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Abstract: Background: While ‘immuno-competence’ is a well-known term, it lacks an operational
definition. To address this omission, this study explored whether the temporal and structured
data of the complete blood cell count (CBC) can rapidly estimate immuno-competence. To this
end, one or more ratios that included data on all monocytes, lymphocytes and neutrophils were
investigated. Materials and methods: Longitudinal CBC data collected from 101 COVID-19 patients
(291 observations) were analyzed. Dynamics were estimated with several approaches, which included
non-structured (the classic CBC format) and structured data. Structured data were assessed as
complex ratios that capture multicellular interactions among leukocytes. In comparing survivors with
non-survivors, the hypothesis that immuno-competence may exhibit feedback-like (oscillatory or
cyclic) responses was tested. Results: While non-structured data did not distinguish survivors from
non-survivors, structured data revealed immunological and statistical differences between outcomes:
while survivors exhibited oscillatory data patterns, non-survivors did not. In survivors, many
variables (including IL-6, hemoglobin and several complex indicators) showed values above or below
the levels observed on day 1 of the hospitalization period, displaying L-shaped data distributions
(positive kurtosis). In contrast, non-survivors did not exhibit kurtosis. Three immunologically
defined data subsets included only survivors. Because information was based on visual patterns
generated in real time, this method can, potentially, provide information rapidly. Discussion: The
hypothesis that immuno-competence expresses feedback-like loops when immunological data are
structured was not rejected. This function seemed to be impaired in immuno-suppressed individuals.
While this method rapidly informs, it is only a guide that, to be confirmed, requires additional tests.
Despite this limitation, the fact that three protective (survival-associated) immunological data subsets
were observed since day 1 supports many clinical decisions, including the early and personalized
prognosis and identification of targets that immunomodulatory therapies could pursue. Because it
extracts more information from the same data, structured data may replace the century-old format of
the CBC.
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1. Introduction

To prevent the spread of rapidly disseminating infections, such as COVID-19, person-
alized assessments of immunity have been proposed [1]. Yet, immuno-competence lacks
a standardized method that could routinely be used in clinical medicine [2]. Tests that
measure immuno-competence should be both informative and biologically valid. Ideally,
they should also predict disease outcomes and help select personalized therapies [3,4].
To develop such methods, several biomedical and methodological concepts need to be
considered and integrated into the chosen operationalizations, including (i) dynamics,
(ii) non-binary (polychotomous) conditions, (iii) the risk of confounding, (iv) personalized
factors, (v) biological complexity, (vi) data structuring and (vii) data analysis.

1.1. Dynamic, Polychotomous and Personalized Methods That Prevent Confounding

The dynamics of the immune responses, such as COVID-19, are poorly known [5]. One
reason for such a cognitive gap is that, typically, classic methods have been static. Static
methods assume only two conditions: “disease-positive” and “disease-negative” results.
Binary and static methods are not valid because biological functions are dynamic processes
that can reveal three or more biomedical conditions [6,7]. For example, inflammatory
(immunological) responses exhibit three or more presentations: no inflammation, early
inflammation, late inflammation (followed by recovery) and/or late inflammation (followed
by chronic disease). Therefore, to assess immuno-competence, new methods should handle
non-dichotomous and dynamic conditions [8–10]. By subtracting earlier from later data
values, the potential bias of extremely low (or high) values of earlier tests can be prevented,
and dynamics can be assessed [11].

In addition, assessments of immuno-competence should be personalized. Because
patients differ in co-morbidities and medical histories, to prevent confounding, methods that
attempt to capture dynamic and non-binary responses should not assume that populations
are homogenous [12].

Because most published research on major diseases, such as COVID-19, has been cross-
sectional and observational, the risk of bias is not trivial [13–16]. One source of confounding
refers to the fact that patients may be hospitalized at different disease stages, and therefore,
early and late disease stages could erroneously be grouped together. Another variation of
the same error can occur when data with different disease stages are aggregated. Aggregate
data do not provide personalized information but population averages. Thus, methods
that handle non-binary, dynamic and personalized data are needed [17,18].

A third common source of confounding emerges when data distributions of different
biological conditions—such as “cases” and “non-cases”—overlap [19,20]. Data overlapping
(different outcomes associated with similar data intervals) should be avoided because it
prevents medical discrimination even when statistical significance is achieved [21,22]. The
previous considerations result in one consequence that novel methods should also address:
given the dynamic, non-binary and personalized aspects of disease processes, there is no
standard patient, and therefore, there is no control either [23].

