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Abstract: We study power exchange options written on zero-coupon bonds under a stochastic string
term-structure framework. Closed-form expressions for pricing and hedging bond power exchange
options are obtained and, as particular cases, the corresponding expressions for call power options
and constant underlying elasticity in strikes (CUES) options. Sufficient conditions for the equivalence
of the European and the American versions of bond power exchange options are provided and
the put-call parity relation for European bond power exchange options is established. Finally, we
consider several applications of our results including duration and convexity measures for bond
power exchange options, pricing extendable/accelerable maturity zero-coupon bonds, options to
price a zero-coupon bond off of a shifted term-structure, and options on interest rates and rate spreads.
In particular, we show that standard formulas for interest rate caplets and floorlets in a LIBOR market
model can be obtained as special cases of bond power exchange options under a stochastic string
term-structure model.

Keywords: stochastic string process; term-structure model; bond option pricing; Malliavin calculus

1. Introduction

Since the publication of the seminal paper of Margrabe (1978), exchange options, i.e.,
options to exchange one risky asset for another, have attracted the interest of derivatives
researchers. Some examples are Carr (1995); Li (2008); Cheang and Chiarella (2011) and
Chen and Suchanecki (2011). A particular class of exchange options that has generated spe-
cial interest is that of power exchange options, namely, exchange options in which the assets
to be exchanged are raised to different powers. Power exchange options are introduced
in Blenman and Clark (2005b) which is an extension of their earlier work on options with
constant underlying elasticity in strikes (CUES) (Blenman and Clark (2005a)). Subsequently,
several studies have extended power exchange options to include additional risk factors
in the underlying securities, such as correlated jump risk (Wang (2016)), counterparty risk
(Wang et al. (2017)), and stochastic volatility (Xia (2019); Lee et al. (2020); Yue et al. (2021));
different mathematical tools, such as the Shanon wavelet inverse Fourier technique (Huang
et al. (2022)) and uncertain fractional differential Equations (Yang and Zhu (2021)); or
its application to exotic derivatives such as geometric Asian options (Zhang et al. (2018);
Shokrollahi (2018)). Nevertheless, to the best of our knowledge, there has been no contribu-
tion in the literature extending power exchange options to the case in which the assets to
be exchanged are zero-coupon bonds with different maturities. In the present paper we
will consider such options, referring to them as bond power exchange options.

Bond power exchange options cannot be priced directly under the standard framework
of Blenman and Clark (2005a) because it is valid only for assets whose values depend
solely on the current time. In the case of bond power exchange options the values of
the underlying assets (zero-coupon bonds) depend on both the current time and on the
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maturities of the bonds. Thus, in order to price these options, we need a model of the
dynamics for bond prices derived from the term structure of interest rates (TSIR).

A very general continuous-time model for the TSIR, the stochastic string model, is intro-
duced in Santa-Clara and Sornette (2001) and reformulated in Bueno-Guerrero et al. (2015).
Bueno-Guerrero et al. (2016) prove that the stochastic string model generalizes the
Heath et al. (1992) model, even in its infinite-dimensional version. As most of the standard
continuous-time models for the dynamics of the TSIR are particular cases of the HJM model,
and as the HJM model is a particular case of the stochastic string model, we will adopt the
stochastic string model as our model for pricing bond power exchange options.

The key feature of stochastic string term structure models is that the source of random-
ness generating the dynamics of the forward curve, the stochastic string process, is not the
same across different maturities (as in the HJM model for each factor), but rather varies
point by point along the whole TSIR. The only condition that is imposed is that shocks
for different maturities are imperfectly correlated with maintain continuity in the forward
curve. This apparently simple generalization produces several advantages for stochastic
string models compared to traditional HJM models:

• Recalibration is unnecessary (Goldstein (2000); McDonald and Beard (2002) and
Kimmel (2004)). The HJM models allow a perfect fit to the current TSIR but they are
inconsistent with the innovations in the forward curve as, in general, the realizations
from the N Brownian motions in a N-factor HJM model are incompatible with the
possible innovations along the whole TSIR. Thus, HJM models require continuous
recalibration to fit the current curve. For stochastic string models, such recalibration is
not necessary as we can always find a path for the stochastic string shock to go from
the initial to the final forward curve.

• The best instrument to hedge a bond is another bond with a close maturity
(Goldstein (2000); Carmona and Tehranchi (2004) and Cont (2005)). The N-factor
HJM models have the property that any interest rate derivative can be hedged with N
bonds with arbitrary maturities chosen a priori and independently from the bonds
underlying the derivative. This fact is inconsistent with the usual practice of market
participants who hedge interest rate derivatives using bonds of similar maturities.
This practice suggests the existence of a specific risk at maturity, not considered in the
factor models. String models incorporate this risk in the stochastic string shock and
predict that the best instrument to hedge a bond is another bond with a close maturity.

• We do not need to include the error term when estimating the model (Santa-Clara and
Sornette (2001); Bester (2004)). In the N-factor models, any sample of L(>N) forward
rates has a covariance matrix whose rank is not greater than N. In this case, error
terms must be introduced in the econometric specification of the model. In stochastic
string models, we can always find a realization from the shock on a time interval to go
from the initial forward curve to the final one. Thus, these models are compatible with
any sample of forward rates and there is no need to include error terms in econometric
specifications.

• Stochastic string models are more parsimonious than factor models (Goldstein (2000);
Santa-Clara and Sornette (2001)). The number of extra parameters in string models
with respect to a one-factor model depends on the parameter specification of the
correlation function between shocks. If we choose a one-parameter specification for
such a function, there is just one more parameter to estimate than in the one-factor
HJM model. Thus, string models are more parsimonious than the corresponding
N-factor models, that consider a large number of factors (and, then, of parameters) to
obtain realistic correlations.

