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Abstract: Pancreatic cancer is characterized by its high mortality rate and limited treatment options,
often driven by oncogenic RAS mutations. In this study, we investigated the metabolomic profiles of
pancreatic cancer cells based on their KRAS genetic status. Utilizing both KRAS-wildtype BxPC3
and KRAS-mutant PANC1 cell lines, we identified 195 metabolites differentially altered by KRAS
status through untargeted metabolomics. Principal component analysis and hierarchical condition
trees revealed distinct separation between KRAS-wildtype and KRAS-mutant cells. Metabolite set
enrichment analysis highlighted significant pathways such as homocysteine degradation and taurine
and hypotaurine metabolism. Additionally, lipid enrichment analysis identified pathways including
fatty acyl glycosides and sphingoid bases. Mapping of identified metabolites to KEGG pathways
identified nine significant metabolic pathways associated with KRAS status, indicating diverse
metabolic alterations in pancreatic cancer cells. Furthermore, we explored the impact of TRPML1
inhibition on the metabolomic profile of KRAS-mutant pancreatic cancer cells. TRPML1 inhibition
using ML-SI1 significantly altered the metabolomic profile, leading to distinct separation between
vehicle-treated and ML-SI1-treated PANC1 cells. Metabolite set enrichment analysis revealed enriched
pathways such as arginine and proline metabolism, and mapping to KEGG pathways identified
17 significant metabolic pathways associated with TRPML1 inhibition. Interestingly, some metabolites
identified in PANC1 compared to BxPC3 were oppositely regulated by TRPML1 inhibition, suggesting
their potential as biomarkers for KRAS-mutant cancer cells. Overall, our findings shed light on the
distinct metabolite changes induced by both KRAS status and TRPML1 inhibition in pancreatic cancer
cells, providing insights into potential therapeutic targets and biomarkers for this deadly disease.
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1. Introduction

Pancreatic cancer ranks as the third most common cause of cancer-related deaths, with
its mortality rate increasing by 0.3% annually. The features of this condition encompass
inconspicuous symptoms, challenging early detection, limited survival duration, and
unfavorable prognosis [1,2]. Its poor prognosis is highlighted by the strong link between
disease occurrence and death rate [1]. In the United States, patients with pancreatic
cancer continue to face a dismal five-year survival rate of merely 6%, primarily due to
delayed diagnosis at the advanced and incurable stages, which emerges as the foremost
contributing factor among various others [3]. Owing to the challenges in detecting the
disease until its advanced stages, a substantial number of patients endure considerable
suffering. While up to 20% of patients may qualify for initial resection, the prospects post-
surgery are still desolate [3]. Despite undergoing potential curative resection, a majority
of patients inevitably experience recurrence, with the five-year survival rate plateauing
at a mere 25% [3,4]. To address this critical issue and enhance treatment outcomes, there
is an urgent need to unravel the molecular mechanisms underlying early recurrence and
chemoresistance in pancreatic cancer. Additionally, early diagnosis methods to detect
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warning signs should be developed. By gaining insights into these mechanisms, we can
pave the way for more effective chemotherapy strategies and ultimately improve patient
survival rates.

Pancreatic ductal adenocarcinoma (PDAC) constitutes the majority, approximately
85%, of pancreatic cancers, arising from the malignant transformation of ductal epithelial
cells [5]. Genetically, PDAC is characterized by mutations in oncogenes or tumor suppres-
sor genes, which play pivotal roles in disease progression. Notably, the frequencies of
KRAS and TP53 mutations are approximately 85% and 60–70%, respectively [5–7]. Genetic
analyses of clinical specimens have pinpointed KRAS mutations as early events, evident
in stage 1 pancreatic intraepithelial neoplasia, while TP53 mutations are linked to the
progression and invasiveness of pancreatic intraepithelial neoplasia at stage 3 [8]. The
high incidence of KRAS mutations underscores the potential efficacy of targeted therapies
against the RAS signaling network as a treatment strategy for PDAC [8]. However, despite
extensive efforts, these therapeutic endeavors have yielded limited clinical benefits [8].
Notably, KRAS mutation has been associated with poorer survival rates and resistance to
chemotherapy [9–12]. Given the prevalence of KRAS mutation in pancreatic cancer, it is im-
perative to explore alternative therapeutic approaches that may yield better responses [5,8].
Furthermore, the predominance of specific KRAS mutations, such as G12D and G12V, in
PDAC underscores the importance of utilizing appropriate cell lines for research purposes.
In this context, our study employs BxPC3 cells (KRAS-wildtype (WT); TP53 mutant) and
PANC1 cells (KRAS-mutant G12D; TP53 mutant) to elucidate the mechanisms underlying
pancreatic cancer chemoresistance and identify potential therapeutic targets.

