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Abstract: The curse of dimensionality problem refers to a set of troubles arising when dealing
with huge amount of data as happens, e.g., applying standard numerical methods to solve partial
differential equations related to financial modeling. To overcome the latter issue, we propose a Deep
Learning approach to efficiently approximate nonlinear functions characterizing financial models
in a high dimension. In particular, we consider solving the Black–Scholes–Barenblatt non-linear
stochastic differential equation via a forward-backward neural network, also calibrating the related
stochastic volatility model when dealing with European options. The obtained results exhibit accurate
approximations of the implied volatility surface. Specifically, our method seems to significantly reduce
the neural network’s training time and the approximation error on the test set.

Keywords: Black–Scholes–Barenblatt; neural networks; stochastic volatility models

JEL Classification: C45; C63

1. Introduction

The curse of dimensionality problem refers to a set of troubles that arise when dealing
with big data. Classical methods for solving partial differential equations suffer from this prob-
lem, especially in the financial field (Bayer and Stemper 2018; Wang 2006; Weinan et al. 2019).
For example, we can think of the non-linear Black–Scholes equation for pricing financial
derivatives in which the number of considered underlying assets gives the dimensionality
of the Partial Differential Equation (PDE). The latter scenario, from a purely mathematical
point of view, typically translates in the need of approximating nonlinear functions in a high
dimension. An effective solution can be obtained exploiting a Deep Learning approach,
namely using a particular type of Machine Learning (set of) solutions. For the sake of
completeness, let us recall that Machine Learning (ML) is the branch of computer science
in which mathematical and statistical techniques are used to give computer systems the
ability to learn through data. There are two main branches of ML algorithms: Supervised
Learning and Unsupervised Learning. The former use labeled datasets while the latter use
unlabeled data. The increase of available data in recent years and the need to analyze them,
finds in Machine Learning the ideal tool. Indeed, the peculiar features and the change
of programming paradigm of the latter, make it the best candidate to solve problems
with huge number of data in different fields. For example, computer vision, natural lan-
guage processing, time series analysis, differential equation. Many papers have been pub-
lished with the aim of improving theoretical and empirical knowledge; see, among others,
Germain et al. (2021); Han (2016) and (Carleo and Troyer 2017). This fame inspires specula-
tions that Deep Learning might hold the key to solving the curse of dimensionality problem.

Neural networks (NNs) are the backbone of deep learning algorithms and their use
to solve real-world problems. Indeed, even if their conceptual development can be dated
back to several years ago, only during last few years, particularly since powerful hardware
became economical affordable, they proved to be concretely and efficiently applied to
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fruitfully solve complex tasks dealing with huge amount of data. The latter is the case,
e.g., of NNs-steered solution to forecast financial scenarios, aggregate energy consumption,
social events, etc.

In this paper, we aim at showing how to use NNs toward two financial connected goals:
find a solution of a particular non-linear stochastic differential equation (the Black–Scholes–
Barenblatt one) via a forward-backward neural network and to calibrate a stochastic
volatility model (the Heston model) using a NN-structure for regression. In both cases,
we deal with European option-based pricing models. The two goals are strictly connected
from a financial point of view, because the first one provides a solution to the option pricing
perspective, while the second covers the model calibration task. Even if they seem different
from a mathematical point of view, we underline that the specific features of the proposed
methodology allow us to solve them with similar Neural Network specification.

The rest of the paper is divided as follows: Sections 2 and 3 provide an overview of
Backward Stochastic Differential Equations (BSDE) and Neural Networks, respectively,
while Section 4 is devoted to depicting the link between BSDEs and NNs, to analyze the
type of NN that we choose and why we have considered this specific option. In Section 5,
we exploit the obtained findings to calibrate the above mentioned rough stochastic volatility
model with NN and in Section 6 we show the empirical results. Finally, Section 7 states our
conclusions with possible outlooks. Finally, Appendixes A and B collect the main notation
and definitions respectively.