With regard to hedging bond power exchange options, i.e., finding a self-financing
portfolio that replicates the option value at expiration, the stochastic string framework is
a good choice to work with. In fact, under stochastic string dynamics, Bueno-Guerrero
et al. (2022) show that the bond market is complete. That is, any contingent claim written
on zero-coupon bonds can be hedged. Moreover, and also within the stochastic string
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framework, in Bueno-Guerrero et al. (2017), a closed-form expression for the hedging
portfolio is obtained in terms of the Malliavin derivative of the discounted payoff of the
claim; and in Bueno-Guerrero (2019), necessary and sufficient conditions are established so
that the hedging portfolio does not have a bank account part.

Margrabe (1978) shows the equivalence between the American and European versions
of exchange options on stocks and obtains a put-call parity result. Pricing and hedging
results for power exchange options on lognormally distributed underlying assets, as well
as sufficient conditions under which European and American power exchange options
on stocks are equivalent are derived in Blenman and Clark (2005b). The objective of this
paper is to establish analogous results for pricing and hedging bond power exchange
options under the stochastic string framework. In doing so, we also aim to demonstrate
that the power exchange option is a unifying concept that generalizes several standard
fixed-income derivatives. We even suggest some interesting novel applications for bond
power exchange options.

The remainder of the paper is organized as follows. Section 2 includes the fundamental
results for the stochastic string modeling that are necessary for the rest of the paper. Sec-
tion 3 states the main theorem for pricing bond power exchange options and, as corollaries,
expressions for the value of a call option and a call power option. A proposition with a
put-call parity type result for this kind of option and a theorem with sufficient conditions
for the equivalence of American and European exercise styles are also proved. In Section 4,
the expression of the hedging portfolio for a bond power exchange option is derived.
Section 5 applies the previous results to obtain duration and convexity measures for bond
power exchange options and to price extendable/accelerable maturity zero-coupon bonds,
options to price a zero-coupon bond off of a shifted term-structure and options on interest
rates. Section 6 summarizes and concludes.

2. Preliminary Results

In this section, we review those results from the stochastic string framework that we
will need in what follows. We present them without proofs, which can be found in the
original papers.

We assume the existence of a market in which a continuum of zero-coupon bonds
with any maturity is traded, together with a riskless asset. Regarding the probabilistic
framework, we consider a filtered complete probability space (Ω,F ,F,P) satisfying the
usual hypotheses. We also assume that F = FΥ where Υ denotes the finite time horizon
for trading zero-coupon bonds. The specific form of the filtration F = (Ft)0≤t≤Υ will be
determined later.

The source of randomness for the model is the infinite-dimensional stochastic process
(or random field) Z(t, x, ω) (the stochastic string process), consisting of a continuum of
adapted stochastic processes Z(·, x, ω) indexed by time to maturity. Concretely,

Z : ∆2 ×Ω → R
(t, x, ω) 7→ Z(t, x, ω)

where ∆2 =
{
(t, x) ∈ R2 : 0 ≤ t ≤ Υ, x ≥ 0

}
. From now on we will drop explicit mention

of the dependence on ω.
The infinite dimensional process Z is assumed to satisfy the following properties:

(a) The stochastic processes Z(·, x) and Z(t, ·) are continuous for each x ≥ 0 and for each
t ∈ [0, Υ], respectively.

(b) The process Z(·, x) is a martingale for each x ≥ 0.
(c) The process Z(t, ·) is differentiable for each t ∈ [0, Υ].
(d) For each x, y ≥ 0, it is the case that

d[Z(·, x), Z(·, y)]t = c(t, x, y)dt (1)
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where c(t, x, y) is an admissible, continuous, and differentiable correlation function
for each t.1

For each fixed time to maturity x ≥ 0, the dynamics of the instantaneous forward
interest rate f (t, x) is given by

d f (t, x) = α(t, x)dt + σ(t, x)dZ(t, x)

where, for each x, α(·, x) and σ(·, x) > 0 are continuous adapted stochastic processes
and, for each t, α(t, ·) and σ(t, ·) > 0 are continuous and differentiable adapted stochastic
processes. The available information at any time t ≥ 0 is given by the filtration

Ft = σ{Z(s, x) : 0 ≤ s ≤ t, x ≥ 0}, t ≤ Υ

The short-term interest rate, rt, can be obtained as rt = f (t, 0), and the bank-account

process, Bt, is given by Bt = e
∫ t

0 rsds. We denote the time t price of a zero-coupon bond
maturing at time T > t as P(t, T).

In order to guarantee the absence of arbitrage opportunities, we posit the existence
of a probability measure Q, equivalent to P, such that the discounted price process for
any asset is a martingale under Q. The probability measure Q is known as the equivalent
martingale measure. Specifically, under the Q measure, the dynamics of the instantaneous
forward interest rate can be written as

d f (t, x) = α(t, x)dt + σ(t, x)dZ̃(t, x)

with the no-arbitrage condition (Santa-Clara and Sornette (2001); Bueno-Guerrero et al.
(2015))

α(t, x) =
∂ f (t, x)

∂x
+ σ(t, x)

[∫ x

0
c(t, x, u)σ(t, u) du +

∫ ∞

0
c(t, x, u)λ(t, u) du

]
,

where dZ̃(t, x) is the stochastic string shock under Q, and λ(t, u) is the market price of risk
associated with the time to maturity u.

Bueno-Guerrero et al. (2016) develop a Gaussian stochastic string framework for option
pricing. The following result corresponds to Lemma 6.4 in that paper and provides the
conditional expectations and variances of log-prices under forward measures. Appearing
in the lemma are the forward measures, QT , which are equivalent to Q, and are defined by
their Radon-Nikodym derivatives dQT

dQ = [P(0, T)BT ]
−1.

Lemma 1. If σ(t, x) and c(t, x, y) are deterministic, then, under the Tj-forward measure QTj , the
bond price has a conditioned lognormal distribution with mean

EQTj [ln P(T0, Ti)|Fs ] = ln
P(s, Ti)

P(s, T0)
+ ∆ij(s, T0)−

1
2

∆ii(s, T0)

and variance Var [ln P(T0, Ti)|Fs ] = ∆ii(s, T0), that is independent of the probability measure,
where

∆ij(s, T0) = Cov
[
ln P(T0, Ti), ln P

(
T0, Tj

)
|Fs
]

=
∫ T0

t=s

[∫ Ti−t

y=T0−t

∫ Tj−t

u=T0−t
c(t, u, y)σ(t, u)σ(t, y)dudy

]
dt

and satisfies ∆ij(s, T0) = ∆ji(s, T0) and ∆0j(s, T0) = 0.

