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Abstract: We provide an axiomatic foundation for the measurement of correlation diversification in a
one-period portfolio model. We propose a set of eight desirable axioms for this class of diversification
measures. We name the measures satisfying these axioms coherent correlation diversification measures.
We study the compatibility of our axioms with rank-dependent expected utility theory. We also test
them against the two most frequently used methods for measuring correlation diversification in
portfolio theory: portfolio variance and the diversification ratio. Lastly, we provide an example of a
functional representation of a coherent correlation diversification measure.
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1. Introduction

This paper is about diversification measurement in portfolio theory. For our purposes
we focus on correlation diversification. The term ‘correlation’ refers to any dependence
measure including similarity measures.

Correlation diversification is a diversification concept as old as the concept of naive
diversification. It can be traced back to long before the birth of portfolio theory, marked by
the works of Roy (1952) and Markowitz (1952). However, as a term, it was only recently
introduced in the literature by Koumou (2020a). Its core element is asset dependence
structure. More precisely, correlation diversification is a risk diversification strategy that
exploits assets’ dependence structure to reduce risk. It is based on the principle that, all
other things being equal, a portfolio with low positively dependent assets will be less risky
than a portfolio with high positively dependent assets. The intuition is that the less assets
are positively dependent, the lower the likelihood they will do poorly simultaneously in
the same proportion at the same time. Thus, the less positively dependent the assets of a
portfolio are, the more correlation diversified this portfolio is.

Correlation diversification plays a central role in portfolio selection. As highlighted by
Koumou (2020a), it is at the core of mean-variance models and its effect is covered through
the covariance matrix. More generally, it drives the diversification in expected utility (EU)
theory. Any risk-averse EU investor is correlation averse; as a consequence, he/she exhibits a
preference for correlation diversification.1

Correlation diversification is also at the core of non-expected utility theories. For exam-
ple, in Yaari’s (1987) dual (DU) theory, a DU risk-averse investor exhibits a preference for
correlation diversification (Hadar and Seo 1995, Corollary 1, p. 1176). As demonstrated by
Andersen et al. (2018, Corollary 1, p. 1176), rank-dependent expected utility (RDEU) theory
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(Quiggin 1982) (excluding EU and DU theories) exhibits correlation aversion, and implies
therefore a preference for correlation diversification. In sum, correlation diversification can
be viewed as the rational diversification principle for risk-averse EU, DU or RDEU investors
in the absence of a lack of information.2

Despite the central role of correlation diversification in economic theories under risk
and uncertainty, especially in portfolio diversification, conceptual problems involved in
its measurement have been overlooked. None of the existing measures designed to cap-
ture its effect has theoretical foundations (axiomatic or decision-theoretic foundations).3

Almost all studies on theoretical foundations of risk management have been devoted to
risk measurement (see Artzner et al. 1999; Föllmer and Schied 2002; Frittelli and Gianin
2002, 2005; Rockafellar et al. 2006). Even though many proposed risk measurement theories,
such as monetary risk measurement theories, take into account correlation diversifica-
tion, they remain incomplete for quantifying its effect on decision makers.4 Indeed, risk
reduction is not equivalent to diversification. Diversification implies risk reduction, but
the reverse is not true, because risk can also be reduced by concentration.5 Consequently,
standard risk measurement frameworks fail to adequately quantify and manage correlation
diversification, except in the extreme case where all assets have the same risk.6

The aim of this paper is to bridge this gap in the literature. We provide an axiomatic
foundation for correlation diversification measurement in a one-period portfolio model. We
assume that the investor is risk-averse depending on his/her preferences and has complete
information about the marginal and the joint distributions of asset future returns. We also
assume that there are no short sales, but our results remain valid when short sales in the
sense of Lintner (1965) are allowed.

Axiomatic approaches have proven to be useful in modern economics, in particular
in economics of risk and uncertainty (Gilboa et al. 2019), and in risk (Föllmer and Schied
2002), poverty (Zheng 1997) and inequality (Chakravarty 1999) measurement. When
applied to risk, poverty and inequality measurement theories, axiomatization helped to
solve problems such as misunderstanding of the concept being measured, development of
incoherent measures and the choice and comparison of measures. Due to the lack of theory,
correlation diversification measurement is not spared from these problems. For example,
the concept of diversification in general and correlation diversification in particular is
misunderstood as revealed by the 2007–2009 financial crisis (Ilmanen and Kizer 2012;
Miccolis and Goodman 2012; Statman 2013). An example of an inadequate correlation
diversification measure is diversification delta, which was introduced by Vermorken et al.
(2012) and revised by Salazar Flores et al. (2017).

Our paper contributes to the literature of correlation diversification measurement in
several ways. First, we present and discuss a set of minimum desirable axioms that a mea-
sure of correlation diversification must satisfy in order to be considered coherent (Section 2).
In the literature, some studies have presented and discussed some properties to support
their proposed measures of diversification (Carmichael et al. 2022; Choueifaty et al. 2013;
Evans and Archer 1968; Rudin and Morgan 2006; Vermorken et al. 2012). Our axioms build
on the body of such properties. We generalize, supplement, and rationalize them to obtain
an axiomatic system for coherent correlation diversification measures. Our axioms also
draw on the literature of dependence measurement theory. Two of our axioms (Axioms 6
and 7) are inspired by the axiom of invariance of dependence measures, with respect to all
strictly increasing and continuous transformations (Rényi 1959; Schmid et al. 2010).

Second, to ensure that our axioms do not violate investors’ preference for diversifica-
tion, we examine (Section 3) their compatibility with economic theories. We focus on RDEU
theory (Quiggin 1982, 1993), one of the most accepted non-expected utility theories in the
literature. We proceed by taking two steps. First, we identify the measure of correlation
diversification at the core of RDEU theory as the differential between the weighted average
of each asset risk and portfolio risk, similar to the study by Embrechts et al. (2009), where
risk is measured by the standard certainty equivalent or risk premium. We assume strong
risk aversion7, and we rely on the notion of preference for diversification (Chateauneuf
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and Lakhnati 2007; Chateauneuf and Tallon 2002; Dekel 1989) for our identification. Next,
we test the identified measure against our axioms to establish the conditions of their com-
patibility with RDEU theory focusing on two cases. Specifically, we test whether there
exists a concave utility function and a concave distortion function such that the identified
measure satisfies our axioms. This two-step strategy was used in the literature of risk
measurement theories to examine the compatibility of Artzner et al. (1999)’s axioms with
economic theories (Denuit et al. 2006; Tsanakas and Desli 2003).