In parallel, advancements in high-throughput analyses, including genomics, transcrip-
tomics, and proteomics, have identified potential biomarkers for pancreatic cancer [13].
However, there remains a notable gap in clinically relevant biomarkers for precise early-
stage diagnosis [14]. Efforts to uncover novel markers with enhanced sensitivity and
specificity are imperative to improving diagnostic accuracy and patient outcomes [15,16].
Integration of multi-omics data and the exploration of emerging technologies hold promise
in further elucidating the intricate molecular landscape of pancreatic cancer [17,18]. Among
these approaches, metabolomics stands out due to its ability to directly reflect under-
lying biochemical processes through metabolite analysis [19]. Thus, this study utilized
untargeted metabolomic analysis to identify potential biomarkers and elucidate metabolic
changes between KRAS-wildtype and -mutant pancreatic cancer cells to gain insights into
overcoming treatment challenges in pancreatic cancer management.

2. Materials and Methods
2.1. Cell Culture

Pancreatic cancer cells, including KRAS-wildtype BxPC-3 and KRAS-mutant PANC1,
were obtained from the Korean Cell Line Bank (KCLB). BxPC-3 cells were cultured in
RPMI-1640 medium (Welgene, Gyeongsan-si, Republic of Korea), while PANC1 cells
were cultured in DMEM medium (Welgene, Republic of Korea), both supplemented with
essential nutrients including 10% FBS (HyClone, Logan, UT, USA), 4.5 g/L D-glucose,
2 mM L-glutamine, 1 mM sodium pyruvate, 1.5 g/L sodium bicarbonate, 100 U/mL
penicillin, and 100 g/mL streptomycin (Thermo Fisher Scientific, Waltham, MA, USA).
The cell cultures were maintained under standard conditions at 37 ◦C in a humidified
atmosphere containing 5% CO2.

2.2. Cytotoxicity Assay

To assess cell viability, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay was utilized. Pancreatic cancer cells were treated with ML-SI1 (Sigma
Aldrich, St. Louis, MO, USA) for 48 h and then exposed to 2 mg/mL MTT solution at 37 ◦C
for 3 h in the dark. Upon completion of the incubation period, dimethyl sulfoxide (DMSO)
was added to dissolve the formazan crystals generated by viable cells. The absorbance was
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subsequently measured at 540 nm using a microplate reader (SpectraMax® ABS, Molecular
Devices, San Jose, CA, USA).

2.3. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from BxPC3 and PANC1 cells using TRIzol reagent (Am-
bion, Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions.
Subsequently, reverse transcription was carried out with 500 ng of total RNA using a
High-Capacity cDNA RT kit (Applied Biosystems, Thermo Fisher Scientific) on a Bio-
Rad T100 thermal cycler (Bio-Rad, Hercules, CA, USA). This step facilitated the conver-
sion of RNA into complementary DNA (cDNA), enabling subsequent gene expression
analysis. SYBR green-based qRT-PCR was conducted on a QuantStudioTM 3 Real-Time
PCR System (Applied Biosystems, USA) to quantitatively measure the expression lev-
els of target genes. Specifically, the expression of MCOLN1 (NM_020533.3) and TFEB
(NM_001167827.3) was analyzed using gene-specific primer pairs: MCOLN1 Forward:
5′-TCTTCCAGCACGGAGACAAC-3′, Reverse: 5′-GCCACATGAACCCCACAAAC-3′;
TFEB Forward: 5′-CCAGAAGCGAGAGCTCACAGAT-3′, Reverse: 5′-TGTGATTGTC-
TTTCTTCTGCCG-3′. To ensure accurate normalization and reliable interpretation of
gene expression data, the relative mRNA abundance was normalized to the expression
of the reference gene GAPDH (NM_001256799.3). GAPDH was amplified using the fol-
lowing primer pair: GAPDH Forward: 5′-GAAGGTGAAGGTCGGAGTC-3′, Reverse:
5′-GAAGATGGTGATGGGATTTC-3′.

