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Abstract: We develop a novel quantum algorithm for approximating the price of a discrete floating-
strike Asian option based on an underlying valuation tree. The paths of the tree are encoded
in bit-representation into a qubit register, where quantum state preparation is used to load the
corresponding distribution onto the states. We implement the expectation value of the option pricing
formula as a composition of the price probabilities, the payout and an indicator function, mapping
their respective values to amplitudes of additional qubits. Thus, the underlying no longer has to be
discretized into the same bit values for different times, resulting in smaller quantum circuits. The
algorithm may be used with quantum amplitude estimation, enabling a quadratic speed-up over
classical Monte Carlo methods.
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1. Introduction

Due to the progress in developing quantum computers, the research in the field of
industrial applications has intensified in recent years. One important branch of industry is
the financial sector, in which a number of very complex and computer-intensive applica-
tions can be found, e.g., the evaluation of insurance portfolios or the pricing of structured
financial products. Accordingly, the use of a quantum computer for both applications is
investigated, in e.g., Egger et al. (2021). In the field of derivative pricing, the article by
Rebentrost et al. (2018) is considered to be one of the first influential works. They present a
way to price plain vanilla and Asian options in a Black–Scholes framework using quantum
computing. In theory, quantum computers have the potential for a quadratic speed-up
with respect to the number of computational steps compared to classical Monte Carlo
methods used for option pricing. Because current quantum hardware is still small, many
quantum algorithms are of hybrid character, meaning a mixture of classical computer
applications and quantum computations. Therefore quantum speed-up must still be shown.
Stamatopoulos et al. (2020) focus their research on the possibilities and performance of the
currently available noisy intermediate-scale quantum (NISQ, c.f. Preskill (2018)) hardware
to price multi-asset and path-dependent options. Especially latter ones are subject to fur-
ther research, as they are harder to price than path-independent ones and therefore more
promising for the speed-up that quantum computers promise. Likewise, in a Black–Scholes
framework, Chakrabarti et al. (2021) present an algorithm which precomputes standard
normal distributions into quantum states and uses affine transformations to obtain the
asset’s path-dependent return distributions. In addition to this new method, they also
derive bounds on required resources for established quantum algorithms in finance to
reach a practical quantum advantage. Another approach, followed by Miyamoto and Kubo
(2021), is to solve partial derivative equations (PDE) for option prices by using the finite
difference method. They define grit points for the logarithmic value of the underlying
at maturity and calculate its value by using a discretized operator based on the PDE to
describe the evolution. The quantum computer is used to calculate the resulting systems
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of equations. Pricing multi-dimensional derivatives with the help of discretizing their
price PDEs is a method Kubo et al. (2022) use as well. The novelty being that a variational
quantum algorithm (VQA) is used to calculate the development of the underlying. This
allows obtaining helpful results even for small-scaled quantum computers with only a
few qubits available. To demonstrate the possibilities of the currently small quantum
computers, Woerner and Egger (2019) made an application study using real hardware to
calculate the risk measures of a financial portfolio. Since the resources of current quantum
computers are quite limited, simplifications in the financial models are necessary. One
such method is the principal component analysis where a quantum alternative exists as
well. Martin et al. (2021) use a Heath–Jarrow–Morton framework for modeling forward
rates and in doing so show how the model is adapted to the quantum computer. The
application of a quantum gradient estimation algorithm to calculate financial indicators
of sensitivity, so-called Greeks, is illustrated by Stamatopoulos et al. (2022). They present
different approaches and investigate their complexity with respect to the requirements of
quantum computers. We adopt a similar approach as in Blank et al. (2021). They consider a
discrete stochastic process and develop a quantum algorithm to calculate its characteristic
function. This derives the whole probability distribution for the stochastic trajectories
resulting in a valuation tree approach for pricing derivatives. The work by Vazquez and
Woerner (2021) also has to be mentioned, who show an efficient way to prepare quantum
states when employing amplitude estimation and present their findings on a Heston model
for option pricing using real hardware.