1.2. Complex and Dynamic Interactions That Structure the Data and Show Patterns

To measure personalized immune dynamics and to extract hidden patterns, the as-
sessment of immunological complexity has been recommended [24–26]. To explore com-
plexity, interactions involving two or more biological elements—such as lymphocytes and
monocytes—may describe biological functions that influence outcomes [27]. Such complex
functions change over time and may exhibit feedforward and feedback loops [9,28].

Structured data—not isolated variables, such as the counts or percentages of a single
cell type—can investigate relationships. Data structuring may provide interpretable and
medically useful information and, in addition, avoid the confounding associated with
unstructured data [29].
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Structured data may promote pattern recognition. The shapes of data distributions may
inform [30,31]. One specific data distribution (positive kurtosis or L-shaped data) has been
viewed, for many years, as statistically intractable [32]. Yet, such data presentations are not
rare and may be informative in several medical fields [33–35].

Interpretations also depend on the format used to present and analyze the data. Because
complex and dynamic processes involve interactions, ratios—which assess relationships
among two or more elements—are preferred over counts. Novel methods that utilize the
data generated by the century-old CBC could inform more or better if they are not limited
to analyses of counts [29,36].

1.3. COVID-19-Related Dynamic and Personalized Immuno-Competence

The previous considerations may influence the way immuno-competence is explored.
In several clinical entities (e.g., COVID-19, sepsis, hantavirus), the early disease stage is not
always associated with death [27,37–40].

Immuno-competence cannot be evaluated with a single (static) assessment. This
concept may matter particularly in sepsis where dynamic changes can occur and both
excessive inflammation and immuno-suppression may induce fatalities [41,42]. Therefore,
to estimate immuno-competence, temporal assessments are needed.

In adopting a personalized approach, here, longitudinal data on COVID-19 are ret-
rospectively explored with the purpose of assessing immunological dynamics and their
associated outcomes. Assuming that survival is an unambiguous outcome of immuno-
competent responses, this study was set to answer whether, soon after admission, (i) struc-
tured and temporal blood-related data can extract more information from the same data
than unstructured data and (ii) whether non-overlapping and/or distinct data distributions
may, rapidly and easily, predict disease outcomes in COVID-19 patients.

2. Materials and Methods
2.1. Clinical Data

Two-hundred and ninety-one complete blood count (CBC/differential) samples col-
lected from 101 anonymized individuals hospitalized at the Mayo Clinic of Jacksonville,
Florida before August of 2020 with a COVID-19 diagnosis are reported in Table S1. Inclu-
sion criteria considered subjects of 18 or more years of age, treated at or before August 2020,
with SARS-CoV-2 positive test results conducted within 72 h of admission, radiographic
changes consistent with COVID-19 and deemed to be at risk of severe illness. Discharge
was based on negative testing and the alleviation of life-threatening conditions. Individuals
treated for immunosuppression, malignancy, pregnancy and/or hospitalized for at least
three weeks in the previous six months were excluded [27]. The outcome (survival or no
survival) was determined at 30 days after hospitalization.

2.2. Data Structure and Analysis

Time was measured with seven approaches that analyzed uni-, bi- and three-dimensional
data. The first approach analyzed the data collected on the first post-hospitalization day
(Day 1). The second approach considered the data collected at days 1 and 2. The third
approach evaluated the difference between day 2 and day 1 observations. These analyses
were uni-dimensional and focused on a single (unstructured or structured) variable.

The fourth and fifth approaches were bi-dimensional, considering two (unstructured or
structured) variables. The sixth and seventh approaches were three-dimensional, focusing
on personalized and therapy-oriented information, respectively.

In all approaches, the presence or absence of L-shaped data distributions (positive
kurtosis) was determined. Kurtosis (non-normally distributed [not bell-shaped] data) was
documented when observations differed 5 or more standard deviations from the mean, and
consequently, most observations were concentrated on one end of the distribution (hence,
the shape of the data resembled an ‘L’). The statistical analysis was limited to indicating
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whether outcomes revealed non-kurtotic data intervals, and, when kurtosis was observed,
whether L-shaped data distributions were revealed by one or many blood-related variables.