2.4. Sample Preparation for UHPLC/Q-TOF-MS

Untargeted metabolites from BxPC3 and PANC1 cells extracted using an ice-cold
solution composed of 40% (v/v) acetonitrile, 40% (v/v) methanol, and 20% (v/v) H2O
(extraction solvent). The collected pancreatic cancer cells were washed three times with
ice-cold PBS, and the cells were rapidly snap-frozen using liquid nitrogen to preserve their
metabolomic profile. For cell lysis and metabolite extraction, the snap-frozen cells were
resuspended in the extraction solvent and transferred to new microcentrifuge tubes. To
facilitate cell lysis and metabolite release, ultrasonication was performed in an ultrasonic
bath. The ultrasonication protocol consisted of 30 s bursts of sonication followed by a 30 s
rest period on ice, repeated for three cycles over a total duration of 3 min. This method
ensured efficient disruption of cellular structures while minimizing sample heating. After
ultrasonication, the samples were incubated on ice for 10 min to further facilitate metabolite
extraction. Subsequently, the lysed cell suspensions were centrifuged at 12,000× g for
10 min at 4 ◦C to separate the cellular debris and intact organelles from the liquid phase
containing the extracted metabolites. After centrifugation, the supernatant containing the
extracted metabolites was carefully transferred to a new screw-cap glass tube with an insert
(Agilent Technologies, Santa Clara, CA, USA) to minimize sample loss and contamination.
Prior to UHPLC/Q-TOF-MS analysis, the liquid phase of each sample was filtered using a
0.22 µm microfiltration membrane to remove any remaining particulate matter that could
interfere with the chromatographic separation and mass spectrometric detection.

2.5. Liquid Chromatography and Mass Spectrometry

Untargeted metabolite analysis was carried out using a liquid chromatograph quadru-
pole time-of-flight mass spectrometer (LC/Q-TOF-MS; Agilent Technologies, USA; Meta-
bolomics Research Center for Functional Materials, Kyungsung University). The chro-
matographic separation was performed on a UHPLC Agilent 1290 Infinity LC system
equipped with a ZORBAX RRHD Eclipse XDB-C18 column (2.1 × 50 mm, 1.8 µm; set
temperature, 30 ◦C; Agilent Technologies) maintained at a set temperature of 30 ◦C. Each
sample, prepared from cellular metabolite extracts, was injected into the chromatographic
system using a volume of 1 µL. The mobile phase consisted of two components: mobile
phase A, comprising 45% water with 0.1% formic acid, and mobile phase B, consisting of
55% acetonitrile with 0.1% formic acid. Gradient elution was performed at a flow rate of
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0.5 mL/min according to the following protocol: initial conditions of 2% B were held for
1 min, followed by a linear increase to 100% B over 8 min, maintaining 100% B for 2 min,
then returning to 2% B within 1 min, and finally equilibrating at 2% B for 9 min. Mass
spectrometric analysis was conducted using an Agilent 6545 Q-TOF/MS system equipped
with both positive and negative electrospray ionization (ESI) sources. The instrument
parameters were optimized as follows: capillary voltage of 4000 V, fragmentor voltage of
125 V, gas temperature of 300 ◦C, drying gas flow rate of 10 L/min, maximum nebulizer
pressure of 45 psi, sheath gas temperature of 300 ◦C, sheath gas flow rate of 11 L/min,
and RF voltage of 750 V. Data acquisition was performed using MassHunter Software 15.0,
including the acquisition module version 11.0 and qualitative analysis module version
10.0 (Agilent Technologies). Full-scan mass spectra were acquired over a mass range of
100 to 1000 m/z in both positive and negative ion modes to comprehensively capture the
metabolite profiles.

2.6. Data Processing and Analysis

The raw data files (‘-.d’) generated from LC/Q-TOF-MS were initially converted to
the ‘-.cef’ format using Profinder 10.0 software (Agilent Technologies) to facilitate subse-
quent processing and analysis. Following conversion, the data underwent comprehensive
processing steps, including peak finding, alignment, and metabolite identification, uti-
lizing MassHunter Mass Profiler Profession 15.0 software (Agilent Technologies). This
rigorous processing ensured accurate and reliable identification of metabolites from the
complex mass spectrometry data. Furthermore, to gain deeper insights into the biological
significance of the differentially identified metabolites, enrichment and pathway analysis
were conducted using MetaboAnalyst 6.0 (http://www.metaboanalyst.ca; accessed on
10 January 2024).