2. Backward Stochastic Differential Equations

BSDEs were first introduced in Bismut (1973), where the author described them in
connection with stochastic control problems. Then, stochastic control cases have been
widely investigated during the 1970s by Bismut himself, as well as by, e.g., Bensoussan;
Haussmann; and Kushner, particularly under no control on the diffusion coefficient, while
Pardoux and Peng gave a full presentation in Mao (1995). Nowadays, the theory of
the hedging and pricing of a contingent claim is typically expressed in terms of a linear
Backward Stochastic Differential Equation (BSDE) of Ito’s type. Along the latter lines, let us
start defining a filtered probability space, endowed with the usual conditions (Ω, (Ft),F,P),
where the filtration (Ft) is the one generated by a standard, real-valued, d− dimensional,
d ≥ 1, Brownian motion W = {Wt : t ≥ 0}, defined on Ω. Accordingly, we define a linear
BSDE as follows: {

−dYt = + f (t, Yt, Zt)dt− ZtdWt, t ∈ [0, T]
YT = ζ ∈ Lp(Ω,FT ,P) ,

(1)

or, equivalently,

Yt = ζ +
∫ T

t
f (s, Ys, Zs)ds−

∫ T

t
ZsdWs .

The solution of (1) is a pair of processes (Y, Z) such that Y is continuous and adapted,
and Z is predictable and satisfies

∫ T
0 |Zs|2ds < ∞ a.s.

The parameters f and ξ are called standard parameters if:

• ζ ∈ L2
T(Rd), where L2

T(Rd) is the space of Ft-measurable random variables ξ s.t.
E(|ξ|2) < ∞

• f (t, 0, 0) ∈ H2
T(Rd) ∀t ∈ [0, T], where H2

T(Rd) is the space of predictable process Y
s.t. ||Y||2 = E(

∫ T
0 |Yt|2dt) < ∞)

• f is uniformly Lipschitz: there exists L s.t.

| f (t, y1, z1)− f (t, y2, z2)| ≤ L(|y1 − y2|+ |z1 − z2|)

for any y1, y2, z1, z2.
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Theorem 1. Given the standard parameters, the BSDE (1) has a unique solution (Y, Z) in
H2

T(Rd)× H2
T(Rd×n).

See El Karoui et al. (1997) for the proof.

Forward–Backward Stochastic Differential Equation

As in the previous case, let us start considering a standard probability space (Ω,F ,P),
and a d-dimensional Brownian motion W = {Wt : t ≥ 0}, where {Ft} = σ{WS : 0 ≤ s ≤ t}.
Then, we define a Forward–Backward Stochastic Differential Equation (FBSDE), as follows:{

Xt = x +
∫ t

0 b(s, Xs, Ys, Zs)ds +
∫ t

0 σ(s, Xs, Ys)dWs

Yt = g(XT) +
∫ T

t b̂(s, Xs, Ys, Zs)ds +
∫ T

t σ̂(s, Xs, Ys, Zs)dWs ,
(2)

where the processes X, Y and Z are in Rn,Rd and Rd×n.

Definition 1. A triple of stochastic processes (X, Y, Z) : [0, T]×Ω→ Rn ×Rd ×Rd×n is called
an ordinary adapted solution of FBSDE (2) if it is {Ft}-adapted, square integrable and satisfies (2),
P-a.s.

We can also rewrite the system of Equation (2) in a pure forward differential form
as follows: 

dXt = b(t, Xt, Yt, Zt)dt + σ(t, Xt, Yt)dWt

dYt = −b̂(t, Xt, Yt, Zt)dt− σ̂(t, Xt, Yt)dWt

YT = g(XT) , X0 = x .