In addition, the informative effect of non-structured and structured data was also
investigated. Observations were analyzed as either separate counts or relative percent-
ages of single-cell types (unstructured approach) or complex multicellular interactions
that included two or more ratios (structured approach). The structured method has been
described before when several diseases that affect human and non-human species were
investigated [21,24,27,28,40]. The structured method is based on dimensionless indicators
(DIs)—temporary guides used to detect distinct data subsets. DIs include numerous re-
lationships, and they are complex: they have two or more interactions that, individually,
could include two or more elements, e.g., the triple ratio resulting from (i) generating a ratio
between neutrophils and monocytes (the N% divided the M% or N/M ratio), (ii) creating
a separate ratio between mononuclear cells (L%+M% or MC cells) and neutrophils (or
MC/N ratio), and (iii) the overall relationship resulting from the first divided the second
ratio. Because DLs are used to display three-dimensional patterns, the number of possible
combinations observed is very high (if not infinite) at least because each axis may influ-
ence and/or be influenced by any other axis. Given such internal and external possible
variability, DLs are identified with letters lacking any biological meaning (such as AA,
AAA, BBB. . .). Biologically interpretable contents are explicitly investigated only after data
patterns are detected in 3D space.

The rationale of this method can be found in Niels Jerne’s work [43]. He emphasized
the language-like properties of immunology, i.e., a set of few or very few elements (com-
parable to the 26 letters of the English alphabet) which, once combined and recombined,
results not only in a very large number of ‘words’, but also in an even larger number of
‘sentences’ and ‘paragraphs’. When we refer to Biology, this combinatorial ‘language’ can
generate millions of antibodies and/or proteins that can recognize antigens even when the
immune system has not previously encountered such antigens.

This means that analyzing only the elemental immunological units is not informative:
in considering the language metaphor, no knowledge can be derived from memorizing
all the letters of the alphabet. Similarly, useful biomedical knowledge may be missed,
unless and until basic leukocyte data are (a) reformatted as information, (b) information
is converted into knowledge, and (c) finally, knowledge is applied as concrete (context-
and resource-dependent) decisions. This process has been described as the ‘DIKW (data–
information–knowledge–‘wisdom’) pyramid’ [29].

While a proprietary software can, in principle, conduct all these steps in real time,
any method that focuses on pattern recognition and explores three-dimensional data
combinations (structures in which the information emerges only after the three variables
converge in space) is likely to detect usable information, as previously described [24].

This method was conducted with a proprietary software package [29,39,44]. To gener-
ate visual patterns and to assess statistical properties, a commercial software package was
used (Minitab 21, Minitab LLC, State College, PA, USA).

3. Results

Due to overlapping data intervals of different outcomes, no medical discrimination
was possible, at any time when either counts or percentages of cell types were assessed in
isolation (rectangles, Figure 1A–D). Overlapping data distributions occurred even when
statistically significant differences were observed. For example, when all the temporal data
were considered, the median lymphocyte percentage of non-survivors was 12.3% (n = 37),
while that of survivors was 17.2% (n = 254), a difference that reached statistical significance
(p < 0.01, Mann–Whitney test, Table S2). This statistical difference occurred even when
most survivor and non-survivor observations overlapped (Figure 1D).
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Figure 1. Non-structured data analysis. Total leukocyte counts (WBC) and relative percentages of
lymphocytes, neutrophils and monocytes were assessed considering only the data available at hospital-
ization day 1 (A,B) and all temporal observations (C,D). In all comparisons, non-survivors and survivors
displayed overlapping data distributions, which prevented their differentiation (rectangles, (A–D)).

The lack of discrimination between outcomes was not limited to leukocyte-related
data. Other hematological variables—such as IL-6 and hemoglobin—also showed, over
time, overlapping distributions between outcomes (Figure 2A,B). In contrast, structured
data that simultaneously captured many interactions among all leukocytes displayed not
only statistically significant differences between outcomes, but also a range of observations
with non-overlapping outcomes (Figure 2C).

When, regardless of outcome, leukocytes were assessed as separate (non-structured)
cell types at hospitalization day 1, no L-shaped (non-kurtotic) intervals were observed
(Table S2, Figure 3A,B). However, when other hematological variables—such as IL-6 and
Hb—were assessed, survivors revealed kurtosis, while non-survivors did not (Table S2,
Figure 3C–F). Similarly, structured leukocyte data showed kurtosis, although only in
survivors (AAT, Figure 3G,H).