2.7. Statistical Analysis

Data were analyzed using GraphPad Prism 9 software (USA), and the results are
presented as mean ± standard error of mean (SEM) from at least three independent
experiments. The normal distribution of the data was assessed using the Shapiro–Wilk
test. For normally distributed data, the unpaired t-test was utilized to compare two groups,
while one-way analysis of variance (ANOVA) was employed to compare three or more
categorical groups. In instances where a significant difference was observed following
one-way ANOVA, Tukey multiple comparison test was applied for post hoc analysis to
determine specific group differences.

3. Results
3.1. Different Metabolomic Profile between KRAS-Wildtype and KRAS-Mutant Pancreatic
Cancer Cells

We investigated the cancerous features of pancreatic cancer cells based on their KRAS
genetic status, utilizing both KRAS-wildtype BxPC3 and KRAS-mutant PANC1 cell lines.
Their characteristics are summarized in Figure 1A. Employing untargeted metabolomics
(Figure 1B), we identified a total of 195 metabolites differentially altered by KRAS status,
as detailed in Table S1. Principal component analysis (PCA) score plots for both ESI-
positive and ESI-negative modes demonstrated a clear separation between BxPC3 and
PANC1 cells (Figure 1C), further supported by hierarchical condition trees that effectively
clustered cancer samples based on their KRAS status (Figure 1D). Notably, significantly
different metabolites with alterations exceeding two-fold were visualized in a volcano plot
(Figure 1E). Each point on the volcano plot diagram represents a metabolite. The horizontal
axis represents multiple metabolites compared with each corresponding substance, while
the vertical axis represents t-test values.

http://www.metaboanalyst.ca
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Figure 1. Untargeted metabolites from KRAS-WT (BxPC3) and KRAS-mutant (PANC1) pancreatic 
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matic diagram illustrating the untargeted metabolomics approach using UHPLC/Q-TOF-MS. (C) 
Principal component analysis (PCA) score plots for ESI-positive and -negative modes. (D) Hierar-
chical clustering trees of the samples. (E) A volcano plot with changes exceeding two-fold. 

3.2. Metabolite Set Enrichment and Pathway Analysis of KRAS-Wildtype and KRAS-Mutant 
Pancreatic Cancer Cells 

Figure 1. Untargeted metabolites from KRAS-WT (BxPC3) and KRAS-mutant (PANC1) pancreatic
cancer cells. (A) Characterization of pancreatic cancer cells utilized in the present study. (B) A
schematic diagram illustrating the untargeted metabolomics approach using UHPLC/Q-TOF-MS.
(C) Principal component analysis (PCA) score plots for ESI-positive and -negative modes. (D) Hierar-
chical clustering trees of the samples. (E) A volcano plot with changes exceeding two-fold.

3.2. Metabolite Set Enrichment and Pathway Analysis of KRAS-Wildtype and KRAS-Mutant
Pancreatic Cancer Cells

To elucidate biologically meaningful patterns enriched in our quantitative metabolomic
data, we conducted metabolite set enrichment analysis, which revealed the top 13 sets
including pathways such as homocysteine degradation and taurine and hypotaurine
metabolism (Figure 2A). Additionally, lipid enrichment analysis highlighted 11 enriched
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sets, encompassing fatty acyl glycosides and sphingoid bases, among others, and a pie
chart providing a graphical depiction of the distribution of enriched lipid classes is shown
in Figure 2B. Furthermore, to elucidate the functional roles of the identified metabolites, we
mapped them to KEGG pathways, leading to the identification of nine significant metabolic
pathways associated with KRAS status, as illustrated in Figure 2C. These pathways include
valine, leucine, and isoleucine biosynthesis; propanoate metabolism; and primary bile
acid biosynthesis, among others. Overall, our findings underscore the distinct metabo-
lite changes induced by KRAS status, shedding light on the diverse metabolic pathways
implicated in pancreatic cancer cells.
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Figure 2. Metabolite set enrichment and pathway analysis depending on KRAS status. (A) Metabolite
set enrichment analysis highlighting the top 13 sets. (B) Lipid set enrichment analysis depicting
the top 11 sets. (C) Human KEGG pathways of the differentially identified metabolites between
KRAS-WT BxPC3 and KRAS-mutant PANC1. Color indicates the levels of significance (−log10(p))
from yellow to red. The size of the circle indicates the pathway impact.

