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Abstract: Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have
similar transmission characteristics, and it is very difficult to distinguish them clinically. With the
development of information technologies, novel opportunities have arisen for the application of
intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional
study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants
with an influenza virus infection. In total, 10 hematochemical variables were used to construct an
automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained
by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and
neural network models. Alternatively, an automated model convincingly outperformed other models
with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model,
a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions:
The application of automated machine learning in clinical practice can contribute to more objective,
accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children.
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1. Introduction

Since December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
has been causing an ongoing global pandemic. During this period, various pharmacological
and non-pharmacological measures have been applied to suppress the virus. Among the
non-pharmacological measures, the most important measure was the use of facial masks to
help prevent the spread of the virus.

Increased public health surveillance, including social distancing, led to the significant
suppression of other respiratory infections [1,2]. Today, we witness the relative relaxation
of the aforementioned epidemiological measures. Consequently, children are more likely
to fall ill with influenza A and B viruses and have more severe clinical symptoms, and
the need for their hospitalization is more frequent. This phenomenon has been labeled
“epidemiological debt” [3,4].

The influenza virus and SARS-CoV-2 have similar transmission characteristics: direct
human-to-human contact via airborne droplets. Moreover, both infections present the same
initial clinical picture: fever, malaise, cough, rhinitis, headache, etc. For these reasons, it is
very difficult to distinguish them clinically [5]. The gold standard in virological diagnostics
is the molecular detection of the viral genome via a polymerase chain reaction (PCR)
test. However, the disease caused by a new strain of beta coronavirus (COVID-19) has
significantly reduced the capacity of the health systems. The time required to obtain results
is often prolonged, especially in developing countries [6]. Laboratory and clinical staff
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are overburdened, and the financial system is notably affected. Healthcare workers are
faced with difficulty of quickly triaging patients until the first molecular diagnostics results
arrive [7].

Due to the need for fast and, above all, affordable diagnostics during the COVID-19
pandemic, a renewed interest in machine learning algorithms within the frame of health-
care (systems) occurred [8]. Machine learning is the systematic study of algorithms and
systems that improve their knowledge or performance with experience. Multidisciplinary
in nature, machine learning draws on concepts and results from various fields, some of
which include statistics, artificial intelligence, information theory, biology, cognitive science,
and optimization theory. The impact of applying these approaches in medicine is so strong
that the question arises whether computers will one day be able to replace staff [8,9].

The aim of this study was to determine if baseline hematochemical parameters could
aid in achieving a differential diagnosis between SARS-CoV-2 and influenza virus infection
in infants via an automated machine learning approach.

2. Materials and Methods

The study was conducted at the Institute for Children and Youth Health Care of
Vojvodina, Novi Sad, Serbia. This cross-sectional study included a total of 268 infants
treated for respiratory diseases in the period from June 2022 to January 2023. Of the infants,
133 were diagnosed with SARS-CoV-2 infection and 135 were diagnosed with influenza
virus infection. Detection of the SARS-CoV-2 virus was performed via PCR technique, while
the lateral immunochromatography method was used to detect the influenza virus antigen
(CerTest, Biotec, Zaragoza, Spain). The criteria for exclusion from the study included:
missing data, chronic and hematological diseases, and malignancy.

2.1. Data Acquisition

Data on baseline hematochemical parameters were collected on the day of admis-
sion: a complete blood count with differential, AST, ALT, LDH, and CRP. The samples for
hematological analyses were collected using violet-topped evacuated tubes (0.5 mL) with
ethylene-ediaminetetraacetic acid dipotassium salt dehydrate (K2EDTA) as a blood-clotting
inhibitor (Becton Dickinson, Franklin Lakes, NJ, USA), while the samples for biochemical
analyses were collected using yellow-topped evacuated tubes (0.5 mL) with clot activator
(Becton Dickinson, Franklin Lakes, NJ, USA). The values were tested on the XN-1000 hema-
tology analyzer (Sysmex, Kobe, Hyogo, Japan) and the DxC 700 AU chemistry analyzer
(Beckman Coulter, Brea, CA, USA).