(3)

also called a stochastic two-point boundary value problem.
In Pardoux and Tang (1999), it is shown how a couple of FBSDEs of (3)-type are

connected to:
ut = f̃ (t, x, u, Du, D2u) , (4)

a quasi-linear partial differential equation with terminal condition given by u(T, x) = g(x)
and where u(t, x) is the unknown solution. The function f (t, x, u, Du, D2u) is:

f̃ (t, x, u, Du, D2u) = ϕ(t, x, u, Du)− µ(t, x, u, Du)′Du− 1
2

Tr[σ(t, x, u)σ(t, x, u)′D2u] ,

where Du, resp. D2u, is the gradient, resp. the Hessian matrix, of u. Then, by the Ito’s
lemma, solutions to (3) and (4), are related by:

Yt = u(t, Xt) Zt = Du(t, Xt) . (5)

3. Neural Networks

An Artificial Neural Network (ANN) is a mathematical computing system inspired
to the biological neural network of mammals brain. It is composed by nodes and neurons
that learns from the input data, through a training process, and use information to set the
parameters; the latters are called weights. Mathematically speaking, a Neural Network can
be formalized as a directed graph in which the neurons are nodes and every node receives
signals from the external environment or from other neurons. An activation function is
contained in every neuron and aims to regulate and propagate signals throughout the
network; see Sharma et al. (2020) for further details. The connections topology plays
a crucial role in neural networks: we can distinguish the connection structure between
Feedforward Neural Network and Recurrent Neural Network. Indeed, the former can
be represented by a directed acyclic graph, while the latter has feedback connections
and cycles.

In the late 1980s, the first multilayer feedforward neural network was built
(Svozil et al. 1997) and presents a sequence of neuron layers connected in a cascade. This
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type of neural network belongs to the larger family of Deep Neural Networks (DNN). One
of the main goal of DNN, is to build a general tool to approximate continuous functions,
and this took shape by the Universal Approximation Theorem (Cybenko 1989):

Theorem 2. Let N(σ) denote the space of functions that a fully connected neural network with
activation function σ : R→ R, a single hidden layer with a finite number of neurons l ∈ N and a
linear output layer can represent, that is,

N(σ) =

{
f : R→ R | f (x) =

l

∑
i=1

wiσ

(
d

∑
j=1

w̄(i)
j xj + b̄(i)

)
+ bi

}
for some w, b ∈ Rl and w̄(i), b̄(i) ∈ R, 1 ≤ i ≤ l

Assuming that the activation function σ : R→ R is non-constant, unbounded and continuous,
N(σ) is dense in C(X) for compact X ⊆ R in the uniform topology.

See Cybenko (1989) for the proof of Theorem 2.
The main components of Deep Neural Networks are the following:

• input layer composed by n units, where n is the number of network entrances (n is
the dimension of the features’ vector);

• hidden layer with L− 1, L ≥ 2 neurons and outputs connected with the inputs of the
following layer;

• output layer composed by K ≥ 1 neurons that describe the network outputs;
• A set of directed and weighted edges (called w) that represent all possible connections

among layers.

Figure 1 describes an example of a deep neural network.

Input
Layer

Hidden Layer

Output
Layer

Figure 1. Example of Deep Neural Network Schema. In green the neurons of input layer, in blue the
neurons of hidden layers and in red the neurons of output layer.

Every node, no matter about the layer it belongs to, is considered as an operator
performing a weighted sum of its inputs (possibly of multi-dimensional type), also adding
possible sources of noise (usually described by a white noise or a standard Brownian
motion), to then obtain a non-linear composition by mean of a scalar function σ : R→ R. If
we consider an input x ∈ Rd, d ∈ N , the output of every node is given by:

y = σ(wTX + b) ,

where the function σ is the so-called activation function, usually assumed to be non-
decreasing, continuous and bounded, see, e.g., Sharma et al. (2020) for details.



Risks 2022, 10, 227 5 of 19

Deep neural network techniques require an initial training procedure to find the
optimal weights ω ∈ Rn. This is usually conducted by combining the backpropagation
algorithm (Rumelhart et al. 1986) for the computation of loss function’s gradient and
the gradient descent algorithm proposed by Augustin-Louis Cauchy in 1847, to update
the network weights. The gradient descent algorithm requires the computation of the
derivatives of the loss function with respect to all the parameters: this could be a problem if
we are working with a large number of features because all the computations take too long.
To avoid this, Robbins and Monro (1951) proposed the Stochastic Gradient Descent (SGD)
that uses only a single sample to perform each iteration. However, the path of the algorithm
is usually noisier than the standard Gradient Descent algorithm, but (Kingma and Ba 2014)
proposed Adam optimizer that is able to solve this issue combining two extension of classic
SGD: Momentum and Root Mean Square Propagation.