3.3. Alterations in Metabolomic Profile of KRAS-Mutant Pancreatic Cancer Cells by
TRPML1 Inhibition

Pancreatic cancer cells harboring oncogenic RAS mutations exhibit an elevated level
of MCOLN1, encoding the lysosomal calcium channel TRPML1 [20]. TRPML1 inhibition
leads to cholesterol misplacement from the cellular membrane to lysosomes, causing the
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removal of oncogenic HRAS from the cell surface, a reduction in downstream signaling,
and eventual induction of cell death [21]. Consistent with previous studies, KRAS-mutant
PANC1 displayed notable upregulation of genes such as MCOLN1 and TFEB, associated
with lysosomal biogenesis and function, compared to KRAS-WT BxPC3 cells. (Figure 3A).
Pharmacological inhibition of TRPML1 using ML-SI1 significantly decreased PANC1 cell
viability, whereas pharmacological activation of TRPML1 using ML-SA1 failed to signifi-
cantly affect cell viability as observed with ML-SI1 (Figure 3B). The sensitivity to TRPML1
inhibition was higher in KRAS-mutant PANC1 cells than KRAS-WT BxPC3 cells (Figure 3B).
To identify significantly different metabolites in response to 48 h exposure to ML-SI1 in
KRAS-mutant PANC1 cells, untargeted metabolomic analysis was conducted as illustrated
in Figure 3C. A total of 292 metabolites were found to be differentially altered by TRPML1
inhibition, as detailed in Table S2. PCA score plots for both ESI-positive and ESI-negative
modes demonstrated a distinct separation between vehicle-treated and ML-SI1-treated
PANC1 cells (Figure 3D), which was further supported by hierarchical condition trees effec-
tively clustering cancer samples in response to TRPML1 inhibition (Figure 3E). Remarkably,
metabolites exhibiting alterations exceeding two-fold were prominently depicted in a vol-
cano plot (Figure 3F). Each point on the volcano plot diagram represents a metabolite.
The horizontal axis represents multiple metabolites compared with each corresponding
substance, while the vertical axis represents t-test values.

3.4. Metabolite Set Enrichment and Pathway Analysis of KRAS-mutant Pancreatic Cancer Cells by
TRPML1 Inhibition

To identify biologically significant patterns enriched in our quantitative metabolomic
data, we conducted metabolite set enrichment analysis, revealing the top 19 sets, com-
prising pathways such as arginine and proline metabolism, spermidine and spermine
biosynthesis, homocysteine degradation, and the malate–aspartate shuttle (Figure 4A). Ad-
ditionally, lipid enrichment analysis identified nine enriched sets, which included fatty acyl
glycosides, and a pie chart offering a visual representation of the distribution of enriched
lipid classes is shown in Figure 4B. Furthermore, to elucidate the functional roles of the
identified metabolites, we mapped them to KEGG pathways, leading to the identification
of 17 significant metabolic pathways associated with TRPML1 inhibition, as depicted in
Figure 4C. These pathways encompassed arginine and proline metabolism, beta-alanine
metabolism, glutathione metabolism, and alanine, aspartate, and glutamate metabolism,
among others. Of particular interest, when we compared alterations in metabolites com-
monly identified in our present two untargeted metabolomic analyses, we found that some
metabolites identified in PANC1 compared to BxPC3 were oppositely regulated by TRPML1
inhibition (Table 1). This discovery suggests that these metabolites could serve as potential
biomarkers detectable in KRAS-mutant cancer cells. In summary, our findings highlight
the discernible changes in metabolite profiles induced by TRPML1 inhibition using ML-SI1,
offering insights into the diverse metabolic pathways affecting KRAS-mutant pancreatic
cancer cells.

Table 1. Alterations in common metabolites by TRPML1 inhibition.