2.2. Baseline Statistical Analyses

Descriptive and inferential statistical methods were applied for data processing using
the Statistical Package for the Social Sciences (SPSS) software (version 26.0; IBM Corpora-
tion, Armonk, New York, NY, USA). For discrete and continuous variables, distribution
normality was estimated by the Shapiro–Wilk test. Between-group differences were ana-
lyzed using the independent samples t-test and Mann–Whitney U test. The significance
level was set at 0.05.

2.3. Machine Learning Algorithms

As a part of data preprocessing, all outliers were identified by graphing the dataset
(asterisks in boxplots) and removed from further analysis. Second, Spearman’s correlation
was used to identify highly correlated variables. Parameters with correlation coefficients
whose magnitudes were between 0.4 and 1.0 were excluded. A correlation heatmap
was used to visualize the strength of relationships between the parameters (Figure S2).
Third, min-max normalization was performed in order to put all scaled data in the range
(0, 1). Thereafter, the Waikato Environment for Knowledge Analysis (WEKA) open-source
software (version 3.8.6; University of Waikato, Hamilton, New Zealand) [10] was used to
create the following machine learning models: support vector machine, random forest, k-
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nearest neighbors, logistic regression, neural network, and an automated machine learning
model. The total number of instances, i.e., the reduced number of attributes in this model,
was set to 10. The target attributes were SARS-CoV-2 and influenza. A 10-fold cross-
validation was used to check the accuracy of the model. The performance of each algorithm
was evaluated by calculating the accuracy, sensitivity, specificity, positive predictive value,
and negative predictive value from the confusion matrix, i.e., a table of predicted and actual
values of a classifier. An automated algorithm was created employing a state-of-the-art
Bayesian optimization method, thereby solving the combined algorithm selection and
hyperparameter optimization (CASH) problem, with a memory limit of 1024 MB, batch
size 100, and 123 seeds.

2.4. Ethical Approval Statement

The study was approved by the Ethics Committee of the Institute for Child and Youth
Healthcare of Vojvodina (22 July 2022; No. 3280-2).

3. Results

Based on the exclusion criteria, 268 infants were included in the study (Table 1). All
infants were treated at the Institute for Children and Youth Health Care of Vojvodina, Novi
Sad, Serbia, in the period from June 2022 to January 2023. The first group (COVID group,
n = 133) consisted of infants with a SARS-CoV-2 infection. The median age of the group
was 3.6 months, with a female share of 39.4%. The second group (influenza group, n = 135)
consisted of infants with an influenza A or B infection. The median age of the group was
4 months, with a female share of 54.3%.

Table 1. Demographic and laboratory data within groups.

Variable COVID Group
(n = 133)