The presented research shows that quantum computing becomes more and more
relevant for financial questions as the development of the hardware progresses. Currently,
simulators of quantum computers and real quantum computers are used to make first
experiences with this technology and learn how classically well understood problems can be
solved with the help of the quantum technology. In our work, we aim at contributing to this
development in this exact way. As a use case, we choose an Asian option, which puts some
challenges to pricing due to its path-dependence. Asian options, sometimes equivalently
called traded average price options (TAPOs), are derivatives that are commonly used in
the energy and metal sector for hedging purposes. Using this as an example, we show how
the classical approach of a valuation tree can be decomposed into three modules in order
to be adapted to the requirements of a quantum computer. Each of the three calculation
steps individually can already be evaluated on real quantum computers. As the hardware
is still not powerful enough for the whole problem at once, our evaluations are performed
with the help of a simulator for a quantum computer. Nevertheless, our results show that
in the future, the whole algorithm will be applicable on a real quantum computer. The
decomposition of the algorithm comprises the calculation of the underlying’s probability
distribution, the evaluation of the payoff and the encoding of an indicator function.

This new approach results in substantially less qubits used per time step. By encoding
the underlying as probabilities and not in a bit representation, the derivative can be
priced in a very efficient way. The paper is structured as follows. After presenting the
mathematically formulated problem and the general ideas of our algorithm to solve this
problem in Section 2, we give a quick overview on the underlying techniques used on a
quantum computer in Section 3. Afterwards, in Section 4, we present our implementation in
detail. We finish our research by illustrating the results of the entire algorithm for different
problem sizes on a quantum computer simulator in Section 5. The paper closes with a
discussion of our work in Section 6.

2. Problem and Algorithm

Let (S(t))0≤t≤T be an underlying, stochastic security price process in a financial model
with arbitrary, but known, distribution. Assume the financial model to be free of arbitrage
and that there exists some equivalent martingale measure (EMM) Q. Additionally, let the
first moment of S(t) exist (at least under Q). Then, the fair price of a discrete floating-strike
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Asian option with maturity T and n time steps 0 = t0 ≤ ti < ti+1 ≤ tn = T, i ∈ {1, . . . , n}
is given by (see, e.g., Korn et al. (2010))

C(t) = IEQ

 B(t)
B(T)

(
S(T)− 1

n

n

∑
i=1

S(ti)

)+ ∣∣∣∣∣Ft

, (1)

where Q is the risk-neutral EMM, (Ft)0≤t≤T is a suitable filtration, and 1/B(t) is the
deterministic discount factor at time t. For simplicity, we assume a zero-interest situation,
B(t) = 1 for all t ≥ 0. Additionally, as only the risk-neutral measure Q is relevant for our
computations, for clarity, we may assume that P = Q for some physical measure P. To
summarize, our objective is the computation of

C(0) = IE

(S(T)− 1
n

n

∑
i=1

S(ti)

)+
. (2)

Be aware that a fixed-strike Asian option can be priced with the upcoming algorithm as
well as it is less complex using a constant strike K instead of the variable S(T).

General Idea

Recall that the dynamics of the underlying security S(t) are known. We will now
approximate this security by using a valuation tree with two distinct discretizations. The
first discretization will be completed with respect to time, where we will only use the time
steps ti needed for the Asian option, using the index i to refer to this for the remainder.
The second discretization has to be completed in the range of our underlying for each
respective time step. Here, at time ti, the underlying S(ti) will only be able to equal a finite
amount of values Sk(ti), k ∈ {0, . . . , Ni − 1}, where Ni ∈ N is the number of discretization
points, i.e., nodes. Even though the discretization may change depending on ti, we write k
instead of k(ti) for notational simplicity. Generally, the index k will be used to refer to all
discretizations that do not refer to time. We combine different layers by defining transition
probabilities P

(
Sk(ti)

∣∣ S(ti−1), . . . , S(t0)
)

to approximate the continuous underlying.
One example for a valuation tree would be the Cox–Ross–Rubinstein model by

Cox et al. (1979), where a binomial tree is used to approximate a log-normally distributed
underlying. It has to be stated that for our implementation, we are not only limited to
binomial trees; all scenario trees, with discretely many edges, may be employed.

