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Abstract: Epidermal growth factor receptor 2 (HER2) has been widely recognized as one of the
targets for bladder cancer immunotherapy. The key to implementing personalized treatment for
bladder cancer patients lies in achieving rapid and accurate diagnosis. To tackle this challenge, we
have pioneered the application of deep learning techniques to predict HER2 expression status from
H&E-stained pathological images of bladder cancer, bypassing the need for intricate IHC staining or
high-throughput sequencing methods. Our model, when subjected to rigorous testing within the
cohort from the People’s Hospital of Wuhan University, which encompasses 106 cases, has exhibited
commendable performance on both the validation and test datasets. Specifically, the validation set
yielded an AUC of 0.92, an accuracy of 0.86, a sensitivity of 0.87, a specificity of 0.83, and an F1 score
of 86.7%. The corresponding metrics for the test set were 0.88 for AUC, 0.67 for accuracy, 0.56 for
sensitivity, 0.75 for specificity, and 77.8% for F1 score. Additionally, in a direct comparison with
pathologists, our model demonstrated statistically superior performance, with a p-value less than
0.05, highlighting its potential as a powerful diagnostic tool.
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1. Introduction

Bladder cancer is currently the seventh most prevalent cancer globally and ranks 13th
in terms of cancer-related mortality. As per the statistics released by the American Cancer
Society for the year 2023, it is estimated that there will be around 82,290 new cases of bladder
cancer diagnosed in the United States. Consequently, bladder cancer is expected to become
the fourth most common cancer impacting men’s health in the country [1]. Platinum-
based chemotherapy is a first-line treatment option for locally advanced and metastatic
urothelial carcinoma. After undergoing first-line therapy, it becomes necessary for patients
experiencing disease progression to explore further diagnostic and treatment options.

Targeted therapy against human epidermal growth factor receptor 2 (HER2), also
known as tyrosine kinase receptor erbB-2, is one of the objectives within the scope of second-
line treatment. HER?2 is a transmembrane glycoprotein with vital membrane tyrosine kinase
activity, playing a critical role in controlling the growth and differentiation of epithelial
cells [2]. HER2 is a crucial cancer biomarker, as its activation plays a role in promoting
angiogenesis and tumor formation. Overexpression of HER2 has been observed in various
adenocarcinomas, spanning breast cancer, bladder cancer, ovarian cancer, endometrial
cancer, cervical cancer, lung cancer, esophageal cancer, and gastric cancer.

Studies have shown that HER2 plays an important role in the development and pro-
gression of urothelial carcinoma [3]. In the context of bladder urothelial carcinoma, the
proportion of HER2 overexpression (immunohistochemistry staining 2+ and 3+) ranges
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from 18.1% to 36% [4-6]. Overexpression of HER? is closely related to bladder cancer
progression and poor prognosis [7,8]. A phase II clinical study focused on locally advanced
bladder cancer and metastatic urothelial carcinoma that is HER2-positive (HER2 2+ and
3+) demonstrated the effectiveness of RC048-ADC treatment, with an evaluated overall
response rate of 51.2%. Additionally, there were extensions observed in both median
progression-free survival (PFS) and median overall survival (OS) [9]. Xu et al. reported a
case of a 68-year-old elderly male diagnosed with PD-LI (-), HER2 (3+), and renal impair-
ment. After the failure of first-line platinum-based chemotherapy, the patient underwent
treatment with RC48, a HER2-targeting antibody-drug conjugate, in combination with
pembrolizumab. Following this treatment regimen, the patient achieved a rapid partial
response upon the first assessment and was found to have extended progression-free sur-
vival during follow-up [10]. In conclusion, anti-HER2 antibody—drug conjugates (ADCs)
have shown promising efficacy and safety in treating patients with HER2 overexpressing
locally advanced or metastatic urothelial carcinoma. In the decision-making process for the
treatment of metastatic urothelial carcinoma and locally advanced urothelial carcinoma,
HER?2-targeted antibody-drug conjugates and immune checkpoint inhibitors have entered
the scope of international guidelines such as EAU and NCCN [11,12].