Three main arguments justify our choice of RDEU. First, it covers the effect of corre-
lation diversification. Second, it embeds EU theory and Yaari’s (1987) DU theory, which
means our results also cover these two economic theories. Third, it successfully explains
many phenomena and paradoxes that are puzzling within the framework of expected
utility theory, such as the Allais paradox (Quiggin 1993; Starmer 2000), the simultaneous
risk-averse and risk-seeking behavior (Quiggin 1993), and the poor diversification funds
and stock market participation of risk-averse households (Polkovnichenko 2005).

Third, in Section 4, we test our axioms against the two most frequently used methods
for measuring correlation diversification in portfolio theory: portfolio variance (Markowitz
1952, 1959; Frahm and Wiechers 2013; Sharpe 1964) and the diversification ratio of Choueifaty
and Coignard (2008).

Our axioms are not restrictive enough to specify a unique family of correlation
diversification measures. This incompleteness is intentional, because it allows our ax-
ioms to be used for all families of correlation diversification measures. Thus, fourth, in
Section 5, we provide an example of a functional representation of our axioms and not a
representation theorem.

Section 6 concludes the paper. Proofs are given in the appendix. Throughout the paper,
vectors and matrices have bold style.

2. Axioms

Let us first introduce the general definition of the correlation diversification measure
we consider. Given that the core of correlation diversification is assets’ dependence struc-
ture, any measure designed to capture its effect needs to depend not only on the vector
of asset weights, w= (w1, . . . , wN)

> with wi the weight of asset i, but also on the vector
of future return on assets, R = (R1, . . . , RN)

> with Ri ∈ R the future return on asset i,
where N is the number of assets, > the operator of transpose andR the space of bounded
real-valued random variables.8 Therefore, in the case where the investor is risk-averse and
has complete information about the marginal and the joint distributions of assets future
returns, it is natural to define a correlation diversification measure as follows.

Definition 1 (Correlation diversification measure). A correlation diversification measure is
a conditional mapping given R, D(·|R), from W into R assigning to w a positive real value
D(w|R) ∈ R+, where W is the set of long-only portfolios, R is the set of real numbers and R+ is
the set of positive real numbers.

Without loss of generality, we assume that the well-diversified portfolio of D(w|R),
denoted w∗, is obtained by maximization. Formally

w∗ ∈ argMax
w∈W

D(w|R). (1)

Therefore, given a measure D(·|R), we say that “portfolio w1 is more correlation
diversified than portfolio w2” if and only if D(w1|R) ≥ D(w2|R).

Note that D(w|R) can be explicitly or implicitly conditional on R. In the case where
short sales in the sense of Lintner (1965) are allowed, D(·|R) must be defined from
W− =

{
w = (w1, . . ., wN)

> ∈ RN : ∑N
i=1 |wi| = 1

}
into R assigning to w a positive

real value D(|w| | sign(w)R) ∈ R+, where |w| = (|w1|, . . . , |wN |)> and sign(w)R =

(sign(w1)R1, . . . , sign(wN)RN)
> with |·| the absolute value operator.
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We now introduce our set of desirable axioms that a measure of correlation diversi-
fication must satisfy in order to be considered coherent. Our first two axioms formalize
investors’ preference for diversification over W. These axioms are relevant for any di-
versification measure, and were first formulated in Carmichael et al. (2022). The first
axiom is

Axiom 1 (Concavity). For each w1 and w2 ∈W, α ∈ [0, 1] and R ∈ RN ,

D(α w1 + (1− α)w2|R) ≥ α D(w1|R) + (1− α) D(w2|R) (2)

with strict inequality for at least one triplet (α, w1, w2).

Axiom 1 requires that D(w|R) is a nonlinear and concave function on W. This guar-
antees that holding different assets can increase total diversification. It also ensures that
diversification can be decomposed across asset classes.

Note that Axiom 1 can be replaced by a less restrictive axiom defined as follows.

Axiom 1’ (Quasi-concavity). For each w1 and w2 ∈W, α ∈ [0, 1] and R ∈ RN ,

D(α w1 + (1− α)w2|R) ≥ min(D(w1|R), D(w2|R)) (3)

with strict inequality for at least one triplet (α, w1, w2).

Let the single-asset i portfolio be denoted by ei = (ei1, . . . , eiN)
>, where eii = 1 for

each i = 1, . . . , N and eij = 0 for i 6= j, i, j = 1, . . . , N. The second axiom is expressed in

Axiom 2 (Size Degeneracy). There is a constant (for a normalization) D ∈ R+ such that for each
R ∈ RN ,

D(ei|R) = D for each i = 1, . . . , N. (4)

Axiom 2 imposes that all single-asset portfolios are equally desirable in terms of
diversification.

Axiom 2 together with Axiom 1 imply that diversification is always better than full
concentration or specialization; formally for each R ∈ RN and for each w ∈W

D(w|R) ≥ D(ei|R) for each i = 1, . . . , N. (5)

It thus strengthens investors’ preference for diversification materialized by Axiom 1. It
guarantees that the size of w∗, a well-diversified portfolio of D(w|R), is strictly greater than
1 when D(w|R) satisfies Axiom 1, except in the case where assets are identical as we show
in Example 1. Clearly, the two axioms are necessary to prevent portfolio concentration on
one asset from going undetected.

Let us now denote A = {Ai}N
i=1 our universe of N assets (risky or not), where Ai is

for asset i in A. Our next axiom is the formalization of the property of duplication invariance
of Choueifaty et al. (2013). It is expressed in

Axiom 3 (Duplication invariance). Let B = A ∪ {BN+1} be a universe of assets such that
BN+1 = Ak, with k ∈ {1, . . . , N}. Then

D
(
w∗A|RA

)
=D

(
w∗B |RB

)
(6)

w∗Ai
=w∗Bi

for each i 6= k, i = 1, . . . , N (7)

w∗Ak
=w∗Bk

+ w∗BN+1
. (8)
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The reasonableness and relevance of Axiom 3 is evident. It allows us to avoid risk
concentration by ensuring that the well-diversified portfolio is not biased toward multiple
representative assets. It is necessary to prevent risk concentration from going undetected.
In Examples 1 and 2, we illustrate its importance.

Example 1 (Identical assets). Consider the case where assets are identical. It is straightforward to
verify that Axiom 3 implies

D
(
w|R

)
= D

(
ei|R

)
for each i = 1, . . . , N. (9)

Therefore Axiom 3 ensures that there is no benefit to diversifying across identical assets. Such
diversification is equivalent to full concentration.