We denote each possible distinct path through the valuation tree with
xk =

(
Sk1(t1), . . . , Skn(tn)

)
and ki ∈ {0, . . . , Ni − 1}. Consequently, there exist ∏n

i=1 Ni

paths. Let N = dlog2(∏
n
i=1 Ni)e be the number of qubits needed to represent all possible

paths. If N 6= log2(∏
n
i=1 Ni), we may set the upcoming probability of the respective addi-

tional paths f (xk) = 0 for log2(∏
n
i=1 Ni) < k < 2N . This now enables us to approximate

Equation (1) via

C(0) = IE

(S(T)− 1
n

n

∑
i=1

S(ti)

)+
 ≈ 2N−1

∑
k=0

f (xk)︸ ︷︷ ︸
probability

g(xk)︸ ︷︷ ︸
payoff

q(xk)︸ ︷︷ ︸
positive part
as condition

, (3)

where the different functions are accordingly defined as

f (xk) = P
(
(S(t0), . . . , S(tn)) = xk

)
=

n

∏
i=1

P
(

Sk(ti)
∣∣ S(ti−1), . . . , S(t0)

)
,

g(xk) = Skn (T)− 1
n

n

∑
i=1

Ski (ti),

q(xk) = 1{g(xk)>0}.

(4)
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We present a visualization of the proposed algorithm in Figure 1. We start by computing
the possible values of the underlying in our scenario on a classical computer. Then, an N
qubit state register is allocated to represent all paths of the underlying that may possibly
occur during an evolution period comprising n time steps, as shown in Figure 1a. The qubits’
weights (amplitudes) are prepared to correspond to the respective asset probabilities denoted
by the function f . The functions g and q for the payoff are then implemented separately as
unitary transformations controlled by the N qubit state register in Figure 1b. In Figure 1c, they
are recombined to calculate the scaled Asian option price, which can be read out by repeated
measurements. A post-processing step ensures correct re-scaling. Using quantum parallelism,
the option payoffs of all paths can be evaluated simultaneously.

Figure 1. A visualization of the upcoming algorithm as a quantum circuit model. The horizontal lines
represent the used qubits. The black circles show the function’s dependence on the respective qubits.
(a) The given valuation tree is mapped to a qubit register, encoding in the qubit states the asset’s path
values xk. The underlying’s path probabilities f (xk) are associated with the qubit’s state probabilities.
(b) Depending on the path, the payoff g(xk) and indicator function q(xk) are implemented on different
qubits. (c) The functions are combined on a read-out qubit and finally measured.

3. Quantum Programming
3.1. Qubits

A qubit |ϕ〉q is a two-dimensional vector (a, b)T ∈ C2 with the condition that
|a|2 + |b|2 = 1. We may write the qubit in Dirac notation as

|ϕ〉q = a |0〉q + b |1〉q , (5)

where the index denotes the specific qubit, |0〉 = (1, 0)T , |1〉 = (0, 1)T are the computational
basis states and ϕ represents a combination of them. We call a and b the amplitudes of their
respective states, and the probability of measuring the qubit in the respective state is given
by the squared, absolute value of the amplitude.

A quantum register |φ〉s ∈
⊗N

i=1 C2 consists of N qubits and may be represented as
the sum of its computational basis states

|φ〉s =
2N−1

∑
k=0

ak |k〉 . (6)

Here, |k〉 is the binary representation of integer k. For additional clarity, we sometimes
write the number of qubits as an upper index, e.g., we write |0⊗N〉 for an N-qubit register
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with each qubit being in basis state |0〉. The condition on the amplitudes for a quantum
register accordingly changes to ∑2N−1

k=0 |ak|2 = 1.

3.2. Quantum Circuits

A quantum circuit is a model for quantum computations where a computation is a
sequence of gates applied to a set of qubits akin to a bit-based circuit used in classical
computing. Quantum gates are algorithmic steps to the qubits and mathematically ex-
pressed by applying unitary matrices to the vector representation of the qubits. In this
paper, we will primarily make use of the Hadamard gate H used for creating an equal
superposition. Moreover the X-gate which switches amplitudes, the RY-gate and their
conditional variants cU ∈ {cX, cRY} are used respectively. They are defined as:

H =
1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, RY(2θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, cU =


1 0 0 0
0 1 0 0

0
0

0
0

U

. (7)

The controlled operations act on two qubits and are therefore represented by 4× 4 matrices.
The included single-qubit transformation U is only applied to the target qubits if the control
qubit is found in state 1.

3.3. Measurement

Determining the state of a qubit is accomplished by repeated measurements. In
quantum computing, we generally refer to measurements with respect to the computational
basis states, but theoretically, other measurement bases are possible. When a qubit |·〉t is
measured, its probability of being in state |1〉 is given by

P
(
U |0〉t = |1〉

)
:= | 〈1|U |0〉t |2, (8)

where we defined a new notation for easier readability. Here, U is the matrix corresponding
to the used quantum circuit. It is now easy to see that applying the operator RY(2θ) for
θ = arcsin(

√
f ) will generate the result of P

(
RY(2θ) |0〉t = |1〉

)
= f . Because of this, we

will restrict ourselves to the use ofRY-gate for ease of understanding. Circuit optimizations
employing complex-valued rotations may be possible.