It is evident that the efficacy of the aforementioned treatment approaches hinges on
accurate identification of HER2 expression status. Although high-throughput sequencing
can be used to predict the HER2 expression status in bladder cancer tissue, it is mostly
employed for qualitative assessment and is costly. The staining of HER? in the context of
cancer diagnosis mainly relies on the immunohistochemistry (IHC) technique, a traditional
and widely used method for quantitative evaluation. However, IHC can be resource-
intensive in terms of both time and cost, and not all medical facilities may have the necessary
expertise and equipment to perform it effectively. Additionally, the interpretation of HER2
IHC staining is entirely dependent on the expertise of pathologists, despite the existence
of consensus guidelines for interpreting HER2 immunohistochemistry staining [13,14].
Nevertheless, this still relies on the knowledge and professional level of pathologists.
Numerous studies have indicated that HER2 expression is often low and exhibits high
heterogeneity, and this heterogeneity is correlated with disease-free survival (DFS) and
overall survival (OS) [15-19].

As is widely acknowledged, hematoxylin and eosin (H&E) staining is the fundamental
and standard technique for tissue and cell staining. Pathologists can visually assess and
categorize lesions by directly examining tissue slides. H&E staining is more efficient, cost-
effective, and reliable when compared to immunohistochemistry (IHC) staining. However,
it is important to note that, currently, pathologists cannot determine or predict HER2
expression solely through visual observation. Additional specific tests, such as IHC, are
required to accurately assess HER2 expression levels in tissues.

However, there is a growing body of evidence demonstrating that deep learning can
effectively capture features in H&E images that may not be easily identifiable by the human
eye. For instance, more recent research has also utilized CNN to predict the expression
of ER, progesterone receptor, and HER?2 in breast cancer from H&E-stained whole slide
images (WSIs) [20-22], as well as to predict PD-L1 expression [23].

Deep learning is a specialized field within artificial intelligence that harnesses ad-
vanced algorithms like convolutional neural networks (CNNs) to uncover intricate patterns
within vast datasets and fit data features through backpropagation. This enables the de-
velopment of sophisticated deep learning models applicable in diverse areas, such as
disease diagnosis, cancer target analysis, drug design and development, and survival
prediction [24-26]. In computer vision-guided pathological research, a lot of deep learning
models have demonstrated performance comparable to that of pathologists [27-29].

Yan et al. introduced a hierarchical deep multiple-instance learning framework that
has been applied to predict the HER2 expression status in bladder cancer tissues, as
annotated by pathologists within the TCGA dataset, which comprises 123 cases. The
model demonstrated impressive performance, with an area under the receiver operating
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characteristic curve (AUC) reaching a remarkable 0.91 [30]. Farahmand et al. used CNN
to predict HER?2 status in breast cancer on WSIs and their AUC reached 0.80 in five-fold
cross-validation [22]. Che et al. used deep learning to predict HER2 status in breast cancer
on WSIs and the accuracy of classification performance at patch-level on the test set was
73.49% [31]. Despite many similar studies having predicted HER2 expression and achieving
good performance in breast cancer and other tumors, the universality of the model has yet
to be demonstrated [32-34].

However, despite these advancements, there is currently no evidence suggesting that
deep learning-based analysis of H&E images can be used for quantitative prediction of
HER?2 expression status in bladder cancer. We decided to deliver an economical, swift, and
precise diagnostic solution that integrates seamlessly into digital pathology workflows. This
innovation can mitigate the heterogeneity associated with immunohistochemical staining,
paving the way for early and targeted treatment for those with HER2-positive status.

Hence, in this study, we developed a weakly-supervised deep learning model using a
clustering-constrained-attention multiple-instance learning (CLAM) framework to predict
HER?2 status from routine H&E-stained slides of bladder cancer from an RHWU cohort and
attempted to identify new histopathological features. The cohort was divided into training,
validation, and test sets. We used a five-fold cross-validation strategy to train the deep
learning model. The model’s performance was evaluated on the validation and test sets
using metrics such as sensitivity, specificity, accuracy, and area under the receiver operating
characteristic curve (AUC).

The structure of this study unfolds as follows. Initially, we set the stage by providing
the study’s context and reviewing the pertinent literature. Subsequently, we delineate
the materials and methodologies employed. Section 3 is dedicated to presenting and
elucidating the findings. In the penultimate part, we engage in a comprehensive discussion
of the research. Concluding the paper, we offer insights for future inquiries.