For the present study, we adopt the stochastic string model for bond portfolios intro-
duced by Bueno-Guerrero et al. (2022) for which the market is complete. We recall here the
key definitions and results from that framework.
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Definition 1. A portfolio in the bond market is a pair {gt, h(t, ·)} where

(a) g is a predictable process.
(b) For each ω, t, h(ω, t, ·) is a generalized function in (t, ∞).
(c) For each T, the process h(t, T) is predictable.

The process gt represents the number of units of the risk-free asset in the portfolio at
time t, while h(t, T)dT represents the “number” of bonds with maturities between T and
T + dT in the same portfolio at time t.

Definition 2. The value process, V, of a portfolio {g, h} is defined by

Vt = gtBt +
∫ ∞

T=t
h(t, T)P(t, T)dT

Definition 3. A portfolio is self-financing if its value process satisfies

dVt = gtdBt +
∫ ∞

T=t
h(t, T)dP(t, T)dT

Henceforth, discounting with respect to the risk-free asset Bt will be denoted by the
overline symbol “ ”.

Definition 4. Consider a discounted contingent claim X ∈ L∞(FT0). We say that X can be
replicated or that we can hedge against X if there exists a self-financing portfolio with bounded,
discounted value process V, such that VT0 = X.

The following theorem, giving an explicit expression for the bond part of the hedging
portfolio, is the main result in Bueno-Guerrero et al. (2022).

Theorem 1. In the stochastic string model of Bueno-Guerrero et al. (2022), the market is complete
and the generalized function h(t, ·) in the hedging portfolio is given by

h(t, T) =
1

P(t, T)

[
j(t, T − t)
σ(t, T − t)

]′
where the symbol ′ means derivative with respect to T in the sense of distributions, j(t, ·) is given
by the martingale representation of Vt

dVt =
∫ ∞

u=0
j(t, u)dZ̃(t, u)du (2)

and Z̃(t, u) is the stochastic string process with respect to the equivalent martingale measure.

The problem that arises with the application of Theorem 1 is that usually the process
j(t, u) in the martingale representation of Vt is not known. However, using the Malliavin
calculus valid for stochastic string models developed in Bueno-Guerrero et al. (2017), it is
possible to obtain the martingale representation (2) in terms of the Malliavin derivative of
the payoff.2 Proceeding in this way, we can rewrite Theorem 1 as follows (Theorem 5 of
Bueno-Guerrero et al. (2017)).

Theorem 2. In the Gaussian stochastic string model, the generalized function h(t, ·) in the hedging
portfolio is given by

h(t, T) =
1

P(t, T)

[
EQ[Dt,T−tX|Ft

]
σ(t, T − t)

]′
(3)
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whenever the discounted payoff X is Malliavin differentiable and where Dt,T−t is the Malliavin
derivative for stochastic strings and Q is the equivalent martingale measure.

All of the general results from the Malliavin calculus that are not applicable specif-
ically to Brownian motion can be applied to the stochastic string framework. To apply
expression (3) we will need to know the Malliavin derivative of discounted bond prices.
The following result corresponds to Proposition 6 of Bueno-Guerrero et al. (2017).

Proposition 1. In the Gaussian stochastic string framework, and working under the equivalent
martingale measure, P(ν, T1) is Malliavin differentiable and

Dt,T−tP(ν, T1) = −P(ν, T1)σ(t, T − t)1T<T1 (4)

3. Pricing Bond Power Exchange Options

In this section, we will price bond power exchange options under the Gaussian
stochastic string framework. A bond power exchange option gives the holder the option
to exchange the value of a zero-coupon bond raised to a power for the value of another
zero-coupon bond raised to another power. Concretely, we consider payoffs of the form

XT0 = [λ1Pα1(T0, T1)− λ2Pα2(T0, T2)]
+ (5)

where T0 is the exercise time of the option, and for i = 1, 2, P(T0, Ti) is the time-T0 price of
a zero-coupon bond maturing at Ti, αi, λi ∈ R are constants, and [·]+ is the positive part
function. The next result is the pricing formula for bond power exchange options.

Theorem 3. Under the Gaussian stochastic string framework, the price, BPE(t, T0, T1, T2, α1, α2,
λ1, λ2), of the bond power exchange option with payoff (5) is given by

BPE(t, T0, T1, T2, α1, α2, λ1, λ2)

= λ1P1−α1(t, T0)Pα1(t, T1)e
α1(α1−1)

2 ∆11 Φ(d1)− λ2P1−α2(t, T0)Pα2(t, T2)e
α2(α2−1)

2 ∆22 Φ(d2)

with

d1 =
ln
[

λ1
λ2

(
P(t,T1)
P(t,T0)

)α1
(

P(t,T0)
P(t,T2)

)α2
]
+ 1

2 (α2∆22 − α1∆11) + α2
1∆11 − α1α2∆12√

α2
1∆11 + α2

2∆22 − 2α1α2∆12

d2 = d1 −
√

α2
1∆11 + α2

2∆22 − 2α1α2∆12

Proof. The price of the bond power exchange option can be obtained as

BPE(t, T0, T1, T2, α1, α2, λ1, λ2) = EQ
{

e−
∫ T0

t rsds[λ1Pα1(T0, T1)− λ2Pα2(T0, T2)]
+|Ft

}
= P(t, T0)

{
λ1EQT0

[
Pα1(T0, T1)1λ1Pα1 (T0,T1)−λ2Pα2 (T0,T2)>0|Ft

]
(6)

− λ2EQT0

[
Pα2(T0, T2)1λ1Pα1 (T0,T1)−λ2Pα2 (T0,T2)>0|Ft

]}
where in the last step, we have passed to the T0-forward measure QT0 . Applying Lemma 1,
we have that under QT0 , ln P(T0, Ti) has a conditioned normal distribution with