Compound
BxPC3 vs. PANC1 Veh vs. ML-SI1 in PANC1

Log FC P (corr) Log FC P (corr)

2-Ketobutyric acid 17.191 3.20 × 10−5 −17.387 1.72 × 10−5

Eicosanoyl-EA 14.908 1.38 × 10−4 −15.064 9.04 × 10−5

PE(19:1(9Z)/0:0) −14.896 1.46 × 10−4 2.085 2.53 × 10−2

PI(20:4(5Z,8Z,11Z,14Z)/0:0) −14.625 3.64 × 10−4 11.528 3.03 × 10−2

PS(21:0/20:5(5Z,8Z,11Z,14Z,17Z)) −14.342 3.64 × 10−4 12.680 2.22 × 10−3

(4E,8E,10E-d18:3)sphingosine −14.531 1.44 × 10−4 14.428 1.25 × 10−4

4,4′-Biphenyldithiol −17.092 1.71 × 10−4 15.919 5.51 × 10−4

LysoPE(0:0/20:0) −13.412 2.20 × 10−4 16.017 1.24 × 10−4
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Figure 3. Untargeted metabolomic profile identified from TRPML1 inhibition in KRAS-mutant
PANC1 cells. (A) Comparison of gene expressions (MCOLN1 and TFEB) involved in lysosomal
biogenesis and function between BxPC3 and PANC1. (B) The cell viability of BxPC3 and PANC1
cells following exposure to ML-SI1 or ML-SA1 for 48 h. (C) A schematic diagram presenting the
untargeted metabolomic approach using UHPLC/Q-TOF-MS. (D) PCA score plots for ESI-positive
and -negative modes. (E) Hierarchical clustering trees of the samples. (F) A volcano plot with changes
exceeding two-fold. Data are presented as mean ± SEM (** p < 0.01).
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mutant PANC1 cells. (A) Metabolite set enrichment analysis highlighting the top 19 sets. (B) Lipid
set enrichment analysis depicting the top 9 sets. (C) Human KEGG pathways of the differentially
identified metabolites between vehicle- and ML-SI1-treated KRAS-mutant PANC1 cells. Color
indicates the levels of significance (−log10(p)) from yellow to red. The size of the circle indicates the
pathway impact.

4. Discussion

In this study, untargeted metabolomics was employed to uncover potential biomark-
ers to distinguish between KRAS-WT and KRAS-mutant pancreatic cancer cells. The
metabolomic profiles of both pancreatic cancer cell lines were distinctly characterized by
their KRAS genetic status. Notably, KRAS-mutant PANC1 cells exhibited enrichment in
metabolites linked to homocysteine degradation, taurine and hypotaurine metabolism, and
fatty acyl glycosides. Furthermore, we validated that inhibiting the lysosomal calcium
channel TRPML1 effectively induced cell death in KRAS-mutant pancreatic cancer cells.
Simultaneously, we identified the metabolites affected by TRPML1 inhibition in PANC1
cells. The metabolites differentially identified following TRPML1 inhibition in KRAS-
mutant PANC1 cells revealed involvement in KEGG metabolic and signaling pathways
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related to arginine and proline metabolism, the malate–aspartate shuttle, homocysteine
degradation, and fatty acyl glycosides. Interestingly, metabolites associated with homocys-
teine degradation and fatty acyl glycosides were consistently detected in both untargeted
metabolomic analyses.

TRPML1 has recently emerged as a promising target for tackling oncogenic autophagy
in pancreatic cancer [22]. It primarily operates within lysosomes, facilitating the efflux
of cations into the cytosol [23]. Some studies have explored the involvement of TRPML1
in cancer progression and resistance to chemotherapy [24,25]. Recent insights suggest
that, in addition to its conventional role in maintaining lysosomal function and balance,
TRPML1 aids in communication between lysosomes and mitochondria to regulate mi-
tochondrial calcium levels, integrates cellular stress signals with lysosomal biogenesis,
modulates membrane lipid assembly to enhance oncogenic signaling, and promotes the
release of extracellular ATP to support invasive cancer behavior [21,26–28]. Notably, in-
creased TRPML1 expression has been associated with cancer development [21,24,25,27–29].
Jung et al. revealed a correlation between HRAS-driven cancers and elevated TRPML1
expression [21,30]. Higher TRPML1 expression is associated with poorer patient prognosis
in head and neck squamous cell carcinoma and bladder urothelial carcinoma character-
ized by frequent HRAS mutation [21,30]. Studies have shown that increased TRPML1
expression and activity in HRAS-driven cancer cells are crucial for cholesterol localization
in the cell membrane, while TRPML1 inhibition reduces ERK phosphorylation and cell
proliferation. [21,30]. Comparisons between cancer cells carrying HRAS wildtype and those
with oncogenic HRAS mutations have highlighted the vulnerability of oncogenic HRAS-
driven cancer cells to genetic and pharmacological TRPML1 inhibition, indicating TRPML1
as a potential target for HRAS-driven cancers [21,30]. Clinically, TRPML1 expression is
elevated in various malignancies. In non-small-cell lung cancer, high TRPML1 expression
correlates with advanced tumor stages and is positively associated with tumor develop-
ment including proliferation, migration, and invasion. [29]. Similarly, increased TRPML1
expression in PDAC inversely correlates with patient survival rates and recurrence-free
survival [27]. Patients with PDAC with worse prognosis tend to exhibit higher TRPML1 lev-
els [27]. Given the pivotal role of autophagy in PDAC pathogenesis, regulated by TRPML1
and TFEB, TRPML1 knockdown impedes PDAC cell proliferation in vitro and suppresses
tumor formation and growth in vivo [27,31,32], Unlike HRAS-driven cancer, the precise
anticancer mechanisms of TRPML1 inhibition are not clearly specified in KRAS-driven
pancreatic cancer. In this context, our untargeted metabolomic analysis aims to elucidate
its molecular mechanisms.