Example 2 (Case N = 2). Consider the case where N = 2. In this case, A = {A1, A2} and
B = {A1, A2, B3} such that B3 = A1 for example. Axiom 3 states that

(i) The optimal degree of diversification of A and B must be equal;
(ii) The optimal weight of A1 in A must be equal to the optimal weight of A1 in B;
(iii) The optimal weight of A2 in A must be equal to the sum of the optimal weights of A2 and B3

in B.

Our next axiom is complementary to Axiom 3 in the case where assets are identical. It
is expressed in

Axiom 4 (Reverse Risk Degeneracy). Suppose that N > 1 and, without loss of generality, that
wi > 0 for each i = 1, . . . , N. If a random vector R∗ solves for R in the following equation

D(w|R) = D, (10)

then R∗ must be lower comonotonic.

Before discussing Axiom 4, we recall the definition of comonotonicity, upper comono-
tonicity and lower comonotonicity.

Definition 2 (Comonotonicity, Upper comonotonicity and Lower comonotonicity).

(a) Comonotonicity (Dhaene et al. 2002a): A random vector R = (R1, . . . , RN)
> is comonotonic

if and only FR(r) = min
1≤i≤N

FRi (ri), for all r = (r1, . . . , rN)
>.

(b) Upper comonotonicity (Cheung 2009): A random vector R = (R1, . . . , RN)
> is upper

comonotonic if and only there is a point r̄ = (r̄1, . . . , r̄N)
> ∈ RN ∪ (−∞, . . . ,−∞), called

the comonotonic threshold of R, such that the following are true:

(i) FR(r̄) < 1
(ii) if r ∈ (r̄1, ∞)× · · · × (r̄N , ∞), then FR(r) = min

1≤i≤N
FRi (ri).

(iii) if r /∈ (r̄1, ∞)× · · · × (r̄N , ∞), then FR(r) = FR(min(r1, r̄1), . . . , min(rN , r̄N))

(c) Lower comonotonicity (Cheung 2010): A random vector R = (R1, . . . , RN)
> is lower

comonotonic if and only if −R = (−R1, . . . ,−RN)
> is upper comonotonic.

Intuitively, comonotonicity corresponds to an extreme form of positive dependency
including perfect linear and nonlinear positive dependence, whereas upper (lower) comono-
tonicity corresponds to comonotonicity behavior in the upper (lower) tail. For more details
on upper and lower comonotonicity see also Dong et al. (2010), Nam et al. (2011) and Hua
and Joe (2012).
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Axiom 4 is also necessary to prevent undetected portfolio risk concentration. Diversi-
fication is only desirable in the downside not in the upside. Thus, as stated by Axiom 4,
it is desirable that if correlation diversification of a non-single asset portfolio reaches its
lower bound then the vector of asset returns R is lower comonotonic.

In Example 3, we illustrate the importance of Axiom 4.

Example 3 (Embrechts et al.’s (2009) class of measures).
Consider Embrechts et al.’s (2009) class of correlation diversification measures defined as

D(w|R) =
N

∑
i=1

$(wiRi)− $
(

w>R
)

, (11)

where $(·) is a risk measure. Assume that the risk measure $(·) is additive for independence.9

Then, according to D(w|R) in (11), any portfolio with independent asset returns and single-asset
portfolios would have the same degree of correlation diversification, which is counterintuitive.
Axiom 4 rules out the sub-class of Embrechts et al.’s (2009) correlation diversification measures
with risk measures additive for independence.

Note that the solution R∗ can be different from R. Example 4 provides an illustration.

Example 4 (Diversification ratio). Consider the diversification ratio, DR(w|R), defined in (33)
in Section 4. It is straightforward to verify that DR(ei|R) = 1 for each i = 1, . . . , N. This
implies that D = 1. Now let us resolve the equation DR(w|R) = 1 for R with wi > 0 for each
i = 1, . . . , N

DR(w|R) = 1⇐⇒ w> σ√
w> Σ w

= 1 (12)

⇐⇒
(

N

∑
i=1

wiσi

)2

=
N

∑
i,j=1

ρijσiσjwiwj (13)

⇐⇒
N

∑
i,j=1

(ρij − 1)σiσjwiwj = 0 (14)

DR(w|R) = 1⇐⇒ρij = 1, for each i, j = 1, . . . , N. (15)

Then the solution of the equation DR(w|R) = 1 is R∗ = (R∗, . . . , R∗) with R∗ = Ri or R∗ =
Ri−µi

σi
for each i = 1, . . . , N, where µi = E(Ri), σi =

√
Var(Ri) and ρij is the correlation between

Ri and Rj with E(·) the expectation operator and Var(·) that of the variance.

Note also that Axiom 4 is formulated in the weakest possible form. For instance, it may
be intuitive to replace “R∗ must be lower comonotonic” by “R∗ must be perfectly positively
linearly dependent (Pearson correlation matrix of R∗ is a matrix of ones)”. This change
will make Axiom 4 stronger and harder to satisfy. It will rule out the use of asymmetric
dependence measures to construct correlation diversification measures. Given that our
intention is to provide a minimum set of axioms, we have chosen to present Axiom 4 in the
current weakest form.

Our next axiom formalizes the relationship between diversification and portfolio size
at the optimum. It is relevant for any diversification measure. It is expressed in

Axiom 5 (Size Monotonicity). Let B be a universe of assets such that A ⊆ B. Then

D
(
w∗B |RB

)
≥ D

(
w∗A|RA

)
. (16)
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Axiom 5 is natural in the portfolio diversification literature (see Carmichael et al. 2022;
Evans and Archer 1968; Rudin and Morgan 2006; Vermorken et al. 2012). It reveals that, at
the optimum, diversification is a non-decreasing function of portfolio size.

Our next two axioms are inspired by the invariance property of multivariate depen-
dence measure.10 The first axiom is expressed in

Axiom 6 (Translation invariance). Let a = (a, . . . , a)> ∈ RN . Then for each w ∈W,

D(w|R) = D
(
w|R + a

)
. (17)

Axiom 6 states that adding a constant to each asset return does not change the degree
of correlation diversification. The desirability of Axiom 6 comes from the fact that assets’
dependence structure does not change when you add a constant to asset returns.

Note that when risk is defined as a capital requirement (for example Expected Shortfall
or Conditional Value-at-Risk), Axiom 6 can be seen as counterintuitive. As an illustration,
consider D(w|R) defined in Example 3 with $(·) the capital requirement verifying the
property of translation invariance defined as follows (Sereda et al. 2010).