EQT0 [ln P(T0, Ti)|Ft ] = ln
P(t, Ti)

P(t, T0)
− 1

2
∆ii(t, T0)
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and
VarQT0 [ln P(T0, Ti)|Ft ] = ∆ii(t, T0)

Therefore, by defining

xi(t, T0) =
ln P(T0, Ti)− ln P(t,Ti)

P(t,T0)
+ 1

2 ∆ii(t, T0)√
∆ii(t, T0)

we can write

Pαi (T0, Ti) =

(
P(t, Ti)

P(t, T0)

)αi

exp
{

αi

(√
∆iixi −

1
2

∆ii

)}
(7)

with xi(t, T0) ∼ N (0, 1), i = 1, 2 under QT0 and conditioned to Ft.
Using these transformations, the expectations in (6) can be written as

EQT0

[
Pαi (T0, Ti)1λ1Pα1 (T0,T1)−λ2Pα2 (T0,T2)>0|Ft

]
=

(
P(t, Ti)

P(t, T0)

)αi ∫
Ω

g(x1, x2; M)eαi[
√

∆iixi− 1
2 ∆ii]dx (8)

where g(x1, x2; M) is the density function of a bivariate normal distribution with (M)kl =
∆kl√

∆kk
√

∆kk
and Ω =

{
(x1, x2) ∈ R2 : λ1Pα1(T0, T1)− λ2Pα2(T0, T2) > 0

}
.

In order to obtain the expectation for the case i = 1, we need the limits of the integral
for x1. We have the following

λ1Pα1(T0, T1)− λ2Pα2(T0, T2) > 0

⇔ x1 >
ln
[

λ2
λ1

(
P(t,T0)
P(t,T1)

)α1
(

P(t,T2)
P(t,T0)

)α2
]
+ α2

[√
∆22x2 − 1

2 ∆22

]
+ α1

2 ∆11

α1
√

∆11
=: Θ(x2)

Thus, defining ρ =
∆12√

∆11
√

∆22
, we have

∫
Ω

g(x1, x2; M)eα1[
√

∆11x1− 1
2 ∆11]dx

=
1

2π
√

1− ρ2

∫ +∞

x2=−∞

∫ +∞

x1=Θ(x2)
e
− 1

2(1−ρ2)
(x2

1+x2
2−2ρx1x2)

eα1[
√

∆11x1− 1
2 ∆11]dx1dx2 (9)

Performing the calculations we arrive at

∫
Ω

g(x1, x2; M)eα1[
√

∆11x1− 1
2 ∆11]dx =

e
α1(α1−1)

2 ∆11
√

2π

∫ +∞

−∞
e−

w2
2 Φ(δ + λw)dw

where

δ =
α2

1∆11 − ln
[

λ2
λ1

(
P(t,T0)
P(t,T1)

)α1
(

P(t,T2)
P(t,T0)

)α2
]
− ρα1α2

√
∆11∆22 +

α2
2 ∆22 − α1

2 ∆11

α1
√

∆11(1− ρ2)

and

λ =
α1ρ
√

∆11 − α2
√

∆22

α1
√

∆11(1− ρ2)

Using the formula 1√
2π

∫ +∞
−∞ e−

x2
2 Φ[a + bx]dx = Φ

(
a√

1+b2

)
, we obtain

∫
Ω

g(x1, x2; M)eα1[
√

∆11x1− 1
2 ∆11]dx = e

∆11
2 α1(α1−1)Φ

(
δ√

1 + λ2

)
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Replacing this expression in (8) with i = 1, using ρ = ∆12√
∆11
√

∆22
and reducing, we get

EQT0

[
Pα1(T0, T1)1λ1Pα1 (T0,T1)−λ2Pα2 (T0,T2)>0|Ft

]
=

(
P(t, T1)

P(t, T0)

)α1

e
α1(α1−1)

2 ∆11 Φ(d1) (10)

Following a similar procedure it is not difficult to obtain for the second expectation
in (6) the value

EQT0

[
Pα2(T0, T2)1λ1Pα1 (T0,T1)−λ2Pα2 (T0,T2)>0|Ft

]
=

(
P(t, T2)

P(t, T0)

)α2

e
α2(α2−1)

2 ∆22 Φ(d2) (11)

and replacing these two expectations in (6) we arrive at the desired result.

As a consistency test, in the following corollary, whose proof is immediate, we restrict
the result of Theorem 1 to the case of a standard call option obtaining the price of this
option in the Gaussian stochastic string framework (Bueno-Guerrero et al. (2015)).

Corollary 1. Under the conditions of Theorem 3, the price of a standard call option with payoff
XT0 = [P(T0, T1)− K]+, C(t, T0, T1, K), is given by

C(t, T0, T1, K) = BPE(t, T0, T1, T0, 1, 0, 1, K) = P(t, T1)Φ
(

d1

)
− KP(t, T0)Φ

(
d2

)
where

d1 =
ln
(

P(t,T1)
KP(t,T0)

)
+ 1

2 ∆11
√

∆11

d2 = d1 −
√

∆11

The following result is also an immediate consequence of Theorem 3 and gives the
price of a standard bond call power option.

Corollary 2. Under the conditions of Theorem 3, the price of the standard call power option with
payoff XT0 = [Pα(T0, T1)− K]+, CP(t, T0, T1, α, K), is given by

CP(t, T0, T1, α, K) = BPE(t, T0, T1, T0, α, 0, 1, K)

= P1−α(t, T0)Pα(t, T1)e
α(α−1)

2 ∆11 Φ
(

d̂1

)
− KP(t, T0)Φ

(
d̂2

)
where

d̂1 =
ln
(

Pα(t,T1)
KPα(t,T0)

)
+
(
α2 − α

2
)
∆11

α
√

∆11

d̂2 = d̂1 − α
√

∆11

In Blenman and Clark (2005a), a class of options with constant underlying elasticity
in strikes (CUES) is introduced. To end this section we apply Theorem 3 to CUES options
written on zero-coupon bonds. The proof is immediate from the theorem.