Chemotherapy remains a cornerstone in the treatment of pancreatic cancer, primarily
due to the fact that more than 80% of patients are deemed inoperable upon diagnosis [33].
Currently, the combination of gemcitabine and erlotinib stands as the standard treatment
for inoperable or post-surgery patients, yet secondary treatment options are limited when
these drugs fail [34,35]. Therefore, potential therapeutic targets should be discovered
for new treatment strategies for gemcitabine-resistant pancreatic cancer. Earlier research
has indicated that BxPC3 cells exhibit heightened sensitivity to gemcitabine, whereas
PANC1 cells demonstrate pronounced resistance to the drug [36,37]. Notably, despite
this difference, both cell lines possess some common genetic traits such as mutations
in CDKN2A, MAPD2K4, and TP53 [38]. Hence, we opted for these two cell lines and
performed an extensive metabolomics analysis to explore potential therapeutic markers
of gemcitabine resistance. From the metabolomics analysis of BxPC3 and PANC1 cells
following treatment with the TRPML1 inhibitor (40 µM of ML-SI1), we identified 151
differentially enriched metabolites. Medina et al. reported that UV exposure or BH-mimetic
treatment induced high levels of spermidine in apoptotic Jurkat cells and creatine in A549
lung cancer and HCT-116 colon cancer cells, which serve as metabolite secretomes of
apoptosis [39]. Similarly, our results also demonstrate that TRPML1 inhibition leads to
higher levels of creatine and lower levels of spermidine in PANC1 compared to BxPC3
(Table S3). This implies that TRPML1 inhibitor can induce apoptosis in both cancer cell
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lines irrespective of resistance status. Furthermore, TRPML1 inhibitor-treated BxPC3 and
PANC1 cells exhibited opposing levels of L-aspartic acid, citric acid, and fumaric acid,
which are associated with alanine, aspartate, and glutamate metabolism. Interestingly, a
previous study by Garcia-Bermudez et al. reported that inhibition of the electron transport
chain (ETC) results in a significant decrease in aspartate levels in sensitive cancer cell lines,
whereas the levels of aspartate are largely maintained in resistant cancer cell lines [40]. In
our current dataset, the level of L-aspartic acid was relatively lower in BxPC3 cells. This
observation suggests that TRPML1 inhibition induces ETC-mediated apoptotic cell death
in BxPC3 cells but not in PANC1 cells.