Regardless of outcome, kurtosis was not observed when all longitudinal observa-
tions were assessed as non-structured data, i.e., when the percentages of lymphocytes,
neutrophils or monocytes were investigated (Table S2, Figure 4A–F). In contrast, both non-
leukocyte and structured leukocyte data displayed kurtosis when survivors were tested
and all temporal data points were evaluated (Figure 5A–F). Hence, it was concluded that
kurtosis was associated with both (i) the structure of the data (complex ratios) and (ii) the
outcome (survival).
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Figure 2. Day-specific, non-structured data analysis. The blood concentrations of IL-6 and hemoglobin
(Hb) (A,B) as well as the values of a complex indicator that captured numerous relationships among
leukocytes (C) were determined at each post-hospitalization day for non-survivors and survivors.
The overlapping data distributions of IL-6 and Hb prevented the differentiation of outcomes (A,B).
However, for the non-cellular, non-structured (IL-6, Hb) and leukocyte-related (AAT) structured
variables in the first 3 days, survivors displayed a range of values for the complex indicator not
including non-survivors (rectangle, (C)).
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Figure 3. Day 1-specific assessments of kurtosis. Histograms of variables collected on the first
hospitalization day did not reveal kurtosis (values equal to or less than 0.13) when, regardless of
outcome, non-structured, leukocyte-related data were investigated (A,B). While non-survivors did
not show kurtosis when other variables were investigated (values equal to or less than 0.29, (C,E,G)),
the same variables displayed L-shaped patterns when survivors were evaluated (values equal to or
higher than 16.89, (D,F,H)).
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Figure 4. Longitudinal assessments of kurtosis—I. When all longitudinal observations were assessed
together (n = 291), no kurtosis was observed (all estimates were equal to or less than 1.22) when,
regardless of outcome, the percentages of lymphocytes, monocytes or neutrophils were separately
investigated (A–F).

To prevent biased assessments of dynamics, an additional comparison was conducted,
which considered the net difference between two consecutive observations. Dynamics were
then evaluated in two ways: (a) considering the net difference of values shown between day
2 and day 1 by either survivors or non-survivors and (b) considering the dispersion of such
values when survivors and non-survivors were measured simultaneously. When day 1 val-
ues were subtracted from day 2 values, survivors displayed kurtosis, while non-survivors
did not (Table S2, Figure 6A–F). Some variables—such as IL-6 and complex indicators that
assessed leukocyte multicellular interactions—oscillated over time in competent immuno-
logical responses. In contrast, the result of the subtraction, for most survivors, approached
zero (Figure 6B,F).
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Figure 5. Longitudinal assessments of kurtosis—II. When non-cellular indicators as well as leukocyte-
related complex indicators were investigated and all longitudinal observations were considered
(n = 291), survivors showed kurtosis estimates ranging from 13.41 to 253.78. In contrast, non-survivors
displayed smaller kurtosis estimates (A–F).

The last comparison simultaneously assessed both outcomes. Complementing the
assessments of kurtosis reported in Figure 6, dynamic assessments supported the hypothe-
sis that survivors displayed numerous and large temporal oscillations around zero, while
non-survivors did not (Figure 7A–F).
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Figure 6. Longitudinal assessments of kurtosis—III (dynamics of paired observations, separate
analyses). When the net difference between day 2 and day 1 values of 92 pairs of observations was
considered, non-survivors did not show evidence of kurtosis (values ranging between −0.44 and
8.37), while survivors exhibited kurtosis (values between 18.37 and 80.99, (A–F)).