Influenza
Group (n = 135) Overall (n = 268) p-Value

Female/Male (n) a 63/70 69/66 132/136 0.094

Age (m) b 3.6 (2.15–5.4) 4 (2.6–7.8) 3.7 (2.2–6.4) 0.298

WBC (109) c 9.1 ± 5.1 12 ± 4.8 10.5 ± 5.1 0.024

RBC (1012) c 3.8 ± 0.6 4.1 ± 0.5 3.9 ± 0.6 0.058

MCHC (g/L) c 344 ± 18 344 ± 12 344 ± 15 0.871

RDW (%) b 11.8 (10.9–13.2) 11.8 (10.5–12.7) 11.8 (10.7–12.9) 0.333

PLT (109) b 411 (340–523) 366 (331–448) 384 (331–492) 0.222

MPV (fL) c 7.7 ± 1 7.4 ± 0.9 7.5 ± 1 0.296

EOS# (109) b 0.09 (0.06–0.13) 0.14 (0.08–0.3) 0.1 (0.06–0.23) 0.06

AST (µkat/L) b 0.79 (0.7–0.95) 0.7 (0.61–0.85) 0.74 (0.67–0.91) 0.076

LDH (µkat/L) b 4.49 (4.31–5.08) 5.02 (4.33–5.78) 4.73 (4.32–5.55) 0.163

CRP (mg/L) b 2.2 (1–10.3) 2.2 (0.7–5.8) 2.2 (0.7–8.5) 0.971
a Values are numbers; Chi-square test. b Values are median (interquartile range: Q1–Q3); Mann–Whitney U
test. c Values are mean ± standard deviation; independent samples t-test. WBC—white blood cells; RBC—red
blood cells; MCHC—mean corpuscular hemoglobin concentration; RDW—red blood cells distribution width;
PLT—platelet; MPV—mean platelet volume; EOS#—absolute eosinophil count; AST—aspartate aminotransferase;
LDH—lactate dehydrogenase; CRP—C-reactive protein; Value in bold is statistically significant.

3.1. Clinical Laboratory Features

After excluding laboratory parameters with a Spearman’s rank correlation coefficient
over 0.4, a total of 10 variables were included in the analysis: WBC, RBC, MCHC, RDW,
PLT, MPV, EOS#, AST, LDH, and CRP (Figure S1). Statistically significant differences,
determined using baseline statistical analysis, were observed only for the WBC parameter
(p = 0.024). Infants with an influenza virus infection had higher values (12 ± 4.8 × 109/L)
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than infants with a SARS-CoV-2 infection (9.1 ± 5.1 × 109/L). Since a single parameter
is not specific enough to distinguish between SARS-CoV-2 and influenza virus infections
in infants, a set of 10 parameters were further employed to create and compare various
machine learning models. These were able to reveal hidden relationships that existed
among complex datasets using a multivariate/multiparameter approach.

3.2. Machine Learning Algorithm Performances

A comparison of six machine learning algorithms was carried out based on the stan-
dard evaluation metrics: sensitivity, specificity, positive predictive value, and negative
predictive value (Table 2). An automated model convincingly outperformed other models,
with an accuracy of 98.4%. The support vector machine, random forest, k-nearest neighbors,
logistic regression, and neural network models demonstrated an accuracy ranging from
53.8% to 60.7%. Furthermore, a comparison of the machine learning algorithms based on
their F1-score, an additional measure of a test’s accuracy in the statistical analysis of binary
classification, was performed (Figure S2). The automated machine learning model achieved
the highest F1-score of 98.4%. Using a 10-fold cross-validation to evaluate the performance
gains, the automated algorithm proposed a random tree model, i.e., a randomization-based
ensemble method, as the most suitable classification model for the given dataset.

Table 2. Machine learning classifiers for differential diagnosis between pediatric SARS-CoV-2 and
influenza virus infection.

Classifier Accuracy (%) Sensitivity (%) Specificity (%)
Positive

Predictive Value
(%)

Negative
Predictive Value

(%)

Automated machine learning 98.4 96.9 100 100 96.7

Support vector machine 60.7 59.4 62.1 61.0 60.4

Random forest 59.0 59.4 58.6 58.9 59.1

k-nearest neighbors 55.9 53.1 58.6 56.2 55.6

Logistic regression 53.8 59.4 48.3 53.4 54.3

Neural network 53.8 59.4 48.3 53.4 54.3

4. Discussion

Th early recognition of SARS-CoV-2 infection remains a diagnostic challenge, espe-
cially in pediatrics. In order to begin treatment and prevent the spread of infection, it is
necessary to identify positive patients as quickly as possible [11,12]. With the development
of information technologies, the possibilities for the application of intelligent software
systems in disease diagnosis and patient triage increase [8,9].