Risks 2022, 10, 188 9 of 17

Corollary 3. Under the conditions of Theorem 3, the price of a CUES bond option with payoff
XT0 = [P(T0, T1)− λPα(T0, T1)]

+, CUES(t, T0, T1, α, λ), with α < 1 is given by

CUES(t, T0, T1, α, λ) = BPE(t, T0, T1, T1, 1, α, 1, λ)

= P(t, T1)Φ(d∗1)− λP1−α(t, T0)Pα(t, T1)e
α(α−1)

2 ∆11 Φ(d∗2)

with

d∗1 =

ln
[

1
λ

(
P(t,T1)
P(t,T0)

)1−α
]
+ 1

2 (1− α)∆11

(1− α)
√

∆11

d∗2 = d∗1 − (1− α)
√

∆11

3.1. American Power Exchange Options

In Margrabe (1978), the equivalence of American and European stock exchange options
is proved. For the case of power exchange options on stocks, sufficient conditions for the
equivalence can be found in Blenman and Clark (2005b). In a similar way, we can obtain
the conditions under which bond power exchange options are equivalent in the American
and European cases. The result is the following.

Theorem 4. If α1 ≥ 2 ln P(t,T0)
∆11

and α2 ≤ 2 ln P(t,T0)
∆22

, then, under the Gaussian stochastic string
framework, the value of the European bond power exchange option BPE(t, T0, T1, T2, α1, α2, λ1, λ2)
is the same as that of its American version.

Proof. Passing to the T0-forward measure, we can write for t ≤ T0

BPE(t, T0, T1, T2, α1, α2, λ1, λ2) = P(t, T0)EQT0

{
[λ1Pα1(T0, T1)− λ2Pα2(T0, T2)]

+|Ft

}
(12)

≥ P(t, T0)
[
EQT0 {[λ1Pα1(T0, T1)− λ2Pα2(T0, T2)]|Ft }

]+
where in the last line we have applied Jensen’s inequality.

On the other hand, using Equation (7) and working as in the proof of Theorem 3, we
get for i = 1, 2

EQT0 {Pαi (T0, Ti)|Ft } =
(

P(t, Ti)

P(t, T0)

)αi

EQT0

{
exp

{
αi

(√
∆iixi −

1
2

∆ii

)}
|Ft

}
=

(
P(t, Ti)

P(t, T0)

)αi ∫
R2

g(x1, x2; M)eαi[
√

∆iixi− 1
2 ∆ii]dx (13)

=

(
P(t, Ti)

P(t, T0)

)αi

e
αi(αi−1)

2 ∆ii

Replacing these expectations in (12), we arrive at

BPE(t, T0, T1, T2,α1, α2, λ1, λ2) ≥
[

λ1Pα1(t, T1)P1−α1(t, T0)e
α1(α1−1)

2 ∆11

−λ2Pα2(t, T2)P1−α2(t, T0)e
α2(α2−1)

2 ∆22

]+
≥ [λ1Pα1(t, T1)− λ2Pα2(t, T2)]

+
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where in the last step we have applied that α1 ≥ 2 ln P(t,T0)
∆11

and α2 ≤ 2 ln P(t,T0)
∆22

. Thus, when
these inequalities are satisfied, early exercise of an American option is never optimal and
the values of the European and the American options coincide.

If we restrict Theorem 4 to the case of standard call options, we obtain the following
corollary, whose proof is straightforward, and which is in line with the results obtained in
Merton (1973) related to the pricing of American options.

Corollary 4. If P(t, T0) ≤
√

e∆11 , then an American standard T0-expiry call option on a T1-
maturity (T1 ≥ T0) zero-coupon bond should not be exercised prior to maturity.

3.2. Put-Call Parity

As is the case with every exchange option, we have seen that the bond power exchange
option can be interpreted either as a call or as a put option. Nevertheless, it is reason-
able to wonder if there exists a similar result to the well-known put-call parity for these
options. Specifically, is there an expression that relates the price of the options with pay-
offs [λ1Pα1(T0, T1)− λ2Pα2(T0, T2)]

+ and [λ2Pα2(T0, T2)− λ1Pα1(T0, T1)]
+? The answer is

affirmative and the expression is stated in the following result.

Proposition 2. Under the Gaussian stochastic string framework, it is the case that

BPE(t, T0, T1, T2, α1, α2, λ1, λ2) = BPE(t, T0, T2, T1, α2, α1, λ2, λ1)

+ λ1P1−α1(t, T0)Pα1(t, T1)e
α1(α1−1)

2 ∆11

− λ2P1−α2(t, T0)Pα2(t, T2)e
α2(α2−1)

2 ∆22

Proof. Taking into account the identity [x− y]+ − [y− x]+ = x− y we can write

BPE(t, T0, T1, T2, α1, α2, λ1, λ2) = BPE(t, T0, T2, T1, α2, α1, λ2, λ1)

+EQ
{

e−
∫ T0

t rsds[λ1Pα1(T0, T1)− λ2Pα2(T0, T2)]|Ft

}
= BPE(t, T0, T2, T1, α2, α1, λ2, λ1)

+ P(t, T0)EQT0 {[λ1Pα1(T0, T1)− λ2Pα2(T0, T2)]|Ft }
= BPE(t, T0, T2, T1, α2, α1, λ2, λ1)

+ λ1P1−α1(t, T0)Pα1(t, T1)e
α1(α1−1)

2 ∆11

− λ2P1−α2(t, T0)Pα2(t, T2)e
α2(α2−1)

2 ∆22

where in the last step we have used expression (13).

A direct application of the put-call parity allows us to obtain the put version of
Theorem 3.