3.4. Arithmetics with Amplitudes

Almost every quantum circuit is built up of smaller subcircuits, each implementing a
different part of the computation. It can generally be distinguished between two different
approaches of data encoding when studying these subcircuits: an amplitude-based ap-
proach and a bit-based approach. The bit-based approach encodes data in multiple qubits,
where after measurement, each qubit can be viewed as a bit (due to it collapsing to either
0 or 1), similar to classical computing. The amplitude-based approach encodes data as
amplitudes, making the information available by measuring the number of times a certain
state happens. By doing this, there is no restriction on some discretization that has to be
chosen for the bit-encoding. Hence, we may encode arbitrary values of our underlying for
different time steps and use arithmetics on an amplitude level to combine them precisely.
Therefore, we are quickly going to state one of the main results used for the presented
algorithm, the addition of amplitudes as presented in Vazquez and Woerner (2021).

For n operators Fi generating the state

Fi |x〉s |0〉t = |x〉s
(√

1− fi |0〉t +
√

fi |1〉t
)

, i = 1, . . . , n, (9)

we are able to construct quantum circuits F+ where the probability of our target qubit |·〉t
being in state |1〉 is given by
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P
(
F+ |0〉t = |1〉t

)
=

1
n

n

∑
i=1

fi. (10)

We can also implement a subtraction of amplitudes by employing another cX-gate. In other
words, for quantum circuits Fa and Fb implementing a qubit to be measured in state |1〉
with a probability of fa and fb, respectively, we may construct F− with

P
(
F− |0〉t = |1〉t

)
=

1
2
(1 + fa − fb). (11)

Note that we can retrieve the needed addition or subtraction by proper rescaling of the
resulting probability. An example circuit for F− is given in Figure 2.

a : H
Fa

X Fb
• H

t :

Figure 2. Visualization of the quantum circuit implementing the operator F− for calculating the
difference of two functions fa, fb implemented by the operators Fa,Fb. Note that both functions fa, fb
may also depend on some state register |xk〉 if needed. The last Hadamard application uncomputes
the qubit |·〉a.

4. Quantum Algorithm
4.1. Encoding the Paths

For the implementation of the algorithm on a quantum computer, we have to find a
mapping of all possible paths through the valuation tree to a qubit register. The employed
qubit register will be referred to as the state register for the remainder of this article, and
it consists of N qubits. Assume that in our valuation tree, all nodes of the previous level
are connected to the nodes of the current level. One example of such a mapping would be
to represent the possible values of Sk(ti) with a state |k〉ti

(in binary representation) of a
qubit register. Doing this for all time steps ti, we may combine them to denote the entire
state register by |s〉 = ⊗n

i=1 |ki〉ti
= ∑2N−1

k=0 αk |xk〉, where |xk〉 are the computational basis
states. Each |xk〉 can then be understood as a path taken through the approximating tree
consisting of the individual Ski (ti).

In the following, we will present how each of the functions in Section 1 may be
implemented as a quantum circuit with a single path xk given as an input state. If properly
constructed, we can eventually set our state register |s〉 as a superposition over all the paths
|xk〉 to obtain the simultaneous computation.

4.2. Encoding the Probabilities

Assume we have an operator P that does the following transformation to our state
register:

P |0⊗N〉 =
2N−1

∑
k=0

√
f (xk) |xk〉 = ∑

k1,...,kn

n

∏
i=1

√
P
(
Ski (ti)

∣∣ S(ti−1), . . . , S(t0)
)
|k1〉t1

· · · |kn〉tn
. (12)

Then, the path probabilities are directly encoded in the amplitude of their respective state,
and operators mapping from the state register have the needed probability. Constructing
this operator P as a quantum circuit is generally referred to as quantum state preparation,
and for arbitrary functions f , it requires an exponential number of gates (c.f. Shende et al.
2006; Plesch and Brukner 2011). Finding operators efficiently implementing P is a widely
researched problem with various algorithms available, e.g., Grover and Rudolph (2002),
Zoufal et al. (2019), Holmes and Matsuura (2020), and Zhang et al. (2021). Therefore, let us
assume an appropriate operator to be given.
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4.3. Encoding the Payoff