Definition 3 (Translation invariant risk measure). A risk measure $(·) is translation invariant
if for all a ∈ R and X ∈ R, $(X + a) = $(X)− η a with η ≥ 0.

Given w, assume that a =
$(w>R)

η with η > 0. Then $
(
w>R + a

)
= 0, but D(w|R) =

D(w|R + a) ≥ 0. This counterintuitive result can be viewed as over-diversification, and
can be interpreted as an extreme precaution against extreme risk.

The second axiom is expressed in

Axiom 7 (Homogeneity). Let b>0. Then there exists κ ∈ R such that for each w ∈W

D
(
w|bR

)
= bκ D

(
w|R

)
. (18)

When κ = 0, the desirability of Axiom 7 comes naturally from the invariance property
of the multivariate dependence measure. In this case, Axiom 7 ensures that D(w|R) must
not depend on the scale of R.

When κ 6= 0, the desirability of Axiom 7 comes naturally from the fact that there are
dependence measures which are not scale-invariant. An example is relatively expectation
dependence of Wright (1987).

Note that Axiom 7 is also formulated in the weakest possible form, again to provide
a minimum set of axioms. For instance, inspired by the symmetry axiom of dependence
measures, it may be intuitive to replace “b ≥ 0” by “b ∈ R” and “bκ” by “|b|κ”. These
changes will make Axiom 7 stronger and harder to satisfy. It will rule out the use of
asymmetric dependence measure to construct correlation diversification measures.11

Our last axiom presents the behavior of D(w|R) when the sequence R1, . . . , RN are
exchangeable random variables.12 It is expressed in

Axiom 8 (Symmetry). If R1, . . . , RN are exchangeable, then D(w|R) is symmetric in w.

Axiom 8 states that a correlation diversification measure must be symmetric in w
if R1, . . . , RN are exchangeable. The idea behind Axiom 8 is that exchangeable random
variables imply homogeneous risks. Thus, the decision-maker must be indifferent in terms
of diversification between w and Πw, where Π is a permutation matrix.

From Marshall et al. (2011, C.2. and C.3. Propositions, pp. 97–98), Axiom 1 (or 1’)
and 8 taken together imply that D(w|R) is Schur-concave in w when R1, . . . , RN are ex-
changeable. As a result, when R1, . . . , RN are exchangeable, D(w|R) must be a measure of
naive diversification, isotonic with majorization diversification (Ortobelli Lozza et al. 2018)
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and its optimal diversified portfolio w∗ must be the naive portfolio (1/N, . . ., 1/N)>. This
result is consistent with the principle that the exchangeability assumption on R1, . . . , RN is
equivalent to the assumption that the decision-maker has no information about asset risk
characteristics R.

3. Compatibility With Economic Theories

In the literature of risk measurement theories, it was demonstrated that risk measures
derived from an axiomatic approach (i.e., risk measures which are not based on economic
preferences) can be incompatible with economic theories (Denuit et al. 2006; Dhaene et al.
2003; Rothschild and Stiglitz 1970; Tsanakas and Desli 2003). For example, Dhaene et al.
(2003) and Denuit et al. (2006) point out the incompatibility of Artzner et al.’s (1999)
coherent risk measures with expected utility theory. Thus, in this section, we examine the
compatibility of our axioms with economic theories.

We focus on rank-dependent expected utility (RDEU) theory, a non-expected utility
theory first proposed by Quiggin (1982) under the name of anticipation utility theory and
further studied by many economists (see Abdellaoui 2002; Chew and Epstein 1989; Naka-
mura 1995; Quiggin 1993; Quiggin and Wakker 1994; Segal 1993). Our choice of RDEU is
motivated by three considerations. First, it covers the effect of correlation diversification.
Second, it embeds expected utility theory and Yaari’s (1987) dual theory. Third, it success-
fully explains many phenomena and paradoxes that are puzzling within the framework of
expected utility theory, such as the Allais paradox (Quiggin 1993; Starmer 2000), the simul-
taneous risk-averse and risk-seeking behavior (Quiggin 1993), and the poor diversification
funds and stock market participation of risk-averse households (Polkovnichenko 2005).

We follow a commonly used two-step strategy in the literature of risk measurement
theories to control for the compatibility of Artzner et al. (1999)’s axioms with economic
theories (Denuit et al. 2006; Tsanakas and Desli 2003). First, we identify the correlation
diversification measure at the core of RDEU. Second, we test this identified measure against
our axioms to establish the conditions of their compatibility with RDEU theory.

3.1. Identification

Consider a preference relation � onR. We denote by ∼ its symmetric part. Assume
that the preference relation � has RDEU representation. Then, from Konrad (1993) (see
also Denuit et al. 2006; Tsanakas and Desli 2003),

Ri � Rj ⇐⇒ U(w0(1 + Ri)) ≥ U(w0(1 + Rj)), (19)

where
U(R) =

∫ ∞

−∞
u(r)dh(FR(r)), (20)

with w0 the investor’s initial wealth, FR(r) the cumulative function of R ∈ R, u(·) being a
continuous, strictly increasing utility function and unique up to positive affine transforma-
tions, and h(·) being a unique, continuous and strictly increasing distortion function from
[0, 1] into [0, 1] satisfying h(0) = 0 and h(1) = 1. In the rest of the section, we assume that
w0 = 1.

Our identification procedure is based on the notion of preference for diversification.
There are several notions of preference for diversification (see De Giorgi and Mahmoud
2016). We consider the one introduced by Dekel (1989) and extended later by Chateauneuf
and Tallon (2002) and Chateauneuf and Lakhnati (2007) to the space of random variables.
Its definition is as follows.

Definition 4 (Preference for diversification). The preference relation � exhibits preference for
diversification if for any Ri ∈ R and αi ∈ [0, 1], i = 1, . . . , N such that ∑N

i=1 αi = 1,

R1 ∼ R2 ∼ . . . ∼ RN =⇒
N

∑
i=1

αi Ri � Rj for each j = 1, . . . , N. (21)
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Definition 4 states that if assets are equally desirable, then the investor will want to
diversify. A RDEU investor exhibits preference for diversification as defined in Definition 4
if and only if u(·) and h(·) are both concave (see De Giorgi and Mahmoud 2016, Proposition
13). Thus, we limit ourselves to the case where u(·) and h(·) are concave.