2. Materials and Methods
2.1. Patient Cohort

We received approval from the Clinical Research Ethics Committee of RHWU for our
retrospective study, adhering to the principles of the Helsinki Declaration, and obtaining
informed consent from all participants (Ethical Approval Number: WDRY2022-K077).
We collected H&E-stained pathology slides from a total of 115 patients who underwent
bladder tumor surgery at RHWU between the years 2020 and 2023. These H&E-stained
slides were meticulously prepared by skilled technicians and evaluated individually by
molecular pathologists. The inclusion criteria are as follows: (a) Only cases with a definitive
pathological diagnosis of bladder cancer, available pathological images or blocks, (b) known
HER?2 status, (c) no history of targeted or immunotherapy, and (d) clinical data regarding
age, gender, T stage, lymphovascular invasion, and histologic grade were included (Table 1).
The patient recruitment pathway is shown in Figure 1.

In the preparation of H&E-stained slides, meticulous attention is paid to ensuring that
the sections are intact, uniformly thin, and devoid of any knife marks, tremors, wrinkles,
folds, or bubbles. There should be no excess glue, and the slides must be free from
contamination. The sections should exhibit excellent transparency, with a sharp contrast
between the nucleus and cytoplasm, and a balanced red-blue coloration. During the
scanning process, it is imperative to adhere strictly to the scanner’s manual for proper
operation. Each whole slide image (WSI) must be meticulously checked, named, and
catalogued to ensure that the post-scanning WSI data is in complete alignment with the
corresponding patient case, guaranteeing accuracy and consistency.
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Table 1. Patients included and excluded in the RHWU cohort.
Cohort RHWU
Biomarker HER2
Total Patients n %
Total 115 100
Include From Analysis 106 922
Exclude From Analysis 9 7.8
Include From Analysis n %
Total Patients 106 100
HER2(+) 70 66
HER2(—) 36 34
Training Set 64 60.4
Test Set 21 19.8
Validation Set 21 19.8
Exclude From Analysis n Y%
Total 9 100
Poor Image Quality 1 1.1
Suboptimal Bladder Tumor Tissue Sampling 5 55.6
Incomplete Pathological Information 3 33.3
115 candidate bladder cancer patients from
RHWU Cohort
5 cases with suboptimal bladder
tumor tissue sampling
3 cases with incomplete
pathological information
1 case with poor image quality
106 bladder cancer patients Training | Validation Test

Figure 1. Description of pathways to recruit patients from the RHWU cohort.

Immunohistochemistry staining was employed to determine the HER? status and the
score was performed according to the current ASCO/College of American Pathologists
guidelines for scoring HER2. An IHC staining score of 3+ or 2+ was deemed positive, while
patients with scores of 0 or 1+ were classified as negative. Sample images to the dataset
description can be founded in the Supplementary Materials.

2.2. WSI Preprocessing

We enlisted the expertise of molecular pathologists to thoroughly assess tissue pathol-
ogy slides from 115 bladder cancer patients. Following the evaluation, nine cases were
excluded from the RHWU cohort due to various reasons, including poor image qual-
ity (1/9), suboptimal bladder tumor tissue sampling (5/9), and incomplete pathological
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information (3/9). The remaining qualified tissue pathology slides were then selected
for scanning.

After careful evaluation by molecular pathologists, each of the 106 tissue pathology
slides from bladder cancer patients was scanned into a corresponding WSI in .svs format
using a digital scanner (KF-PRO-020, KFBIO Co., Ltd., Ningbo, China), and carefully
reviewed by pathologists. Subsequently, all WSIs underwent meticulous inspection before
being securely stored in an external storage system for further analysis.

2.3. WSI Segmentation

After importing the 106 WSIs in .svs format at 20x magnification, our initial step
involved segmenting the boundaries of bladder cancer tissues and identifying natural pores
on the tissue pathology slide images. Subsequently, we divided the digital tissue pathology
slides into patches and filtered out blank patches using color thresholding techniques.