As previously explained, the algorithm uses the classically computed S(ti) for the
implementation of the option value. To encode them on a qubit amplitude, we need to
ensure that all values are in [0, 1]. This can be completed by using an appropriate scaling
technique. For this purpose, let M := maxti ,k Sk(ti) and define the transformation

Sk
norm(ti) :=

Sk(ti)

M
∈ [0, 1]. (13)

We first focus on implementing the mean of our underlying. Using uniformly controlled
rotations, a technique introduced by Möttönen et al. (2004) and further developed by
Shende et al. (2006), we may construct operators Gti implementing

Gti |k〉ti
|0〉 = |k〉ti

(√
1− Sk

norm(ti) |0〉+
√

Sk
norm(ti) |1〉

)
. (14)

Employing Equation (10), we can construct an operator GM with

GM |xk〉 |0⊗Na〉a |0〉g = |xk〉
1√
n

n

∑
i=0

[
|i〉a

(√
1− Sk

norm(ti) |0〉g +
√

Sk
norm(ti) |1〉g

)]
, (15)

where Na = dlog2(n)e is the amount of additional ancillary qubits needed. These are qubits
that are only used for auxiliary purposes and are not directly depending on the input.
Often, they are reusable at a later point when employing an uncomputing process.

Furthermore, using Equation (11), GM, and two additional qubits |0〉b and |0〉g, we are
able to build an operator G with

G |xk〉 |0〉b |0⊗Na〉a |0〉g = |xk〉
1√
2

{
|0〉b

1√
n

n

∑
i=1
|i〉a

(√
Sk

norm(ti) |0〉g +
√

1− Sk
norm(ti) |1〉g

)

+ |1〉b
1√
n

n

∑
i=1
|i〉a

(√
1− Sk

norm(T) |0〉g +
√

Sk
norm(T) |1〉g

)}
.

(16)

Note that we constructed G in such a way that all the necessary information is loaded on
state |1〉g. Combining G with the probability loading operator P from (12), we obtain the
following probability of measuring the success state |1〉g:

1
2

2N−1

∑
k=0

f (xk)

(
1 + Sk

norm(T)− 1
n

n

∑
i=1

Sk
norm(ti)

)
=

1
2

2N−1

∑
k=0

f (xk)︸ ︷︷ ︸
=1

+
1

2 M

2N−1

∑
k=0

f (xk)g(xk), (17)

where N is the number of qubits in |xk〉, and for the last equality, we used Equation (13).
We may now retrieve g(xk) by the appropriate re-scaling.

Let V be another operator implementing some amplitude v(xk). We want to multiply
v(xk) with the previously constructed g(xk) by, for example, employing a Toffoli gate. This
introduces an error term of v(xk)/2. We can subtract this error term at the cost of another
factor of 1/2 by employing an additional amplitude subtraction, which accordingly yields

P
(

V |0〉v G |0〉g = |1〉z |1〉g
)
=

1
2
+

1
4 M

2N−1

∑
k=0

v(xk) g(xk). (18)

We will use this method to combine g(xk) with the positive part q(xk) introduced in the
next part.
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4.4. Encoding the Positive Part

Remember that all the constructed values are encoded in probabilities and not in
qubit states. Because of this, accessing them is difficult and generally completed using
measurements. This complicates a possible implementation of the positive part. Neverthe-
less, Koppe and Wolf (2022) showed how to construct a quantum circuit that implements
the positive part depending on some input angle θ of an RY-gate. We may employ this
technique by carefully encoding the needed option payoff as the final angle of a series of
rotations. A visual representation of our encoding and how this constructs the needed
input angle is shown in Figure 3. To be more precise, we construct a circuit GbD(θ) with
approximation level D implementing

P
(

GbD(θ) |0⊗2D−1〉 |0〉 = |0⊗2D−1〉 |1〉
)
=

sin2D+1
(θ)

sin2D+1
(θ) + cos2D+1(θ)

≈
{

0 if θ ≤ π
4 ,

1 if θ > π
4 .

(19)

Figure 3. Representation of the quantum algorithm implementing the positive part of the value at
maturity for n = 2. As the RY-gate only rotates about the Y-axis, we can illustrate the employed
rotations by showing the relevant 2-dimensional Bloch sphere of the used qubit. The used rotations
are shown above, and the corresponding values are shown below. In the last step, the employed
gearbox circuit sets a qubit in state |1〉 for angles above π/4 and in state |0〉 for angles below π/4,
ultimately implementing the needed function q(xk) as shown in Equation (22).

