autosomal-recessive disorder characterized
by abnormal liver production of oxalate, leading to hyperoxaluria, nephrolithiasis, and
nephrocalcinosis, with subsequential progressive kidney failure and systemic oxalosis.
Three forms are classified based on the affected enzyme: AGTX in PH1, GRHPR in PH2, and
HOGA1 in PH3. PH1 is the most common type, with heterogeneous clinical presentation
(ranging from neonatal kidney failure to adult nephrolithiasis) and poor kidney outcome
despite supportive therapy [108]. Until recent years, the only available etiological treatment
in pyridoxine-unresponsive forms was liver transplantation, eventually combined with
kidney transplantation (either sequential or concomitant) in case of renal failure [109].
Targeting specific enzymes involved in oxalate metabolism using RNAi is an innovative
strategy in PH. This approach has shown to lower endogenous oxalate production, by-
passing dysfunctional metabolic pathways:

- Lumasiran, which targets glycolate oxidase production, was the first specific treatment
approved for patients with PH1 after the results of ILLUMINATE phase III trials,
which demonstrated significant reduction in urine and plasma oxalate irrespective of
age and residual kidney function [110].

- Similarly, Nedosiran, another recently approved drug designed to inhibit lactate-
dehydrogenase production, reduced urine oxalate level in PH1 patients older than
9 years with preserved kidney function (eGFR > 30 mL/min) [111].

Although the long-term safety and efficacy of these drugs need to be investigated,
early results are encouraging and indicate a potential “paradigm shift” in the treatment of
PH1, as recently stated in a consensus statement from ERK-Net and Oxal-Europe [112].

6.1.2. Beyond Kidney Stones

Many other RNAi-based therapeutics are surfacing in the current landscape. Among
those supported by high-grade evidence, we report the following:

- Patisiran, an RNAi agent that inhibits hepatic production of transthyretin, was ap-
proved in 2018 for the treatment of hereditary transthyretin-mediated amyloidosis
(hATTR), since the APOLLO phase-III trial [113] showed improvement of disease-
related manifestations such as neuropathy and exercise intolerance. Vutisiran was
later designed for subcutaneous administration and tested in phase-III HELIOS-A
trial [114], gaining regulatory approval.

- Inclisiran is a lipid-lowering RNAi drug approved in 2021 for clinical atherosclerotic
cardiovascular disease (ASCVD) and heterozygous familiar hypercholesterolemia
(HeFH). Inclisiran suppress PCSK9 production, a circulating protein that promotes degra-
dation of low-density lipoprotein receptor (LDL-R), resulting in LDL clearance [115].

Noteworthy other drugs gained low-grade evidence in trials:

- Teprasiran is engineered to inhibit p53-mediated cell death, a key pathogenetic process
in ischemia reperfusion-induced AKI. A randomized, placebo-controlled, double-
blind phase-II study on 360 high-risk patients undergoing cardiac surgery showed a
reduction in post-operative AKI incidence, severity, and duration after drug admin-
istration [116]. Teprasiran is also under investigation for the prevention of delayed
graft function in kidney transplant recipients from diseased donors [NCT0080234,
NCT02610296].
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- Zilebesiran, an investigational RNAi therapeutic that inhibits hepatic angiotensinogen
synthesis, has been recently tested as a blood pressure-lowering agent in a phase-I
study [117].

7. Conclusions

We have provided a synthetic overview of the treatments available for kidney diseases
at the beginning of 2024 (Figure 1) and which we refer to the volume for a more in-depth
discussion of the specific drug classes. From the review of the literature, it is evident that
steps forward have been made in most of the branches of nephrology. Mineralocorticoid
receptor antagonists, SGLT2 inhibitors, and oral HIF stabilizers will help to delay CKD
progression. Drugs acting on the terminal activation of complements proved their efficacy
in the first studies enrolling patients with IgAN, lupus nephritis, and ANCA-associated
vasculitis, these being immune-mediated diseases of significant prevalence in the nephrol-
ogy patient population. Endothelin blockade also helped to manage patients with IgAN. In
kidney transplant patients, several drugs may be implemented to improve desensitization
before transplant, whereas robust evidence is already available for the use of belatacept
as an immunosuppressor alternative to the classic CNI in post-transplant follow-up. Ge-
netic therapies also made progress in kidney diseases. RNA interference treatments have
shown efficacy in reducing plasma and urine oxalate levels in primary hyperoxaluria and
improved the management of hereditary transthyretin-mediated amyloidosis.
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Figure 1. Overview of the available treatments of kidney disease. APRIL, a proliferation inducing
ligand; CKD, chronic kidney disease; ET1-AT1, endothelin 1—angiotensin II receptor type 1; GLP1,
glucagon-like peptide 2; HIF, hypoxia-inducible factor; MRA, mineralocorticoid receptor antagonist;
RNA, ribonucleic acid; SGLT2, sodium-glucose cotransporter 2.

What, thus, emerges from the current literature is that nephrologists now have more
tools to manage and improve the prognosis of patients with kidney diseases. Moreover,
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compared with the past, we may also note an improved quality of evidence for each drug,
with intervention and randomized trials well conducted. Let us leave it to the future and
daily clinical work to monitor and evaluate what has been accomplished so far. The picture
of CKD is changing, and this disease is now no longer considered an inexorably progressive
condition.
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