Corollary 5. The price, BPE(t, T0, T2, T1, α2, α1, λ2, λ1), of the bond power exchange option with
payoff [λ2Pα2(T0, T2)− λ1Pα1(T0, T1)]

+ is given by

BPE(t, T0, T2, T1, α2, α1, λ2, λ1)

= −λ1P1−α1 (t, T0)Pα1 (t, T1)e
α1(α1−1)

2 ∆11 Φ(−d1) + λ2P1−α2 (t, T0)Pα2 (t, T2)e
α2(α2−1)

2 ∆22 Φ(−d2)

4. Hedging Bond Power Exchange Options

In this section, we will apply the framework of Bueno-Guerrero et al. (2017) to obtain
the hedging portfolio for the bond power exchange option. The main result is the following.
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Theorem 5. Under the Gaussian stochastic string framework, the hedging portfolio for the option
with payoff (5) is given by

λ1(1− α1)
(

P(t,T1)
P(t,T0)

)α1
e

α1(α1−1)
2 ∆11 Φ(d1) − λ2(1− α2)

(
P(t,T2)
P(t,T0)

)α2
e

α2(α2−1)
2 ∆22 Φ(d2)

units of T0-bond,

λ1α1

(
P(t,T1)
P(t,T0)

)α1−1
e

α1(α1−1)
2 ∆11 Φ(d1) units of T1-bond,

−λ2α2

(
P(t,T2)
P(t,T0)

)α2−1
e

α2(α2−1)
2 ∆22 Φ(d2) units of T2-bond,

(14)

and it has no bank account part.

Proof. Taking P(T0, T0) = 1 we have B−1(T0) = P(T0, T0) and we can write the payoff of
Equation (5) in discounted terms as

XT0 = P(T0, T0)[λ1Pα1(T0, T1)− λ2Pα2(T0, T2)]
+

= P(T0, T0)

[
λ1

(
P(T0, T1)

P(T0, T0)

)α1

− λ2

(
P(T0, T2)

P(T0, T0)

)α2
]+

=
[
λ1P1−α1(T0, T0)Pα1(T0, T1)− λ2P1−α2(T0, T0)Pα2(T0, T2)

]+
Taking Malliavin derivatives and using (4) we obtain

Dt,T−tXT0 =
{[
−λ1(1− α1)P1−α1(T0, T0)Pα1(T0, T1) + λ2(1− α2)P1−α2(T0, T0)Pα2(T0, T2)

]
1T<T0

−λ1α1P1−α1(T0, T0)Pα1(T0, T1)1T<T1 + λ2α2P1−α2(T0, T0)Pα2(T0, T2)1T<T2

}
× 1λ1Pα1 (T0,T1)−λ2Pα2 (T0,T2)>0

Applying expression (3) and using
(
1T<Ti

)′
= −δ(T − Ti), we have

h(t, T) =
1

P(t, T)

[
EQ[Dt,T−tXT0 |Ft

]
σ(t, T − t)

]′

=
1

P(t, T)

{[
λ1(1− α1)EQ

[
P1−α1(T0, T0)Pα1(T0, T1)1λ1Pα1−λ2Pα2>0|Ft

]]
− λ2(1− α2)EQ

[
P1−α2(T0, T0)Pα2(T0, T2)1λ1Pα1−λ2Pα2>0|Ft

]
δ(T − T0) (15)

+ λ1α1EQ
[

P1−α1(T0, T0)Pα1(T0, T1)1λ1Pα1−λ2Pα2>0|Ft

]
δ(T − T1)

−λ2α2EQ
[

P1−α1(T0, T0)Pα1(T0, T1)1λ1Pα1−λ2Pα2>0|Ft

]
δ(T − T2)

}
The expectations in the last expression can be written for i = 1, 2 as

EQ
[

P1−αi (T0, T0)Pαi (T0, Ti)1λ1Pα1 (T0,T1)−λ2Pα2 (T0,T2)>0|Ft

]
= EQ

[
P(T0, T0)Pαi (T0, Ti)1λ1Pα1 (T0,T1)−λ2Pα2 (T0,T2)>0|Ft

]
= P(t, T0)EQT0

[
Pαi (T0, Ti)1λ1Pα1 (T0,T1)−λ2Pα2 (T0,T2)>0|Ft

]
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Replacing them in (15) and using expressions (10) and (11), we arrive at

h(t, T) =
P(t, T0)

P(t, T)

{[
λ1(1− α1)

(
P(t, T1)

P(t, T0)

)α1

e
α1(α1−1)

2 ∆11 Φ(d1)

−λ2(1− α2)

(
P(t, T2)

P(t, T0)

)α2

e
α2(α2−1)

2 ∆22 Φ(d2)

]
δ(T − T0)

+ λ1α1

(
P(t, T1)

P(t, T0)

)α1

e
α1(α1−1)

2 ∆11 Φ(d1)δ(T − T1)

−λ2α2

(
P(t, T2)

P(t, T0)

)α2

e
α2(α2−1)

2 ∆22 Φ(d2)δ(T − T2)

}
from which we obtain the composition of the bond part in the hedging portfolio. The value
of this bond part is

∫ ∞

T=t
h(t, T)P(t, T)dT = P(t, T0)

{
λ1(1− α1)

(
P(t, T1)

P(t, T0)

)α1

e
α1(α1−1)

2 ∆11 Φ(d1)

− λ2(1− α2)

(
P(t, T2)

P(t, T0)

)α2

e
α2(α2−1)

2 ∆22 Φ(d2)

+ λ1α1

(
P(t, T1)

P(t, T0)

)α1

e
α1(α1−1)

2 ∆11 Φ(d1)

−λ2α2

(
P(t, T2)

P(t, T0)

)α2

e
α2(α2−1)

2 ∆22 Φ(d2)

}
= λ1P1−α1(t, T0)Pα1(t, T1)e

α1(α1−1)
2 ∆11 Φ(d1)

− λ2P1−α2(t, T0)Pα2(t, T2)e
α2(α2−1)

2 ∆22 Φ(d2)

= BPE(t, T0, T1, T2, α1, α2, λ1, λ2)

and thus, the hedging portfolio has no bank account part.

Now, following the lines of Section 3, we obtain as particular cases of Theorem 5 the
hedging portfolios for standard call, power call and CUES options. All the results can be
obtained easily just by using the appropriate parameters in (14).