Let $C(R) = −C(R) be a risk measure induced by the certainty equivalent C(·) of
U(·). Definition 4 implies that the following equivalent conditions are satisfied

R1 ∼ R2 ∼ . . . ∼ RN =⇒ U

(
1 +

N

∑
i=1

αi Ri

)
≥ U(1 + Rj) for each j = 1, . . . , N; (22)

R1 ∼ R2 ∼ . . . ∼ RN =⇒ $C

(
1 +

N

∑
i=1

αi Ri

)
≤ $C(1 + Rj) for each j = 1, . . . , N; (23)

Because diversification is a risk reduction tool, we focus on (23). Multiplying inequali-
ties in (23) by αj and summing over j, we obtain

$C

(
1 +

N

∑
i=1

αi Ri

)
≤

N

∑
i=1

αj$l(1 + Rj). (24)

From (24), in general (including when assets are not equally desirable) and in line with
Embrechts et al. (2009) (see Equation (11)), the gain of diversification in RDEU theory can
be measured by the difference

DC(w|R) =
N

∑
i=1

wi$C(1 + Ri)− $C

(
1 +

N

∑
i=1

wi Ri

)
. (25)

The correlation diversification measure induced by RDEU is therefore DC(w|R).

3.2. Test

We now test the identified measure DC(w|R) against our axioms. Specifically, we
test whether there exists a concave utility function and a concave distortion function such
that DC(w|R) satisfies our axioms. If this is the case, we consider that our axioms are
compatible with RDEU theory. We analyze two cases:

(1) u(·) is nonlinear and the distribution of asset returns belongs to the location-scale
family. In this case, RDEU theory reduces to mean-variance models including
Markowitz’s (1952) specification.

(2) u(·) is linear and h(·) is nonlinear. In this case, RDEU theory reduces to Yaari’s (1987)
dual theory.

3.2.1. u(·) Nonlinear and Location-Scale Family of Distributions

We assume that u(·) is nonlinear and the distribution of asset returns belongs to the
location-scale family. This family of distributions includes the normal distribution, the
student’s t-distribution and all other elliptical distributions. For more details see Meyer
(1987). Thus, from Konrad (1993),

U(1 + R) =
∫ ∞

−∞
u(1 + µ + σr̂)dh

(
FR̂(r̂)

)
, (26)

where µ = E(R), σ =
√

Var(R) and R̂ = R−µ
σ . The certainty equivalent C(·) of U(·) is

C(µ, σ) ≡ C(1 + R) = u−1(U(1 + R)), where u−1(·) is the inverse of u(·). The induced
correlation diversification measure becomes

DC(w|R) =
N

∑
i=1

wiC(µi, σi)− C(µ(w), σ(w)), (27)
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where µ(w) is the expected return on the portfolio and σ(w) its volatility.
In Proposition 1, we test DC(w|R) in (27) against our axioms.

Proposition 1 (Test: u(·) nonlinear and location-scale family of distributions). If u(·) is
nonlinear and the distribution of asset returns belongs to the location-scale family, then DC(w|R)
satisfies Axioms 1–8 if the certainty equivalent of U(·) has the following additive separable form in
µ and σ

C(µ, σ) = a + b
(

µ− τσ2
)

(28)

with τ > 0, a, b ∈ R and b 6= 0.

From Proposition 1, we therefore have the following result in terms of compatibility
with RDEU theory.

Corollary 1 (Compatibility: u(·) nonlinear, location-scale family of distributions, and
additive separable certainty equivalent). Axioms 1–8 are compatible with RDEU theory if u(·)
is nonlinear, the distribution of asset returns belongs to the location-scale family and the certainty
equivalent of U(·) has the additive separable form in (28).

Below, we present an example of location-scale distribution, u(·) and h(·) for which
Proposition 1 is valid.

Example 5 (h(x) =
∫ x

0 exp(−βF−1
R (t))dt∫ 1

0 exp(−βF−1
R (t))dt

, normal distribution and u(·) negative exponential

utility). Assume that

(i) u(·), h(·) and FR(·) are twice continuously differentiable. Then, U(1 + R) can be written
as an expected utility

U(1 + R) =
∫ ∞

−∞
u(1 + r)h′(FR(r))d(FR(r)) = E(v(1 + R)) (29)

with v(1 + r) = u(1 + r)h′(FR(r));
(ii) FR(·) is strictly increasing;
(iii) u(·) is the negative exponential utility function: u(x) = − exp(−λx) with λ > 0 the

coefficient of risk aversion;

(iv) h(x) =
∫ x

0 exp(−βF−1
R (t))dt∫ 1

0 exp(−βF−1
R (t))dt

with β ≥ 0 a parameter capturing the degree of concavity of h(x);

(v) w>R is a continuous normal random variable.

In the case where β = 0, h(x) = x and we obtain the standard expected utility theory with

C(1 + w>R) = 1 +
(

w>µ− λ

2
σ2(w)

)
, (30)

where µ = (µ1, . . . , µN)
> is the vector of expected return on assets.

Note that Proposition 1 also implies that Axioms 1–8 are compatible with Markowitz’s
(1952) mean-variance model.

3.2.2. u(·) Linear and h(·) Nonlinear: Yaari’s (1987) Dual Utility Theory

Now, we assume that u(·) linear and h(·) nonlinear. In this case, RDEU theory reduces
to Yaari’s (1987) dual utility theory and the certainty equivalent C(·) is U(·) itself (see Yaari
1987, p. 101). The induced correlation diversification measure becomes

DC(w|R) = U(1 + w>R)−
N

∑
i=1

wiU(1 + Ri). (31)
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In Proposition 2, we test DC(w|R) in (31) against our axioms.

Proposition 2 (Test: u(·) linear and h(·) nonlinear). If u(·) linear and h(·) nonlinear, then
DC(w|R) satisfies Axioms 1–8 if h(·) is concave.

From Proposition 2, we therefore have the following result in terms of compatibility
with RDEU theory.

Corollary 2 (Compatibility: u(·) linear and h(·) nonlinear concave). Axioms 1–8 are compat-
ible with RDEU theory if u(·) is linear and h(·) is nonlinear and concave.

Corollaries 1 and 2 demonstrate the compatibility of our axioms with RDEU theory
under some conditions. The conditions in Corollary 1 might be thought to be restrictive,
thereby considerably weakening the desirability of Axioms 1–8, because they require that
risk must be measured by variance. However, this is not the case because the majority
of axioms remain compatible with expected utility theory (u(·) nonlinear and h(·) linear)
when we consider other standard utility functions and/or a non-location-scale family of
distributions. For example, consider the negative exponential utility with a non-location-
scale family of distributions and assume that h(·) is nonlinear concave and the risk premium
is measured using the distortion-exponential principle. The results in the study by Tsanakas
and Desli (2003, Section 5, p. 978) show that, in general, DC(w|R) fails only Axioms 4 and 7,
and will satisfy Axioms 1–8 for small portfolios (small in terms of size) of risks. In sum, our
axioms capture important aspects of RDEU investors’ preference for diversification.