To further explore the hypothesis that survivors and non-survivors differed immuno-
logically, additional time-related, bi-dimensional comparisons between pairs of cell types
were conducted with non-structured data. While survivors exhibited a broad range of
observations that could facilitate relationships between neutrophils and monocytes at days
1 and 2, non-survivors lacked such data ranges (Figure 8A–D). Likewise, non-survivors
did not show high values of lymphocyte percentages that could interact with monocytes at
such times, while survivors did (Figure 8E–H).
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Figure 7. Longitudinal assessments of kurtosis—IV (dynamics of paired observations, integrated
analysis). Survivors displayed a larger dispersion of values than non-survivors when the difference
between the day 2 and day 1 data values of survivors and non-survivors was simultaneously
investigated in a single plot (92 paired observations). Both non-cellular indicators (such as IL-6,
D-dimer and PCT, (A–C)) and complex (structured) indicators derived from leukocyte data (AAT,
BBF, BBT, (D–F)) revealed that non-survivors did not vary much in values over time (the difference
of day 2 minus day 1 approached zero). In contrast, all other variables (except PCT) revealed broad
oscillations over time when survivors were considered, which expressed both above- and below-zero
values. This assessment may be interpreted as a single and perpendicular perspective of the data
reported separately for survivors and non-survivors in Figure 6.
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Figure 8. Detection of simple, bi-dimensional relationships associated with survival. While on days 1
and 2, survivors exhibited a broad data interval that facilitated relationships between non-structured
variables (neutrophils and monocytes), non-survivors lacked such a data range (rectangles, (A–D)). A
similar absence was observed when lymphocytes and monocytes were assessed (rectangles, (E–H)).
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More information was extracted from the same data when bi-dimensional, temporal
and structured data were investigated. Two data ranges occupied only by survivors
were revealed when complex leukocyte interactions were investigated at days 1 and
2 (Figure 9A–D).
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Figure 9. Detection of complex, bi-dimensional relationships associated with survival. When
structured, leukocyte-related variables were investigated at days 1 and 2 in survivors and non-
survivors, survivors exhibited two data ranges that were lacking when non-survivors were evaluated
(A–D). Because the analysis of non-structured data did not reveal two separate data ranges associated
with survival (shown in Figure 8), the analysis of structured (complex) indicators extracted more
information from the same data.

The two protective data ranges of immunological interactions were not influenced by
time (Figure 10A–C). The two immunological relationships associated with survival (here
named ‘A’ and ‘B’) were characterized by non-overlapping intervals of non-structured data
(the percentages of lymphocytes [L], neutrophils [N] or monocytes [M]) and structured
data (the small leukocytes [L and N]/M, the N/M and the N/L ratios, Figure 10D,E).

When all temporal observations were considered (n = 291), three-dimensional as-
sessments of structured data retrieved even more information from the data: three data
subsets—perpendicular to one another—included only survivors when the first three
hospitalization days were assessed (Figure 11A,B). Therefore, immuno-competence (re-
sponses that promoted survival) was an early process—it was measurable in the first three
post-admission days.
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Figure 10. Influence of time on the complexity of bi-dimensional assessments associated with survival.
A bi-dimensional, outcome-related, immunological and temporal assessment of structured data is
not influenced by time: each of the two data ranges occupied only by survivors included both day 1
and day 2 observations (A–C). The two subsets of survivor-only observations (here named A and B)
were biologically valid and distinguishable: subsets A and B differed from one another both in terms
of non-structured data (non-overlapping percentages of lymphocytes, neutrophils and monocytes)
and in several ratios, including the small leukocyte (lymphocyte and neutrophil)/monocyte (SL/M),
neutrophil/monocyte (N/M) and neutrophil/lymphocyte (N/L) ratios (D,E).
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Figure 11. Three-dimensional, long-term, biologically validated detection of structured data ranges
associated with survival. More information was retrieved from the same data when three-dimensional
relationships were investigated with data collected on all testing days (n = 291). Three non-randomly
distributed data subsets—perpendicular to one another—were populated by survivors (A). Data
oscillations (values far from zero) indicated protective responses if they were observed in the first
three hospitalization days (B). The combination of spatial and outcome (quantitative and qualitative)
data identified three data subsets (named I–III) composed of only survivors (C). All three (I–III) data
subsets were validated: they differed from one another by non-overlapping intervals of neutrophil or
monocyte percentages or monocyte/lymphocyte ratios (D). Therefore, immuno-competence was an
early response that involved, at least, three complex immunological functions that could involve all
cell types.

In classifying the data into four groups (three groups composed of only survivors [here
named I, II and III] and one group that included survivors and non-survivors, Figure 11C),
survivors revealed three non-overlapping data intervals. The data groups that included
only survivors differed from one another: group I showed the lowest values of lymphocyte
percentages and highest neutrophil/lymphocyte (N/L) ratios; group II showed the lowest
monocyte values intermediate and N/L ratio values between those of groups I and III; and
group III displayed the lowest neutrophil percentages (Figure 11D).