Corollary 6. Under the conditions of Theorem 5 we have:
(i) The hedging portfolio for a standard call option with payoff XT0 = [P(T0, T1)− K]+ is given by

−KΦ
(

d2

)
units of T0-bond

Φ
(

d1

)
units of T1-bond

(ii) The hedging portfolio for a standard call power option with payoff XT0 = [Pα(T0, T1)− K]+ is
given by

(1− α)
(

P(t,T1)
P(t,T0)

)α
e

α(α−1)
2 ∆11 Φ

(
d̂1

)
− KΦ

(
d̂2

)
units of T0-bond

α
(

P(t,T1)
P(t,T0)

)α−1
e

α(α−1)
2 ∆11 Φ

(
d̂1

)
units of T1-bond

(iii) The hedging portfolio for a CUES bond option with payoff XT0 = [P(T0, T1)− λPα(T0, T1)]
+

with α < 1 is given by

−λ(1− α)
(

P(t,T1)
P(t,T0)

)α
e

α(α−1)
2 ∆11 Φ(d∗2) units of T0-bond

Φ
(
d′1
)
− λα

(
P(t,T1)
P(t,T0)

)α−1
e

α(α−1)
2 ∆11 Φ(d∗2) units of T1-bond
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5. Applications

In this section, we consider several interesting applications for bond power exchange
options. Some of these applications will make reference to the zero-coupon term structure,
or as it is often called, the zero curve. Rates on the time t zero curve are defined in terms of
the zero-coupon bond prices. That is, the time t zero rate for maturity T > 0 is given by

y(t, T) = η

[
P(t, T)−

1
η(T−t) − 1

]
,

where η is the number of compounding periods per year. The time t forward rate in effect
on [T0, T1], t ≤ T0 ≤ T1 is given by

f (t, T0, T1) = η

[
P(t, T0)

P(t, T1)

1
η(T1−T0) − 1

]
. (16)

Unless otherwise stated, in the following we assume η = 2, that is, semi-annual
compounding as is the convention in the U.S. Treasuries market.

5.1. Pricing Extendable/Accelerable Maturity Zero-Coupon Bonds

Consider a derivative contract under which, at time T0, the holder chooses a long
position in either a T1-maturity or a T2-maturity zero-coupon bond (T0 ≤ T1 ≤ T2). In a
strictly positive interest rate environment, the T1-maturity bond would always be more
valuable than the T2-maturity bond at time T0. However if interest rates can become
negative, then the bond with longer maturity could be more valuable. Such a contract
is replicated by a portfolio consisting of a T1-maturity zero-coupon bond and an option
to exchange the T1-maturity bond for a T2-maturity bond, or equivalently, by a portfolio
consisting of a T2-maturity zero-coupon bond and an option to exchange the T2-maturity
for a T1-maturity. That is, the payoff of the contract can be written as

XT0 = max{P(T0, T1), P(T0, T2)}
= P(T0, T1) + [P(T0, T2)− P(T0, T1)]

+

= P(T0, T2) + [P(T0, T1)− P(T0, T2)]
+

and by Theorem 3, the value at time t ≤ T0 of the contract, EAM(t, T0, T1, T2), is given by

EAM(t, T0, T1, T2) = P(t, T1) + BPE(t, T0, T2, T1, 1, 1, 1, 1) = P(t, T2) + BPE(t, T0, T1, T2, 1, 1, 1, 1)

This makes it clear that this contract can be thought of as either an extendable or an
accelerable maturity zero-coupon bond.

5.2. Option to Price a Zero-Coupon Bond off of a Shifted Term-Structure

The bond power exchange option with payoff

XT0 =

[
P(T0, T2)− P(T0, T1)

T2−T0
T1−T0

]+
(17)

for T2 > T1 > T0 gives the holder the option to buy a T2-maturity zero-coupon bond priced
off of the zero curve shifted T2 − T1 units to the right. To see this, note that the exercise
price is

P(T0, T1)
T2−T0
T1−T0 =

1(
1 + y(T0,T1)

2

)2(T2−T0)
,
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which is, at time T0, the price of a T2-maturity zero coupon bond priced using the T1-
maturity yield y(T0, T1). Using Corollary 5, it is not difficult to obtain the expression for
the price, STS(t, T1, T2) of this option as

STS(t, T1, T2) = P(t, T2)Φ(−d2)− P(t, T0)
− T2−T1

T1−T0 P(t, T1)
T2−T0
T1−T0 e

(T2−T0)(T2−T1)

2(T1−T0)
2 ∆11

Φ(−d1)

5.3. Bond Option Duration and Convexity

The results of Theorem 5 can be applied to derive duration and convexity formulas
for bond power exchange options.3 For i = 0, 1, 2, define θi(t, T0, T1, T2, α1, α2, λ1, λ2) to be
the units of the Ti-maturity zero-coupon bond in the hedging portfolio from (14). Since
the duration at time t of a T-maturity zero-coupon bond is T − t, the duration of the bond
power exchange option is

DurBPE =
2

∑
i=0

θi(t, T0, T1, T2, α1, α2, λ1, λ2)P(t, Ti)

BPE(t, T0, T1, T2, α1, α2, λ1, λ2)
(Ti − t).

Similarly, the convexity at time t of a T-maturity zero-coupon bond is

Conv =
(T − t)2 + T−t

2(
1 + y(t,T)

2

)2 ,

and the convexity of the bond power exchange option is

ConvBPE =
2

∑
i=0

θi(t, T0, T1, T2, α1, α2, λ1, λ2)P(t, Ti)

BPE(t, T0, T1, T2, α1, α2, λ1, λ2)

(Ti − t)2 + Ti−t
2(

1 + yi(t,Ti)
2

)2 .

Thus, it is straightforward to employ bond power exchange options for standard
interest rate hedging based on duration and convexity.

5.4. Options on Interest Rates

For the parameter values α1 = − 1
2(T1−T0)

, α2 = − 1
2(T2−T0)

, λ1 = λ2 = 2, the payoff
in (5) becomes

[y(T0, T1)− y(T0, T2)]
+.

In this case, the bond power exchange option is a derivative on the T1,T2 interest rate
spread. For the parameter values α1 = − 1

2(T1−T0)
, α2 = 0, λ1 = 2, and λ2 = 2 + K for

K ≥ 0, the payoff in (5) becomes

[y(T0, T1)− K]+,

so that, in this case, the bond power exchange option becomes a standard call option on an
interest rate.