All patches are transformed into a low-dimensional feature embedding set, which is
then fed into the attention network. Feature extraction was performed by the ResNet-50
model with ImageNet pre-training weights. Thus, 1024 features could be generated for
each patch through the feature extractor.

2.4. Model Development

CLAM is an advanced weakly supervised deep learning method that leverages atten-
tion learning to automatically identify subregions with significant diagnostic value [35].
By employing instance-level clustering on the identified representative regions, it effec-
tively constrains and refines the feature space, leading to precise classification of WSIs [28].
CLAM can classify unannotated WSIs by using an attention-based pooling function. Here,
we show the whole process of the whole research work (Figure 2).

(b) Image Scanner

Whole Slide
W
S - > S o e
: 2 : ®
@
£
a) Expert .
f‘\rznot:?\?or . (d) WSI Patching
Pathologist (c) Segmentation and Normalization

(9) Interpretability and
Analysis

and ROI

(f) Attention
Branch

(e) Feature
Extraction

I

False Positive Rate

Figure 2. The whole process of the research workflow is shown. (a) Pathologists annotate the
pathological slides of bladder cancer one by one; (b) scan the histopathological slides into digital
pathological sections and transfer them to external storage; (c) segment the digital pathological slides
and mark ROI (green line is tissue boundary, blue line is holes); (d) WSI patching and normalization;
(e) feature extraction; (f) attention branch; (g) heatmap visualization and analysis.
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To train the deep learning model, we used a five-fold cross-validation strategy for
repeated validation to prevent overfitting. Five-fold cross-validation stands as a powerful
and reliable method for gauging a model’s ability to generalize. It achieves this by seg-
menting the dataset into five equal parts, utilizing one part as the validation set in each
round while the other four parts constitute the training set. This approach ensures a more
consistent and dependable assessment of the model’s performance, confirming its stability
and efficacy across various data subsets. The Adam optimizer with an initial learning rate
of 1 x 10~% and £2 weight decay of 1 x 10> was used to update the training weights and
parameters. The remaining hyperparameters were set to 3; of 0.9 and 3, of 0.999. The
input feature dimension, hidden layer dimension, and dropout rate were set to 1024, 256,
and 0.25, respectively. The loss function was selected using a smooth top-1 SVM loss. The
maximum training epoch was set to 200, and when the loss of SBLNP did not change for
20 consecutive epochs, the early stopping strategy was used to stop training and saved the
best model for nest validation.

2.5. Model Predictions by Attention Heatmap

The attention network assigned an attention score to each patch, indicating their rela-
tive importance in the diagnosis of the entire slide. These attention scores were converted
into percentile scores and scaled to between 0 and 1 (1 being the highest attendance and
0 being the lowest). A diverging color map was used to convert normalized scores to
RGB colors and was displayed at the top of the respective spatial locations in the slide to
visually identify and explain areas of high interest shown in red (positive evidence, high
contribution to model predictions) and low interest shown in blue (low contribution to
model predictions relative to other patches). Once the training was completed, the model
could identify feature-rich regions and perform classification at the WSI level.

2.6. Statistical Analysis

In our study, we collected a total of 106 histopathological slides along with their
corresponding scanned WSIs. These samples were then divided into three sets: the training
set, the testing set, and the validation set, with a distribution ratio of 3:1:1, respectively.
To assess the performance of our model, we employed accuracy, sensitivity, specificity,
F1 score, ROC curves, and calculated the AUC (area under the curve) values among
other evaluation metrics. A two-sided McNemar’s test was performed to compare the
differences in accuracy between the optimal deep learning model and the pathologists.
These metrics allow us to gauge the accuracy and effectiveness of our model’s predictions
in distinguishing HER2 overexpression. A 95% confidence interval (CI) was calculated
using the five-fold cross-validation strategy. p < 0.05 was considered statistically significant.
These analyses were conducted using Python version 3.10.4.

3. Results
3.1. Patient Characteristics

After excluding nine cases with poor image quality (one out of nine), inadequate
bladder tumor tissue sampling (five out of nine), and incomplete pathological information
(three out of nine), we ultimately included 106 patients and their corresponding 106 tissue
pathology slides in the Renmin Hospital of Wuhan University (RHWU; Wuhan, Hubei,
China) cohort. We incorporated WSIs from 106 bladder cancer patients for training pur-
poses, dividing them into three sets based on a ratio of 3:1:1, namely the training set, test
set, and validation set, respectively. Table 2 displays the characteristics of the included
patients in the RHWU cohort.
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Table 2. Clinical, biological, and pathological characteristics of bladder cancer patients included in
the RHWU cohort.