4. Existing Diversification Measures

In this section, we explore whether some useful methods of measuring correlation
diversification satisfy our axioms. We consider the two most frequently used methods on
the marketplace and by academic researchers in portfolio theory:

(i) Portfolio variance
σ2(w|R) = w> Σ w, (32)

where Σ = (σiσjρij)
N
i,j=1 is the variance-covariance matrix.

(ii) Diversification ratio (DR)

DR(w|R) =
w> σ√
w> Σ w

, (33)

where σ = (σ1, . . . , σN)
> is the vector of asset volatility.

Portfolio variance, σ2(w|R), is the risk measure in the mean-variance model. It is usu-
ally used to quantify the benefit of diversification (Markowitz 1952, 1959; Sharpe 1964), and
is formally analyzed as a correlation diversification measure by Frahm and Wiechers (2013).

The diversification ratio, DR(w|R), is a normalized correlation diversification measure
introduced by Choueifaty and Coignard (2008); see also Choueifaty et al. (2013). An intu-
itive interpretation of the DR is the Sharpe ratio when each asset’s volatility is proportional
to its expected premium, i.e., µi − µN+1 = δσi, for each i = 1, . . . , N where δ > 0 and
µN+1 is the return on the risk-free asset. We remark that a general version of DR(w|R), in
terms of risk measure, was analyzed by Tasche (2006) and recently by Han et al. (2022).

Proposition 3 presents the results of our exploration.

Proposition 3 (Test: Existing diversification measures). The following statements hold.

(i) Portfolio variance satisfies Axioms 1–8 if and only if all assets have the same volatility.
(ii) The diversification ratio satisfies Axioms 1’–8.
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Part (i) of Proposition 3 shows that portfolio variance is a coherent correlation di-
versification measure only under the very restrictive (if not impossible) condition that all
assets have identical variances. This result, rather than weakening our axioms, reveals
the limits of portfolio variance as an adequate measure of correlation diversification in the
mean-variance model.13

Part (ii) of Proposition 3 shows that the diversification ratio is a coherent correlation
diversification measure unconditionally. Since the diversification ratio coincides with the
Sharpe ratio if and only if each asset’s volatility is proportional to its expected premium, part
(ii) also establishes that the Sharpe ratio is a coherent correlation diversification measure if
and only if each asset’s volatility is proportional to its expected premium. This result is
summarized in Corollary 3.

Corollary 3 (Sharpe ratio). The Sharpe ratio is a coherent correlation diversification measure if
and only if each asset’s volatility is proportional to its expected premium.

In sum, Proposition 3 strengthens our axioms. They are relevant to two measures with
which we have considerable experience. In turn, several desirability properties of these
two measures can be defended by our axioms. This is also true for their popular use.

We remark that Embrechts et al.’s (2009) class of correlation diversification measures
defined in Example 3 as

D(w|R) =
N

∑
i=1

$(wiRi)− $
(

w>R
)

(34)

also satisfies most of our axioms depending on its underlying risk measure $(·). For
example, in the case where $(·) is the Value at Risk, one can verify that D(w|R) satisfies
Axioms 2, 3 and 5 to 8 and fails Axiom 1 and its weak version 1’ because the Value at
Risk is not a subadditive risk measure. In the case where $(·) is the Conditional Value-at-
Risk or the semi-variance, one can verify that D(w|R) satisfies Axioms 1 to 3 and 5 to 8.
In addition, if D(w|R) satisfies Axiom 4, which is to be demonstrated, then D(w|R) is
coherent. Embrechts et al.’s (2009) class of correlation diversification measures is therefore
a way to construct coherent correlation diversification measures. The challenge is the
choice of its underlying risk measure. In the next section, throughout an example of
a functional representation of our axioms, we provide an alternative way to construct
coherent correlation diversification measures.

5. Example of a Functional Representation

We close this paper by providing an example of a functional representation of our
axioms. Indeed, our axioms are not restrictive enough, as materialized by the weakest form
of Axioms 1’, 4 and 7, to specify a unique family of correlation diversification measures.
This incompleteness is intentional. It allows our axioms to be used for a large family of
correlation diversification measures.

Consider the function d : R2N → R that satisfies the following properties:

(P1) d(w, R) is concave in w for each fixed R ∈ RN ;
(P2) d(Πw, ΠR) = d(w, R) for all permutation matrices Π;
(P3) d(w, R) is Borel-measurable in R for each fixed w.

The result in Marshall et al. (2011, B.1. Proposition, p. 393) implies that when the sequence
R1, . . . , RN is exchangeable, the expectation of d(·, ·), E(d(w, R)), satisfies Axioms 1 and
8. If in addition d(w, R) satisfies Axioms 2–7, then E(d(w, R)) satisfies Axioms 1–8. As a
result, a possible functional representation of our axioms is

D(w|R) = E(d(w, R)), (35)

where d(w, R) satisfies Axioms 2–7 and properties (P1) to (P3).
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The functional representation in (35) is an alternative way to construct new coher-
ent correlation diversification measures. The challenge is the definition of d(w, R). In
Example 6, we present an example of d(w, R).

Example 6 (Diversification returns). Consider d(w, R) such that

d(w, R) =
N

∑
i=1

wi(Ri − µi)
2 −

N

∑
i,j=1

wiwj(Ri − µi)(Rj − µj). (36)

Obviously, d(w, R) satisfies properties (P1) to (P3), and Axioms 2–7. As a consequence, D(w|R) =
E(d(w, R)) is coherent (see Appendix A.1 for the formal proof) and known as the diversification
returns, a popular correlation diversification measure analyzed by Willenbrock (2011), Chambers
and Zdanowicz (2014), Bouchey et al. (2012), Qian (2012), and by Fernholz (2010) but under the
name excess growth rate.

Now, in Counterexample 1, we present a counterexample of the functional representa-
tion in (35) to prove its non-uniqueness.

Counterexample 1 (Diversification Ratio). Consider D(w|R) such that

D(w|R) = DR(w|R). (37)

Part (ii) of Proposition 3 shows that D(w|R) in (37) satisfies our axioms. However, it is straightfor-
ward to verify that it does not have the form in (35).