When day 1 and day 2 structured data were investigated (n = 195) as recorded (i.e.,
when the same patient contributed two data points), the findings supported at least four
types of inferences. For example, between one and three data ranges concerning only a
single outcome were detected at days 1 and 2 (Figure 12A,B). Because survival-related
findings were based on two different data structures that considered two temporal points
(a double redundant approach), inferences revealed internal validity (Figure 12A,B).
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Figure 12. Three-dimensional, two-day long, biologically validated detection of structured data
ranges associated with survival. Structured data collected on days 1 and 2 (n = 195) displayed several
3D patterns that facilitated numerous inferences. For example, every data point detected within a data
subset perpendicular to the remaining data prognosticated survival (rectangle, (A)). Personalized
prognoses were supported through redundant analyses: the predictions generated by plot (A) were
corroborated by the three data subsets distinguished in plot (B). The three data subsets identified in
(B) were biologically valid: each subset associated with survival (‘left’, ‘top’ and ‘right’) differed from
one another by two or more variables (C). Because this differentiation and validation corroborated
the findings reported in Figure 11, it is concluded that the assessment of either day 1 only or days 1
and 2 conveyed similar information. Other structured indicators showed additional potential targets
of immunomodulatory therapies and facilitated earlier evaluations of treatments. For example, the
temporal data directionality described by a single (one data point-wide) line of observations showed
wo desirable trajectories (temporal data movements that followed the arrows, (D)). Because this
assessment (which was based on data collected over 48 h) corroborated the findings reported both
in the analysis of all temporal data and the one that considered only day 1 data, it is concluded
than the analysis of complex (structured) leukocyte-related, alone or together with the analysis of
other non-cellular hematological variables, may assess immuno-competence, facilitate personalized
prognosis and (when temporal data directionality is considered) evaluate therapies earlier.

The three data subsets containing only survivors were named ‘left’, ‘top’ and ‘right’
(Figure 12C). They differed immunologically from one another: the same non-structured
and structured variables that distinguished similar subsets when all temporal data were
analyzed (reported in Figure 11) also differentiated the subsets identified with the data
collected on the first two hospitalization days (Figure 12D).

In addition, day 1 and day 2 structured data displayed trajectory: the directionality of
the temporal data (where each data point came from/went to) was objectively displayed
using an easily detectable structure (a single, one data point-wide, line of observations that
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simultaneously captures time and immunological interactions, Figure 12D). In this example,
the arrows generated by this minimal (only 24 h long) temporal assessment identified two
prognostic inferences: two movements away from zero predicted survival at a personalized
level, i.e., even a single individual could be prognosticated.

Therefore, the findings reveal that (i) assessments limited to day 1 data are adequate
for predicting outcomes; (ii) the data collected at day 1 and day 2 revealed trajectory;
(iii) the assessment of dynamics (day 2 minus day 1 data) demonstrated that survivors’
data oscillated, while the data of non-survivors did not; and (iv) numerous hematological,
non-cellular variables also revealed kurtosis-related differences between non-survivors
and survivors.

4. Discussion
4.1. Caveats

The fundamental limitation of this study refers to the fact that there is no consensus
on the meaning of immuno-competence. To address this challenge, this study analyzed
both humoral and cell-mediated responses. Because both approaches generated similar
inferences (survivors exhibited L-shaped [kurtotic] data intervals while non-survivors did
not), the stated limitation was ameliorated.

A second potential limitation is that, given the combinatorial nature of leukocyte-
related multicellular interactions, the number of possible ratios to be assessed is very high,
and consequently, any investigated ratio is not necessarily representative. The analysis
of two or more leukocyte-derived complex indicators (redundant analysis) diminished
this risk.

4.2. Seven Major Findings

The data supported seven inferences: (1) over time, survivors displayed non-randomly
distributed (circular-like) immunological responses that revealed feedback/feedforward
loops; (2) L-shaped data distributions (kurtosis) characterized survivors; (3) non-survivors
were associated with static immunological responses; (4) immuno-competence (responses
that, over time, differed in magnitude and/or internal composition) was expressed early,
after hospitalization; (5) data ranges of immunological data associated with survival may
provide targets for immunomodulatory strategies; (6) unstructured, simple (reductionist)
indicators—such as counts and percentages—missed information conveyed by complex
(non-reductionist) indicators; and (7) the anticipatory testing of immuno-competence
(evaluations conducted in the absence of a disease) may be desirable. These inferences
indicate that the time-related detection of non-randomly distributed data intervals may
offer medically useful information.