RHWU (N = 106)

Age (years) 68 (32, 90)
Gender
Female 15 (14.15%)
Male 91 (85.85%)
pT stage
pTis 2 (1.90%)
pTa 48 (45.28%)
pT1 23 (21.70%)
pI2 21 (19.81%)
pT3 8 (7.55%)
pT4 4 (3.77%)
pN stage
pNO 97 (91.50%)
pN1-3 9 (8.50%)
pM stage
pMO 105 (99.06%)
pM1 1 (0.94%)
pMx 0 (0%)
pTNM stage
Stage Oa 57 (53.77%)
Stage 0Ois 2 (1.89%)
Stage I 23 (21.70%)
Stage I 20 (18.87%)
Stage III 3 (2.83%)
Stage IV 1 (0.94%)
Histologic grade
High grade 61 (57.55%)
Low grade 45 (42.45%)
Missing 0 (0%)
Lymphovascular invasion
No 31 (29.21%)
Yes 20 (18.87%)
Missing 55 (51.92%)

3.2. Performance of the Deep Learning Model

We have identified sensitivity, specificity, accuracy, and AUC as the pivotal indicators
for assessing the performance of our model. Sensitivity, recognized as the True Positive Rate
(TPR), evaluates the model’s proficiency in accurately detecting HER2-positive expressions.
Conversely, specificity, or the True Negative Rate (INR), quantifies the model’s effectiveness
in identifying HER2-negative cases. The accuracy metric offers an overview of the model’s
overall success in making correct predictions. The F1 score is the harmonic mean of
precision and recall, commonly used to evaluate the performance of models in classification
problems. Within our validation set (N = 21), the model demonstrated a sensitivity of 0.87
and a specificity of 0.83. However, in the test set (N = 21), the sensitivity dropped to 0.56,
with the specificity standing at 0.75, indicating areas for improvement and underscoring
the importance of further refinement. F1 scores for the validation set and the test set are
86.7% and 77.8%, respectively. (Table 3)

Out of the total 106 WSIs, the model achieved AUC of 0.92 and accuracy of 0.86 in
the validation set; meanwhile, it achieved AUC of 0.88 and accuracy of 0.67 in the test set.
(Table 3 and Figure 3).
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Table 3. Performance of CLAM model to predict HER2 expression.
Cohort Sensitivity Specificity Accuracy AUC
(95%CI) (95%CI) (95%CI) (95%CI)
RHWU-Validation 0.87(0.63,0.95) 0.83(0.53,0.87) 0.86(0.74,0.94) 0.92(0.86, 0.94)
RHWU-Test 0.56 (0.45,0.76)  0.75(0.40,0.80) 0.67 (0.55,0.86) 0.88 (0.82,0.92)
(A) B)
1.0 -1 1.0 4 =1
0.8 4 ’,”, 0.8 ,”,
§ 0.6 1 ,/' g 0.6 1 ,/’
% 0.4 1 /’, E 0.4 /”
= = L
0.2 4 ol 0.2 1 //
,/’ ROC curve (AUC = 0.92) ,/' ROC curve (AUC = 0.88)
0.0 . . . . 0.0 ‘ . - :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

False Positive Rate False Positive Rate

Figure 3. ROC curves of the model in the test set and validation set. (A) ROC curve of the model in
the validation set. (B) ROC curve of the model in the validation set. Orange solid line is the actual
ROC curve, indicating the performance of the classification model. It shows the model’s performance
at different thresholds by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR).
Blue dashed line: This is the diagonal line, representing the ROC curve of a random guess classifier.
In this case, the model’s AUC (Area Under the Curve) should be 0.5, indicating that the model has no
predictive ability and is equivalent to random guessing.