The right-hand side of Equation (19) contains the limit value of a Fourier series

a0 +

n f

∑
j=1

aj cos(2jθ)
n f→∞
−−−→ 1

22D−1
(

sin2D+1
(θ) + cos2D+1(θ)

) . (20)

For the evaluation of the probability, the order of the Fourier expansion n f has to be decided
for being able to implement a simultaneous computation. Due to the periodicity of the
right-hand side, only cosine terms are needed. We denote the resulting circuit we employ

by GbD
n f
(θ)

n f→∞
−−−→ GbD(θ). As the circuit GbD

n f
(θ) employsRY-gates, we may use the fact

that RY(θ1)RY(θ2) = RY(θ1 + θ2) to implement the angle θ used for Equation (19) as a
sum of individual angles θi with

θ0 = π/4, θi = −
1
n

S̃k
norm(ti), i = 1, . . . , n, θn+1 = S̃k

norm(T), (21)

where S̃k
norm(ti), with

∣∣∣S̃k
norm(T)−∑n

i=1 S̃k
norm(ti)

∣∣∣ < π/4, being a scaled-down version of

Sk(ti). In other words, each asset value now corresponds to a rotation resulting in
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P

(
GbD

n f

(
n+1

∑
i=0

θi

)
|0⊗2D−1〉 |0〉 = |0⊗2D−1〉 |1〉

)

≈ 1
22D−1

q(xk) =
1

22D−1
·
{

0 if S(T)− 1
n ∑n

i=1 S(ti) ≤ 0,
1 if S(T)− 1

n ∑n
i=1 S(ti) > 0.

(22)

4.5. Concatenate Circuits and Resulting Computation

Let us now concatenate the above circuits as a new circuit Z combining their respective
target qubits using a multi-controlled X-gate on a new target qubit we denote as |·〉z. The
resulting probability is then given as

P(Z |0〉z = |1〉z) ≈
(

1
2
+

1
22D−1 4M

2N−1

∑
k=0

f (xk)g(xk)q(xk)

)
. (23)

When executing the quantum circuit Z multiple times and counting the number of times
state |1〉z was measured, we obtain an estimator P̂ for the probability P(Z |0〉z = |1〉z) and
may retrieve an estimator for the fair option price by rescaling the result as

22D−1 4M
(

P̂− 1
2

)
≈ IE

(S(T)− 1
n

n

∑
i=1

S(ti)

)+
. (24)

The complete quantum circuit is presented in Figure 4.

t1 :

P

G
GbD

n f

t2 : f (xk)

t3 :
anc0 :

g : • g(xk)

anc1 :

q : • ≈ q(xk)

z : f (xk)g(xk)q(xk)


state

register

Figure 4. A visual representation of the quantum circuit to price a floating-strike Asian option for
n = 3. For |·〉g and |·〉q, the probability of measuring them in state |1〉, given the state register is in
state |xk〉, is shown at the right-hand side. We abbreviated the ancillary qubit registers needed for the
circuit parts G and GbD

n f
with anc0 and anc1, respectively. Note that, as described in Equation (22),

the q(xk) is approximated.

4.6. Amplitude Estimation and Quantum Speed-Up

The quantum speed-up for computing expectation values derives from the use of
quantum amplitude estimation (AE) introduced by Brassard et al. (2000). Given an operator
Z implementing the transformation

Z |0⊗N〉a |0〉z =
√

1− z |φ0〉a |0〉z +
√

z |φ1〉a |1〉z , (25)

AE allows us to estimate the probability of the state |1〉z being measured with a convergence
speed of O(1/Ns), where Ns is the number of circuit executions. Montanaro (2015) pre-
sented that if this amplitude is carefully constructed to represent an expectation value, this
estimator converges faster than classical Monte Carlo methods converging withO(1/

√
Ns).