6. Concluding Remarks and Future Research

In this paper, we have developed an axiomatic system of eight axioms for correlation
diversification measures in a one-period portfolio theory under the assumption of complete
information about the marginal and the joint distributions of assets’ future returns. We have
considered as coherent any correlation diversification measure satisfying these axioms.

Using rank-dependent expected utility theory, we have demonstrated the compatibility
of our axioms with economic investors’ preference for diversification under unrestricted
conditions related to investors’ risk aversion. These results strengthen the economic
desirability, reasonableness and relevance of our axioms.

We have also explored whether correlation diversification measures such as portfolio
variance and diversification ratio, which are used in the academic literature and on the
marketplace, satisfy those axioms. We have shown that this is the case under unrestricted
conditions, except for portfolio variance. These results strengthen both the axioms and the
diversification ratio. However, they reveal the limit of portfolio variance as an adequate
measure of correlation diversification in mean-variance models.

We have also extended the result of the diversification ratio to the Sharpe ratio under
very restrictive conditions. This reveals the limit of the Sharpe ratio as an adequate measure
of correlation diversification in the mean-variance model.

Finally, due to the intentional incompleteness of our axioms, we have provided an
example of a functional representation of our axioms.

Our objective was to offer a first step toward a theory of correlation diversification
measures. We believe that, with our axiomatic system, research is going in the right direc-
tion for better understanding portfolio diversification. Feasible and desirable extensions
for future research are:

(i) To re-examine the compatibility of our axioms considering other risk measures in
rank-dependent expected utility theory, such as the optimal expected utility risk
measures in the study by Geissel et al. (2018) and the extreme risk aggregation
approach in the study by Chen and Hu (2019);

(ii) To extend the compatibility of our axioms to cumulative prospect theory;
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(iii) To investigate what axioms could be added or strengthened in order to provide a
unique family of representations, given that our axiomatic system does not do this;

(iv) To develop more empirical research on portfolio correlation diversification.
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Appendix A. Proofs

Appendix A.1. Proposition 1

Suppose that the certainty equivalent of U(·) has the following additive separable
form

C(µ, σ) = a + b
(

µ− τσ2
)

(A1)

with τ > 0, a, b ∈ R and b 6= 0. Then

DC(w|R) = bτ

(
N

∑
i=1

wiσ
2
i − σ2(w)

)
︸ ︷︷ ︸

Diversification returns

. (A2)

Without a loss of generality we assume that τ = b = 1.

Axiom 1: Since σ2(w) is convex on W, DC(w|R) is concave on W.
Axiom 2: It is straightforward to verify that DC(ei|R) = σ2

i − σ2
i = 0 = D, for each i =

1, . . . , N.
Axiom 3: Since BN+1 = Ak with k ∈ {1, . . . , N} and Bi = Ai for each i = 1, . . . , N,

DC(wB |RB) =
N+1

∑
i=1

wBi σ
2
Bi
−

N+1

∑
i,j=1

wBi wBj ρBi Bj σBi σBj

=
N−1

∑
i=1,i 6=k

wBi σ
2
Bi
+
(
wBN+1 + wBk

)
σ2

Bk

−
N−2

∑
i,j=1,i,j 6=k

wBi wBj ρBi Bj σBi σBj −
N−2

∑
i=1

wBi

(
wBk + wBN+1

)
ρBi Bk σBi σBk .

Let w∗∗A =
(

w∗B1
, . . . , w∗Bk−1

, w∗Bk
+ w∗BN+1

, w∗Bk+1
, . . ., w∗BN

)>
and

w∗∗B =
(

w∗A1
, . . ., w∗Ak−1

,
w∗Ak

2 , w∗Ak+1
, . . .,

w∗Ak
2

)>
. It follows that
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DC(w∗B |RB) = DC(w∗∗A |RA) ≤ DC(w∗A|RA),
DC(w∗A|RA) = DC(w∗∗B |RB) ≤ DC(w∗B |RB).

Then

DC(w∗B |RB) = DC(w∗A|RA)
w∗Ai

= w∗Bi
, for each i 6= k, i = 1, . . . , N

w∗Ak
= w∗Bk

+ w∗BN+1
.

Axiom 4: Since wi ≥ 0, for each i = 1, . . . , N and DC(w|R) = ∑N
i=1 wi‖Ri − w>R‖2

2,
DC(w|R) = 0⇔ Ri = w>R, for each i = 1, . . . , N. The result follows.

Axiom 5: Consider a portfolio wB =
(
w∗A, 0

)> with 0 = (0, . . . , 0)>, where the length of 0
is equal to the cardinal of B minus that of A. Since DC

(
w∗B |RB

)
≥ DC

(
wB |RB

)
and DC

(
wB |RB

)
= DC

(
w∗A|RA

)
, DC

(
w∗B | RB

)
≥ DC

(
w∗A|RA

)
.

Axiom 6: Because covariance is translation invariant.
Axiom 7: Because covariance is homogeneous of degree two.
Axiom 8: Since σi = σj = σ for each i, j = 1, . . . , N and ρij = ρ for each i 6=j = 1, . . . , N when

R1, . . ., RN is exchangeable, DC(w|R) = σ2 − σ2
(

∑N
i=1 w2

i + ρ ∑N
i,j=1 wi wj

)
. It is

straightforward to verify that DC(w|R) is symmetric.

Appendix A.2. Proposition 2

Suppose that h(.) is concave and let us show that DC(w|R) satisfies our axioms.

Axiom 1: Since h(.) is concave, −U(.) is convex onR (Dhaene et al. 2006; Sereda et al. 2010;
Tsanakas and Desli 2003) and consequently, DC(w|R) is concave.

Axiom 2: Let ei ∈ W be a single-asset i portfolio. It is straightforward to show that
DC(ei|R) = U(1 + Ri)−U(1 + Ri) = 0 = D.

Axiom 3: Follows the proof of Proposition 1.
Axiom 4: Since−U(.) is coherent risk measure, comonotonic and non-independent additive

(Dhaene et al. 2006; Sereda et al. 2010; Tsanakas and Desli 2003), DC(w|R) satisfies
Axiom 4.

Axiom 5: Follows the proof of Proposition 1.
Axiom 6: Since h(.) is concave, −U(.) is translation invariant (Dhaene et al. 2006; Sereda

et al. 2010; Tsanakas and Desli 2003). Therefore DC(w|R) is translation invariant.
Axiom 7: Since h(.) is concave, −U(.) is positive homogeneous of degree one (Dhaene

et al. 2006; Sereda et al. 2010; Tsanakas and Desli 2003). Therefore DC(w|R) is
homogeneous of degree one.