3.3. Human—Machine Competition

To affirm the practicality and efficacy of the deep learning model within actual medical
environments, and to bolster the generalizability of our model, we have meticulously
implemented an integrative validation protocol. We commenced by adopting the RHWU-
Test dataset as our validation set, juxtaposing the model’s diagnostic predictions with the
expert evaluations provided by seasoned pathologists. The accuracy metric was selected as
the pivotal statistical measure to assess the model’s performance, ensuring a robust and
reliable evaluation. Two pathologists were invited to judge the 21 H&E slides in the test set
one by one, back-to-back. The results showed that our optimal model outperformed the two
senior pathologists, whose accuracy was 0.62 and 0.43, respectively (both p-values < 0.05)
(Table 4).

Table 4. Performance of HER2 expression predictions by pathologists and optimal model.

Cohort Accuracy p-Value
Optimal Model RHWU-Test 0.86 -
Pathologist A RHWU-Test 0.62 <0.01
Pathologist B RHWU-Test 0.43 <0.001

3.4. Visualizing Deep Learning-Based Predictions

Through the CLAM model, we were able to map the HER2 molecular feature data
of bladder cancer onto its pathological image’s spatial locations, thus displaying it in a
heatmap. Our findings suggested a strong correlation between the intensely activated
red regions in the heatmap and the overexpression of HER2 (Figure 4). Through heatmap
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(A)

visualization analysis, the attention scores obtained by the original tumor region were
higher than those obtained by the surrounding microenvironment tissue region, suggesting
that the tumor region might contain more critical predictive information.

(B)

Figure 4. Heatmap visualization.(A) Outline of bladder cancer on WSI. (green line is tissue boundary,
blue line is holes). (B) Heatmap visualization of bladder cancer. The red region indicates areas with
higher model activation. These are regions where the model identifies patterns associated with HER2
overexpression.

4. Discussion

With the advent of precision medicine, the prospects for molecular targeted therapies
have become increasingly promising [36,37]. Through in-depth research into the mecha-
nisms of bladder cancer, HER2 has emerged as a significant biomarker for this disease [38].
In this study, our aim was to explore whether the expression of HER2 could be predicted
from H&E-stained images using a deep learning-based image analysis model. We collected
a dataset of 106 H&E-stained images from patients with bladder cancer, forming the RHWU
cohort. Leveraging the CLAM model, we successfully analyzed and predicted HER2 expres-
sion in bladder cancer H&E images with 0.67 mean accuracy. Our research demonstrated
that deep learning-based image analysis predictive models can achieve accurate expression
predictions of molecular biomarkers.

Both high-throughput sequencing (HTS) and IHC can be used to detect HER2 overex-
pression in bladder cancer [39,40]. HTS has high technical requirements, high economic
cost, and lack of universality. Although IHC is almost universal, patients still face sig-
nificant time and economic costs. The deep learning model trained in this study only
uses WSIs as the analysis object, which can be easily obtained in the surgical environment
and popularized in economically underdeveloped and remote areas. Compared with the
former, our model significantly reduces the workload of the pathologist and the pressure
of the patient, which is more conducive to the decision of the clinician and the benefit of
the patient.

The CLAM model we used showed decent performance in identifying HER2? in the
H&E images of bladder cancer. The patients with bladder cancer included in this study
included most TNM stages and almost all pathological stages, which also indicates the
universality of our findings. However, the inclusion of cases in each pathological stage is
not balanced, which may introduce differences between groups.

In the segmentation process of whole slide images (WSIs), we opt not to initially
preprocess the WSIs to eliminate the background. Instead, we segment the WSIs into
256 x 256-pixel patches tailored for convolutional neural networks. We then refine our
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dataset by employing color thresholding to remove blank patches and proceed with feature
extraction using the ResNet-50 model.

ResNet-50 stands out as a sophisticated deep learning architecture with a multitude of
compelling benefits: It surmounts the degradation challenge in deep network training via
its residual learning framework, thus boosting training efficiency and curbing the vanishing
gradient issue. It adeptly learns a spectrum of feature representations—from rudimentary
to sophisticated—enhancing the model’s capacity for generalization. The architecture’s
modular and scalable design permits customization to meet the demands of tasks with
varying complexities by simply adjusting the layer depth. The availability of numerous pre-
trained models expedites its application in transfer learning across a spectrum of computer
vision scenarios. Moreover, ResNet-50"s computational prowess renders it both swift and
pragmatic for real-world deployment. These attributes render ResNet-50 exceptionally
versatile, making it well-suited not only for image segmentation but also for a diverse array
of visual tasks including object detection and image classification.