By construction, our quantum circuit is compatible with AE; therefore, a quantum speed-up
could be achieved. Further information on AE for derivative pricing can be found in
Chakrabarti et al. (2021).
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4.7. Dividing the Circuit into Subcircuits to Reduce Depth

It is possible to divide our circuit into smaller subcircuits and recombine their results
to be able to omit the scaling factor of 1/4 introduced by the amplitude arithmetics and to
reduce depth, i.e., the number of gates employed in a single quantum circuit. This can be
helpful as current quantum devices have a high rate of error per two-qubit gate. One such
division can be made for g(xk). Let us define two new functions by

g(xk) = Sk(T)− 1
n

n

∑
i=1

Sk(ti) =: g+(xk)− g−(xk). (26)

We construct new circuits where instead of g we use g±, resulting in circuits Z± no longer
employing the amplitude subtraction. We may subtract their results on a classical computer
to obtain

P(Z+ |0〉z = |1〉z)− P(Z− |0〉z = |1〉z)=̂
1

22D−1 M
IE

(S(T)− 1
n

n

∑
i=1

S(ti)

)+
. (27)

Moreover, we may split the subcircuit implementing the Fourier approximation, where as
a result, each term of the series corresponds to a new subcircuit. As this is a technical detail,
we already assumed this for the computations performed above.

5. Results
Application to Binomial Model

We will apply the presented algorithm to the Rendleman and Bartter (1979) binomial
model, which is a binomial model with equal probabilities for up and down jumps, and
which satisfies the moment conditions for the application of Donsker’s theorem (c.f. Korn
et al. 2010, Theorem 4.17). Due to current hardware restrictions, we evaluate the algorithm
on a quantum computer simulator. We employ the previous notation for our Asian option
and choose time steps of length ∆t = T/n with maturity set to T = 1. Our underlying
starts at S(0) = 1, and for each time ti = i ∆t, i = 1, . . . , n, we assume our underlying to
evolve under the risk-neutral measure Q with

S(ti+1) =

{
uS(ti) with probability 1/2,
dS(ti) with probability 1/2,

(28)

where

u = e
(

r−σ2/2
)

∆t+σ
√

∆t, d = e
(

r−σ2/2
)

∆t−σ
√

∆t. (29)

Each ti used in the valuation tree will be included in our Asian option. As in (2), we assume
a zero interest, i.e., r = 0. We choose σ = 0.2. We simulated our quantum algorithm for
n = 5 time steps, approximation levels D = 1, 2 for the indicator function to calculate the
positive part, and we varied the number of terms n f used in the Fourier expansion.

The most important decision when employing our algorithm is the qubit mapping
of the valuation tree to the state register. In this case, we aimed for minimal qubit depth,
introducing one qubit for each time step. Measuring this qubit in state |0〉 or |1〉, respectively,
corresponds to the upper or lower path taken. The ensuing state register consists of n
qubits. Setting the state register in a uniform superposition with the help the Hadamard
gates encodes the probability of p = 1/2 directly, omitting the need for an additional circuit
implementing P. Each of the possible values of our underlying Ski

(ti) can be uniquely
mapped to a series of up or down decisions, enabling a straightforward implementation
of the conditional payoff with g(xk) and q(xk). In our implementation, we are not able to
employ amplitude estimation due to circuit depth restrictions of the simulator.

To begin with, we set our state register in each of its computational basis states
corresponding to a single path taken to see the approximation for the corresponding
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option value. In the upper row of Figure 5, the analytical probability as well as the circuit
result for 107 shots are shown for n = 5. In the lower row, the corresponding errors are
visualized. One circuit shot refers to one execution of the quantum circuit resulting in
a single measurement. Observe that for approximation level D = 1 of the positive part
presented in Figure 5d, the error is comparatively large about 0, but it vanishes for outer
values. As most evaluated values are about 0, decreasing the error about 0 is crucial. As
expected, the error decreases significantly for approximation level D = 2. Nevertheless, the
better approximation of the positive part q(xk) also introduces the need for more terms n f
in the Fourier expansion, the influence of which can be seen when comparing Figure 5e,f.

Figure 5. Comparison of different approximation levels D and terms in the Fourier series n f when
evaluating an Asian option on a quantum computer simulator for different paths of the underlying
valuation tree. In (a–c), we compare the circuit result (blue) for 107 executions to the analytical value
(orange) we expect, and we try to approximate the option payoff (green). In (d–f), we present the
respective absolute errors of the circuit and analytical results to the option payoff.