A recent study identified 23 distinct metabolites from KRAS-mutant human PDAC
cells and mouse acinar cells harboring the oncogenic KRAS mutation through single-cell
MS analysis [41]. These findings indicated high abundance in valine, spermine, spermi-
dine, creatine, and more. Similarly, our research detected distinct metabolites involved
in various amino acid metabolic pathways, encompassing valine, leucine, and isoleucine
biosynthesis and taurine and hypotaurine metabolism, methionine metabolism, glycine
and serine metabolism, arginine and proline metabolism, and aspartate metabolism in
PANC1 compared to BxPC3. Notably, in response to TRPML1 inhibition, we observed a
low abundance of 2-ketobutyric acid particularly elevated in KRAS-mutant PANC1 cells
compared to KRAS-WT BxPC3 cells. Also known as α-ketobutyrate or 2-oxobutyrate,
2-ketobutyric acid is a byproduct of amino acid metabolism, including glycine, methion-
ine, valine, leucine, serine, threonine, and isoleucine [42–44]. Among those amino acids,
2-ketobutyric acid can be produced from L-methionine through the catalysis of methionine
γ-lyase (MGL). Methionine, an essential amino acid, assumes crucial roles in polyamine
formation and serves as a precursor for DNA and protein methylation [45]. The imposi-
tion of L-methionine restriction demonstrates potent antitumor effects on cancers reliant
on this amino acid, such as breast, prostate, and lung cancers [46–49]. Normal cells can
recycle methionine via re-methylation of homocysteine, catalyzed by methionine synthase
or betaine–homocysteine methyltransferase [50,51]. However, cancer cells often exhibit
heightened methionine synthase activity and are more vulnerable to its inhibition compared
to normal tissues [52–54]. The substitution of methionine with homocysteine effectively
hampers the proliferation of various cancer cell lines, including leukemia, breast, lung,
kidney, prostate, and colon cancer [55–57]. Recent findings by He et al. highlighted frequent
low expression levels of methionine sulfoxide reductase A (MSRA), a reducing enzyme of
oxidized methionine residue, in metastatic tumor tissues of patients with PDAC. Decreased
MSRA levels sustain methionine oxidation, which, in turn, supports the activity of pyruvate
kinase M2 (PKM2), promoting the respiration, migration, and metastasis of PDAC [58].
In addition, a previous study demonstrated that the introduction of mutant KRAS (G12D
substitution) into BxPC3 resulted in an increase in CTH compared to KRAS-WT, leading
to increased ROS generation and glycolysis [59]. In our study, α-ketobutyric acid, which
can be derived from thionine by CTH, also exhibited significant differences and showed
potential as a biomarker. Similarly, α-ketobutyric acid was found to be higher in PANC1
with mutant KRAS (G12D) compared to KRAS-WT BxPC3, and the level of α-ketobutyric
acid decreased when cell death was induced in PANC1. These results indicate the potential
of α-ketobutyric acid as a biomarker or therapeutic target in pancreatic cancer harboring
KRAS G12D mutation.

Although we observed alterations in the specific metabolites, such as 2-ketobutyric
acid, Eicosanoyl-EA, PE(19:1(9Z)/0:0), PI(20:4(5Z,8Z,11Z,14Z)/0:0), LysoPE(0:0/20:0), and
more, in response to TRPML1 inhibition, further elucidation is needed to clarify the molec-
ular mechanisms underlying the interaction of these metabolites with TRPMl1 and KRAS
mutation. Moreover, given that our study is restricted to analyses in specific cancer cell
lines, rather than patient-derived cancer cells or mouse models, it is difficult to perfectly
capture the information of actual patients with PDAC, such as oncogenic profiles or the
degree of tumor heterogeneity. Nevertheless, if we apply the current findings to patient
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samples or a human pancreatic cancer organoid system, we may expect outcomes that are
more pragmatic and pertinent to the clinical setting.

5. Conclusions

Our findings underscore the potential of metabolomics in unraveling intricate metabo-
lic pathways implicated in pancreatic cancer. The identification of dysregulated metabolites,
such as 2-ketobutyric acid, sheds light on novel therapeutic targets and diagnostic markers
for this disease. Further exploration of these metabolic alterations may pave the way for
personalized treatment strategies and improved patient outcomes. Additionally, elucidat-
ing the role of methionine metabolism and its associated enzymes in tumor progression
highlights promising avenues for therapeutic intervention. Ultimately, our study con-
tributes to the growing body of evidence supporting the pivotal role of metabolism in
cancer biology and underscores the importance of comprehensive metabolic profiling in
understanding and combatting pancreatic cancer. Considering tumor heterogeneity, the
tumor microenvironment, and the multiple actions of other oncogenes alongside KRAS
mutation, applying our metabolomic profiles to an organoid system established from pa-
tients with pancreatic cancer, rather than a two-dimensional in vitro culture system, may
offer greater clinical utilities.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines12040865/s1, Table S1: Metabolites differentially identified
in KRAS-WT and KRAS-mutant pancreatic cancer cells (BxPC3 vs. PANC1); Table S2: Metabolites
differentially identified in the treatment groups of vehicle and ML-SI1 (vehicle- vs. ML-SI1-treated);
Table S3: Metabolites differentially identified in KRAS-WT BxPC3 and KRAS-mutant PANC1 follow-
ing treatment of ML-SI1 for 48 h (BxPC3 vs. PANC1).
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