In fact, we can use bond power exchange options to derive formulas for interest rate
caps and floors.4 In the interest rate swaps market, the relevant zero curve is the LIBOR
swap curve and the convention is to use simple interest. With this in mind we define the
time t forward LIBOR rate over the time interval [Tj−1, Tj], 0 ≤ t ≤ Tj−1 ≤ Tj as a forward
rate with compounding parameter η in (16) equal to 1

Tj−Tj−1
,

L(t, Tj−1, Tj) =
1

Tj − Tj−1

[
P(t, Tj−1)

P(t, Tj)
− 1

]
.
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For t = Tj−1, we have

L(Tj−1, Tj−1, Tj) =
1

Tj − Tj−1

[
P(Tj−1, Tj)

−1 − 1
]
. (18)

Consider a caplet with payoff at time Tj given by

CplTj−1,Tj

(
Tj
)
=
(
Tj − Tj−1

)
[L(Tj−1, Tj−1, Tj)− K]+

As the LIBOR rate is determined at time Tj−1, discounting with the LIBOR rate from Tj to
Tj−1 we have

CplTj−1,Tj

(
Tj−1

)
=
(
Tj − Tj−1

)[ L(Tj−1, Tj−1, Tj)− K
1 +

(
Tj − Tj−1

)
L(Tj−1, Tj−1, Tj)

]+
that, using (18), can be rewritten as

CplTj−1,Tj

(
Tj−1

)
=
[
1 +

(
Tj − Tj−1

)
K
][ 1

1 +
(
Tj − Tj−1

)
K

P
(
Tj−1, Tj−1

)
− P

(
Tj−1, Tj

)]+
Thus, the caplet is a special case of the payoff in (5) with parameter values α1 = 1,

α2 = 1, λ1 = 1, and λ2 =
[
1 +

(
Tj − Tj−1

)
K
]
. So a caplet can be priced as a bond power

exchange option. Specifically,

CplTj−1,Tj
(t) = P

(
t, Tj−1

)
Φ(d1)−

[
1 +

(
Tj − Tj−1

)
K
]
P
(
t, Tj

)
Φ(d2).

A floorlet can then be priced using the put/call parity result (Proposition 2),

FrlTj−1,Tj(t) =
[
1 +

(
Tj − Tj−1

)
K
]
P
(
t, Tj

)
Φ(−d2)− P

(
t, Tj−1

)
Φ(−d1).

Formulas for prices of interest rate caps and floors can then be expressed as sums of
caplets and floorlets.

6. Conclusions

Power exchange options, introduced by Blenman and Clark (2005b) for lognormally
distributed underlying asset prices, feature payoff functions that nest the payoffs of several
other options including standard calls and puts, power options, CUES options (Blenman
and Clark (2005a)) and exchange options (Margrabe (1978)).

In this paper, we study power exchange options on zero-coupon bonds under a
stochastic string model of the term-structure of interest rates. We obtain closed-form
expressions for pricing and hedging bond power exchange options in the Gaussian case,
and as particular instances, we obtain the corresponding expressions for standard calls and
puts, power options, CUES options, and exchange options. Moreover, we state a put-call
parity result and indicate sufficient conditions for the equivalence between American and
European bond power exchange options. As a consequence, we obtain a new result with a
sufficient condition for the equality of the price of American and European standard call
options on zero-coupon bonds.

We discuss several potential applications for bond power exchange options. For an
interest rate environment in which negative yields are possible, an option to extend or
accelerate the maturity of a zero-coupon bond is potentially valuable. We show how to
replicate such an option using bond power exchange options. Secondly, since raising a
zero-coupon bond price to a power is equivalent to pricing a bond with the same yield but
a different maturity, bond power exchange options can be parameterized to be options to
price bonds off of a shifted term structure. Thirdly, bond power exchange options can be
replicated by a portfolio of zero-coupon bonds, and it is straightforward to calculate the
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sensitivities of option prices to interest rate changes. Therefore it is straightforward to use
bond power exchange options for bond portfolio hedging. Finally, bond power exchange
options can be parameterized to be options on interest rates and rate spreads. In particular,
we show that standard formulas for interest rate caplets and floorlets in a LIBOR market
model can be obtained as special cases of bond power exchange options under a stochastic
string term-structure model.

Although our approach in this paper is completely general, it has the limitation that
the analytical treatment that leads to obtaining the results has been carried out under a
Gaussian framework. Thus, a possible avenue for future research would be to consider
other types of dynamics for bond prices, such as those with stochastic volatility or driven
by fractional Brownian motion.
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Abbreviations
The following abbreviations are used in this manuscript:

BPE Bond Power Exchange Option
ConvBPE Convexity of the bond power exchange option
CP Call Power Option
Cpl Caplet
CUES Constant Underlying Elasticity in Strikes Option
DurBPE Duration of the bond power exchange option
EAM Extendable/Accelerable Maturity zero-coupon bond
Frl Floorlet
HJM Heath, Jarrow, and Morton Model
STS Option to price a zero-coupon bond off of a Shifted Term-Structure
TSIR Term Structure of Interest Rates

Notes
1 By admissibility we mean that for each t, c(t, ·, ·) is symmetric, positive semidefinite and satisfies |c(t, x, y)| ≤ 1 and c(t, x, x) =

1, ∀x, y ≥ 0 (Santa-Clara and Sornette (2001)).
2 We refer the reader to Nualart (2006) for the general theory of Malliavin calculus and to Bueno-Guerrero et al. (2017) for the

specific issues related to stochastic strings.
3 The duration of an interest rate sensitive asset is − (1+ y

2 )
P

∂P
∂y where y is the rate or yield to maturity to which it is exposed. For

assets or portfolios of assets with exposures to multiple rates in a term structure, duration is a measure of price sensitivity to a
parallel shift of the term structure.

4 Bueno-Guerrero et al. (2020) study the valuation of caplets, caps, and swaptions under a stochastic string model, however they
do not consider caplet pricing as an application of bond power exchange options.
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