During the training of the CLAM model, we utilized the Adam optimizer with an
initial learning rate of 1 x 10~* and an L2 weight decay of 1 x 107> to enhance the model’s
generalization and prevent overfitting. The 31 and (32 parameters of the Adam optimizer
were set to their default values of 0.9 and 0.999, respectively, which are generally suitable
for a variety of tasks. The input feature dimension and hidden layer dimension were set
to 1024 and 256, respectively, ensuring that the model has sufficient capacity to capture
data characteristics without becoming overly complex. The dropout rate was set to 0.25 to
further mitigate overfitting. A smooth top-1 SVM loss function, suitable for classification
tasks, was chosen for the loss function. During training, we established a maximum of
200 epochs and implemented an early stopping strategy if the validation loss did not
improve for 20 consecutive epochs, to save the best model and avoid excessive training.
The comprehensive setting of these hyperparameters aims to achieve an optimal balance
between model performance and generalization capability, although further adjustments
may be necessary based on the specific dataset in practical applications.

It was found that HER2 was weakly expressed in bladder cancer from the collected
cases of bladder cancer, so the quality of immunohistochemical staining determined the
regimen of neoadjuvant chemotherapy or targeted therapy for patients. The use of deep
learning techniques to mine more detailed features as objective criteria is potentially
beneficial for patients.

The model demonstrated a sensitivity and specificity of 0.87 and 0.83, respectively, on
the validation set. However, the sensitivity in the test set stands at 0.56, with a specificity of
0.75, which underscores the need for further enhancement in the model’s capabilities and
highlights the potential risk of missed diagnoses. This discrepancy indicates that the model
has considerable space for improvement, which we attribute to the use of a single-center
sample for training.

Furthermore, Yan et al. introduced a hierarchical deep multiple-instance learning
framework that has been applied to predict the HER2 expression status in bladder cancer
tissues and achieved an AUC of 0.91 [30]. Loeffler et al. have illustrated that deep learning
possesses the capability to predict the mutation status of the fibroblast growth factor
receptor 3 (FGFR3) directly from pathological images of bladder cancer, and they identified
FGFR3 mutations with an AUC score of 0.701 [41]. But, compare to the aforementioned
study, where the expression status of HER2 and FGFR3 was quantified, our research adopts
a qualitative approach. Moreover, while their study necessitated the labor-intensive process
of annotating bladder cancer tissues, our model eliminates the need for such a procedure,
streamlining the diagnostic process.

From a clinical standpoint, our study is poised to alleviate the workload of pathologists,
reducing the time and financial burden associated with traditional IHC testing. This
streamlined approach has the potential to shorten treatment cycles, leading to improved
patient outcomes. Furthermore, during the diagnosis phase, our model can serve as a
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valuable support, aiding clinicians in making well-informed decisions and enhancing the
overall quality of care for bladder cancer patients.

There are still some limitations to this study. Our research data is derived solely from
a single clinical center, and the size of our cohort is relatively small. This can impact the
accuracy and reproducibility of the results and may limit the applicability of the findings
in clinical practice. In addition, there are still some out-of-focus patches mixed in, affecting
the performance of the model.

In the future, we envision the inclusion of multi-center studies with large sample
sizes in the research focused on HER2 overexpression in bladder cancer. This approach
would enable us to achieve early and accurate diagnosis of HER2 overexpression in bladder
cancer patients, leading to the development of personalized treatment plans and guiding
clinical decisions effectively. Moreover, we seek active involvement of pathologists in
the research projects, as their expertise can significantly contribute to quality control and
overall research improvement. Through the integration of clinical data, radiomics, and
gene-related information using multi-instance learning, we anticipate the creation of robust
and reliable clinical support models.

5. Conclusions

We used deep learning to predict HER?2 status from histopathological images of bladder
cancer. Next, we hope to expand the research by conducting a multi-center, large-sample
study to reduce overall patient stress and accelerate personalized care.
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