These findings corroborate the non-random (oscillatory) data features of blood leuko-
cytes. The circadian cycle of blood leukocytes has been described before—a process associ-
ated with immuno-competence [45]. For example, the circadian cycles of CD4 and CD8+
cells are opposed to one another [46]. The circadian cycle that regulates the hypothalamic–
pituitary–thyroid axis is altered in immuno-suppression: in lung cancer, the ratio of mela-
tonin/cortisol is diminished (cortisol is increased), and the count and relative proportions
of CD8+ cells are decreased [47]. Such feedback-like cycles are not randomly distributed.
For instance, lymphocyte data exhibit non-normally distributed intervals [48,49]. Because
effective (immuno-competent) responses are non-random [50,51], a lack of such dynamics
may reflect immuno-suppression or deficiency.

Here, we followed the new recommended research emphasis that promotes explo-
rations of L-shaped data distributions, i.e., kurtosis [52,53]. In L-shaped distributions, data
oscillations around zero (a quasi-stationary mode) induce a left-side peak [54]. Chronic
infections have been characterized by a quasi-stationary mode in which lymphocytes are
inactive [55]. Because non-normal (L-shaped or kurtotic) data distributions were mainly
exhibited by survivors, the hypothesis that kurtosis describes cyclic immunological os-
cillations associated with survival was not rejected [9,24]. This continuous ‘fine-tuning’
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resembles the way cars are driven: to drive straight, an open-ended series of minor turns to
the left and right are needed. Other biological (non-immunological) functions also show
similar cyclic adjustments [56].

Numerous studies have suggested that immuno-suppression is associated with COVID-19
[57–63]. This study also corroborated earlier reports that indicated immune-competence,
in COVID-19, predicts survival [3]. The fact that, in patients with cancer, COVID-19
is associated with increased mortality supports the view that immuno-suppression is a
negative predictor of disease outcome [64,65].

The findings also support the hypothesis that immuno-competence, in COVID-19,
involves the cellular immune response [66–69]. Patients presenting with severe COVID-19
have frequently been reported with lymphopenia [70,71].

This study also showed differences between survivors and non-survivors when non-
cellular factors (including hemoglobin, IL-6 and hematocrit) were analyzed [72]. Because
numerous humoral indicators differed between the survivors and non-survivors and such
differentiation was robust over time, the involvement of both arms of the immune system on
disease outcomes was documented, and the approach used to explore immuno-competence
exhibited robust internal and external validity [73].

Non-survivors showed differences in their immune responses as early as hospitaliza-
tion day 1. Because the kurtosis associated with survivors was not detected after day 3, the
findings support the hypothesis in that immuno-competence should be evaluated early [74].
Because immuno-suppression was already detected at hospitalization day 1, the hypothesis
that, in non-survivors, immunosuppression could predate the infection cannot be ruled
out [3]. This hypothesis has been sustained before: patients tested two or more weeks before
SARS-CoV-2 infections took place have shown reduced numbers of eosinophils—a find-
ing associated with poorer outcomes [75]. Very early immunological differences between
survivors and non-survivors have also been reported in other studies [76–78].

Data ranges of immunological data associated with survival may provide targets for
immunomodulatory therapies. Because, to be effective, immunomodulation should be
implemented early, the findings provide unambiguous targets for such therapies [79].

In agreement with earlier reports, unstructured, simple indicators—such as counts and
percentages—revealed weaknesses associated with reductionist approaches [21,80]. In con-
trast, structured (complex, non-reductionist) indicators provided biologically interpretable
and medically useful information [24,26]. When complex data structures reveal distinct
patterns—such as single, one data point-wide, lines of observations—the directionality of
temporal data promotes earlier evaluations [81].

Because the risk of COVID-19-related death may be high even in vaccinated immuno-
suppressed patients, the findings supported the implementation of the anticipatory testing
of immuno-competence, i.e., before diseases are diagnosed [82]. This possibility may be
synonymous with updating the format of the CBC/differential: after a century in which no
biological functions (no interactions among cells and molecules that participate in immune
responses) have been assessed, it is now possible to extract more biologically interpretable
and medically useful information from the same data.

5. Conclusions

This study suggests that the temporal assessment of non-randomly distributed, oscil-
latory cycles of immune responses may facilitate early and personalized prognosis as well
as identification of targets to be potentially used by immunomodulatory-oriented thera-
pies. To further explore this proposition, additional studies on dynamics of host–microbial
interactions are recommended.
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