Subsequently, the state register |xk〉 is set to an equal superposition using Hadamard
gates, enabling the simultaneous evaluation of each path. In Figure 6, results for the full
pricing algorithm are shown for various parameter combinations. Each data point was
generated by 106 circuit shots, and each histogram consists of 100 different data points.
The respective mean in black (which consequently corresponds to a quantum circuit being
executed 108 times) and the exact result of the classically evaluated binomial tree in red are
depicted for each data set. Multiple observations can be made. In Figure 6a, approximation
level D = 1 results in a noticeable bias, c.f. Figure 5a. By increasing the approximation
level to D = 2 in Figure 6b,c, the bias is reduced. Figure 6b uses a Fourier expansion
with n f = 5 terms, and as a result, the under-estimation for paths with payoff about 0
is leveled by outer payoffs, c.f. Figure 5b. Increasing the terms of the Fourier expansion
to n f = 8 in Figure 6c decreases the outer errors as shown in Figure 5c. Consequently,
the under-estimation for payoffs about 0 is no longer leveled, and the total bias increases
again. Note that the over-estimation, hence, the smaller bias of Figure 5b, depends on
the payoff range. When employing the algorithm for other valuation trees, additional
under-estimations are possible.



Risks 2022, 10, 221 12 of 14

Figure 6. Histograms of quantum simulator results for full pricing algorithm with state register in
uniform superposition, i.e., simultaneous computation of all paths for n = 5 time steps, gearbox ap-
proximation levels D and terms in the Fourier expansion n f : (a) D = 1, n f = 4, (b) D = 2, n f = 5, and
(c) D = 2, n f = 8. 100 circuit results are presented, where each result consists of 106 circuit executions.

In Table 1, we present the cX-gate count and qubit amount needed for each of the three
used parameter combinations, which are currently the main criteria for a quantum circuit
to be implementable on real NISQ hardware. Current state-of-the-art quantum hardware
can execute circuits with reliable results with up to 30 cX-gate applications. Note that in
our implementation, we split the main circuit into multiple subcircuits, each implementing
a term for the Fourier series approximation and g+(xk) or g−(xk), respectively. Because
of this, the cX-gate count is the same for variants (b) and (c). The metric is dominated by
the uniformly controlled rotations each requiring O(2n) cX-gate applications as proven in
Shende et al. (2006). The linear scaling in the amount of qubits needed can also be seen,
increasing only in the qubits needed for the path encoding and the dlog2(n)e ancillary
qubits needed for the implementation of G.

Table 1. Required cX-gate counts and circuit width (number of used qubits) for a single subcircuit
and number of subcircuits used in the presented algorithm with parameters (a) D = 1, n f = 4,
(b) D = 2, n f = 5 and (c) D = 2, n f = 8, for a varying number of time steps n.

Parameters
n Number of Subcircuits

2 3 4 5 6

(a) cX 67 141 243 473 847 8Width 13 15 16 18 19

(b) cX 89 187 337 663 1229 10Width 17 19 20 22 23

(c) cX 89 187 337 663 1229 16Width 17 19 20 22 23

6. Discussion

We developed a novel quantum circuit to efficiently price discrete floating-strike
Asian options using quantum computing. The implementation uses a combination of
amplitude-based arithmetics and the application of an amplitude-based unit step function
to efficiently construct the fair price of the option as the amplitude of a quantum state.
Additional quantum algorithms may be employed, resulting in the possibility of a quantum
speed-up if larger, fault-tolerant quantum hardware becomes available in the future. This
research further presents the applicability of quantum computing in the area of finance, risk
management and insurance, and it should increase awareness of the upcoming changes
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in computational methods provided by quantum technology. The algorithm has been
simulated using the Qiskit simulator by Sajid et al. (2021), showing that the expected results
can be produced. The method may be generalized to use for other derivative pricing
algorithms that are sensitive to discretization errors. Depending on the implementation of
the valuation tree, a comparatively small amount of qubits suffices for the construction. As
there are quantum computers being developed with limited qubit availability (c.f. Pezzagna
and Meijer 2021), this might prove to be a major advantage.

Subject to further research could be the application to different types of options such
as the cliquet option (c.f. Bernard and Li 2013) used for example in life insurance contracts.
As they are financed by surpluses of the general account, they allow both participation
at the capital market and investing the premiums rather safely in the general account.
Alternatively, the employment of different quantum circuits for the more optimized imple-
mentation of the various functions is of interest. A different application of our technique
would be the combination of the presented approach of using an amplitude-based positive
part with established quantum algorithms utilizing a bit-based encoding. This could reduce
circuit depth and qubit amounts, bringing us one step further to quantum advantage.
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