In this study, an automatic machine learning algorithm was applied. This type of data
processing is particularly suitable for researchers who are not data scientists and want
to use machine learning methods in their research. Automatic machine learning enables
the automatic selection of the best algorithm and its automatic optimization based on
hyperparameter settings. Specifically, Auto-WEKA considers various learning algorithms
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The use of machine learning processing on routine laboratory tests as input datasets
was the main focus of many research studies during the COVID-19 pandemic [16–23]. For
example, Caires Silveira E. [16] employed the XGBoost classifier to develop a machine
learning model for the prediction of COVID-19 from hemogram results. The predictive
model obtained an accuracy of 80%, with a sensitivity of 75.6% and a specificity of 82%.
The variables with the greatest influence on the predictive decision were BASO#, EOS#,
and WBC. Kukar et al. [17] used a routine blood test results dataset of 160 SARS-CoV-2
positive patients and 5333 control patients with other non-COVID-19 infections to develop
a machine learning model, thereby achieving a sensitivity of 81.9% and a specificity of
97.9%. In a study conducted by Babaei Rikan et al. [23], routine laboratory blood tests were
used to construct a deep neural network model as a supplementary tool for diagnosing
COVID-19 with an accuracy of 92.11%.

In the proposed study, the following data from the laboratory findings of patients were
used as input variables: a complete blood count with differential, AST, ALT, LDH, and CRP.
After screening out highly correlated variables (Spearman’s rank correlation coefficient over
0.4), a sum of 10 variables was obtained: WBC, RBC, MCHC, RDW, PLT, MPV, EOS#, AST,
LDH, and CRP, and included in further data processing. While common machine learning
algorithms, such as the support vector machine, random forest, k-nearest neighbors, logistic
regression, and neural network algorithms, achieved an accuracy between 53.8% and 60.7%,
the automated machine learning tool applied in this study constructed a model that reached
an accuracy of 98.4%.

Traditional machine learning methods are challenging and time-consuming. Auto-
mated machine learning makes it easy to build and use machine learning models in the
real world by automatically testing and selecting the best algorithm on raw data. This is
why researchers currently embrace this approach in data curation [24–26]. For example, a
study by Ikemura et al. [24] aimed to use an automated machine learning approach to train
various demographic and laboratory variables in order to predict mortality in COVID-19
patients. Tran et al. [25] evaluated the analytical performance of the MALDI-TOF (matrix
assisted laser desorption/ionization-time of flight) mass spectrometry method for screening
COVID-19 patients in which output data were further analyzed by an automated machine
learning approach. In a study conducted by Papoutsoglou et al. [26], an automated machine
learning approach was employed to analyze proteomic, metabolomic, and transcriptomic
measurements in order to discriminate severe from non-severe COVID-19 patients and to
identify COVID-19 patients from both those having another acute respiratory condition
and virus-free individuals.

Automated machine learning is a powerful tool which can help medical professionals
to detect diseases, i.e., COVID-19, at an early stage. It has the potential to provide a more
accurate result. Additionally, it saves time and money, which is important for facility
management and, most importantly, for saving lives.

Supported by the above-mentioned authors’ evidence and similar clinical laboratory
studies, it is safe to assume that automated machine learning is an effective and informative
tool for generating preliminary clinical decisions regarding COVID-19.

However, there are certain limitations of the proposed approach and some practical
considerations to be considered for future research. First, this was a single-center study.
Therefore, only a limited number of children could be included. Second, all pediatric
patients in this study belonged to a European population. Additional multinational and
multiethnic studies could provide insight into the performance of the developed model
on a global level. Third, all children with underlying conditions were excluded from this
study, making its clinical applicability for children with coinfections limited.

5. Conclusions

Machine learning is shown to be a powerful tool that plays a significant role in
medicine and medical diagnostics. Although the solutions are still not at a high enough
level to be able to replace expert assessment, their application in clinical practice can
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contribute to a better, more objective, and efficient diagnosis of SARS-CoV-2 and influenza
virus infections in children.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/children10050761/s1, Figure S1: Correlation heatmap. Figure S2:
Comparison of different machine learning algorithms based on their F1-score.
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