Axiom 8: Suppose that R1, . . . , RN is exchangeable. From Marshall et al. (2011, B.2. Propo-
sition, pp. 394), it is straightforward to verify that DC(w|R) is symmetric.

Appendix A.3. Proposition 3

Appendix A.3.1. Portfolio Variance
Sufficiency

Suppose that assets have identical variances and let us show that portfolio variance
satisfies our axioms. It is straightforward to verify that if assets have identical variances,
i.e., σ2

i = σ2, then
w>σ2 − σ2(w|R) = σ2 − σ2(w|R), (A3)

where σ2 = (σ2
1 , . . . , σ2

N)
> is the vector of asset variance. From (A3) and Proposition 1, it

follows that σ2(w|R) satisfies our axioms.
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Necessity

For the converse, suppose that σ2(w|R) satisfies our axioms and let us show that
assets have identical variances. To do so, we proceed by contradiction. Suppose that asset
do not have identical variances and without the loss of generality that N = 2 such that
σ2

1 < σ2
2 . Then σ2(e1|R) < σ2(e2|R). Thus, σ2(w|R) fails Axiom 2. This contradicts our

hypothesis that σ2(w|R) satisfies our axioms. As a consequence, if σ2(w|R) satisfies our
axioms, then assets have identical variances.

Appendix A.3.2. Diversification Ratio

Axiom 1’: Since σ(w) is convex and ∑N
i=1 wiσi is linear on W, from Avriel et al. (2010),

DR(w|R) is quasi-concave.
Axiom 2: DR(ei|R) = σi

σi
= 1, for each i = 1, . . . , N.

Axiom 3: Follows the proof of Proposition 1.
Axiom 4: See Example 4.
Axiom 5: Follows the proof of Proposition 1.
Axiom 6: Because volatility is translation invariant.
Axiom 7: Because volatility is homogeneous of degree one.
Axiom 8: Follows the proof of Proposition 1.

Notes
1 Correlation aversion was introduced as a term by Epstein and Tanny (1980) and as a concept by Richard (1975) but under

the name multivariate risk aversion, and was popularized by Eeckhoudt et al. (2007). In two-attribute utility theory, Eeckhoudt
et al. (2007) define correlation aversion as follows: a decision maker is correlation averse if he/she prefers the 50− 50 lottery
[(x− k, y); (x, y− c)] to the 50− 50 lottery [(x, y); (x− k, y− c)] for all (x, y) ∈ R2

+ such that x− k > 0 and y− c > 0 with k ≥ 0
and c ≥ 0. Richard (1975)’s definition is based on the second-order mixed partial derivatives of the two-attribute utility function:
a decision maker is correlation averse if the second-order mixed partial derivative of his/her two-attribute utility function is
negative. The equivalence between the two definitions can be found in Eeckhoudt et al. (2007); see also Dorfleitner and Krapp
(2007).

2 Several other studies also demonstrated the important role of asset dependence in portfolio diversification with expected utility
theory; see Samuelson (1967), Scheffman (1973 1975), Brumelle (1974), MacMinn (1984) and Wright (1987).

3 We refer readers to Koumou (2020a) for a review of existing measures of correlation diversification.
4 For example, in Artzner et al.’s (1999) monetary risk measurement theory, correlation diversification is taken into account

through the properties of sub-additivity and homogeneity. In Föllmer and Weber’s (2015) monetary risk measurement theory,
correlation diversification is taken into account through the property of convexity. In concave distortion risk measures, correlation
diversification is taken into account through the properties of comonotonic additivity and sub-additivity (Dhaene et al. 2006).

5 For example, in Artzner et al.’s (1999) and Föllmer and Weber’s (2015) monetary risk measurement theories, the possibility of
reducing risks by concentration is taken into account through the property of monotonicity, and is as important as diversification.

6 To illustrate, without loss of generality, consider the variance risk measure and an universe of four assets A1, A2, A3 and A4.
Assume that (σ1 + σ2)

2 < σ2
3 + σ2

4 with σ2
i the variance of Ai, that the correlation between assets A1 and A2 is equal to one

(ρ12 = 1), and that the correlation between assets A3 and A4 is equal to zero (ρ34 = 0). It is easy to verify that the variance of the

portfolio
(

1
2 , 1

2 , 0, 0
)

is lower than the variance of the portfolio
(

0, 0, 1
2 , 1

2

)
. However, portfolio

(
0, 0, 1

2 , 1
2

)
is more diversified in

terms of correlation diversification than portfolio
(

1
2 , 1

2 , 0, 0
)

. Thus, the less risky portfolio is not the more correlation diversified
portfolio. As a result, variance risk measure is not an adequate correlation diversification measure.
Now, assume that the four assets have the same variance σ2. In this case, it is straightforward to verify that the variance of

portfolio
(

1
2 , 1

2 , 0, 0
)

is greater than the variance of portfolio
(

0, 0, 1
2 , 1

2

)
. Thus, the less risky portfolio is the more correlation

diversified portfolio. As a result, variance risk measure is an adequate correlation diversification measure, in this example.
7 Strong risk aversion is equivalent to risk aversion in the sense of a mean-preserving spread as defined by De Giorgi and Mahmoud

(2016, Definition 9, p. 152).
8 More precisely,R = L∞(Ω, E , P) is the space of bounded real-valued random variables on a probability space (Ω, E , P), where Ω

is the set of states of nature, E is the sigma-algebra of events, and P is a sigma-additive probability measure on (Ω, E).
9 A risk measure $(.) is additive for independent risks if for independent X, Y ∈ R, $(X + Y) = $(X) + $(Y) (Sereda et al. 2010).

An example of a risk measure additive for independence is the mixed Esscher premium or the mixed exponential premium analyzed
by Goovaerts et al. (2004).
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10 A dependence measure ρc is invariant if ρc(X1, . . . , XN) = ρc(I1(X1), . . . , IN(XN)) for strictly increasing and continuous transfor-
mations Ii (Schmid et al. 2010, p. 213).

11 A dependence measure ρc is symmetric if ρc(X1, . . . , XN) = ρc(−X1, . . . ,−XN) (Schmid et al. 2010, p. 213, Equation 10.5).
12 The random variables R1, . . . , RN are said to be exchangeable if and only if their joint distribution FR(r) is symmetric. A well-

known example of an exchangeable sequence of random variables is an independent and identically distributed sequence of
random variables. For more details on exchangeable random variables, we refer readers to Aldous (1985).

13 The measure of correlation diversification at the core of the mean-variance model was identified by Carmichael et al. (2022); see
also Koumou (2020b).
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