4. Solution of FBSDEs via NNs

Let us consider the following FBSDE:

dXt = µ(t, Xt, Yt, Zt)dt + σ(t, Xt, Yt)dWt , t ∈ [0, T]

X0 = ξ

dYt = ϕ(t, Xt, Yt, Zt)dt + Z′tσ(t, Xt, Yt)dWt , t ∈ [0, T]

YT = g(XT) ,

(6)

where Wt is a vector-valued standard Brownian motion. By (5), the solution to (6) can be
expressed as a deterministic function of time under state process X, in particular, via Itô’s
formula, we have:

∂uj

∂t
= ϕ(t, x, u, Du)− µ(t, x, u, Du)′Du− 1

2
Tr[σ(t, x, u)σ(t, x, u)′D2u]

u(T, x) = g(x) ,
(7)

where Du is the gradient vector and D2u denotes the Hessian matrix. Our aim is to
approximate the solution u of the latter equation applying the automatic differentiation
method, see (Baydin et al. 2018), as to approximate the gradient vector Du(t,x). We start
discretizing Equation (6) by the standard Euler-Maruyama scheme:

Xn+1 ≈ Xn + µ(tn, Xn, Yn, Zn)dt + σ(tn, Xn, Yn)dWn

Yn+1 ≈ Yn + µ(tn, Xn, Yn, Zn)dt + (Zn)′σ(tn, Xn, Yn)dWn ,
(8)

where n = 0, 1, . . . , N − 1, ∆tn := tn+1 − tn = T/N and ∆Wn ∼ N(0, ∆tn) is a random
variable with mean 0 and standard deviation given by

√
∆tn.

We consider the following loss function:

M

∑
m=1

N−1

∑
n=0
|Yn+1

m −Yn
m −Φn

m∆tn − (Zn
m)
′Σn

m∆Wn
m|2 +

M

∑
m=1
|YN

m − g(XN
m )|2 . (9)

Here, M describes the number of different realizations of the underlying Brownian
motion. Furthermore we consider:

Φn
m := ϕ(tn, Xn, Yn, Zn) , Σn

m := σ(tn, Xn
m, Yn

m) ,

in which m represent the m-th realization of the underlying Brownian motion and n the
time tn. From Equation (5) we have:

Yn
m = u(tn, Xn

m) , Zn
m = Du(tn, Xm

n ) ,
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from which we derive that the loss Function (9) is a function of the parameters of the neural
network u(t, x).

5. Model Calibration via NN

A fundamental step in developing concrete forecasting solutions, mainly because of
lack of explicit solutions, is the so called model calibration (set of) procedure(s). The latter
can be seen as the search of the parameters’ values optimizing the adherence of the model
output to real data. Within such scenario, in what follows we provide an efficient neural
network based model aiming at calibrating the Heston model, see (Heston 1993), parameters
based on specific time series.

The Heston model is a stochastic volatility model that describes both the dynamics
of the asset price S = (St)t∈[0,T] and the instantaneous variance process ν = (νt)t∈[0,T].
Specifically:

dSt = rStdt +
√

vtStdW̃(S)
t , t ∈ [0, T]

dνt = λ(ν̄− νt)dt + η
√

νtdW̃(V)
t , t ∈ [0, T] .

(10)

W̃(S) and W̃(V) are two correlated Brownian Motion with correlation parameter ρ, λ is
the variance mean reversion speed, ν̄ is the long term variance, ν0 is the initial value of
variance, and η represent the volatility of variance.

Since we do not have an analytical solution for the proposed problem, we might solve
the weighted non-linear least squares problem using Levenberg–Marquardt algorithm
(Moré 1978). The trouble of this algorithm is the time consuming and the labour intensive
that make efficient calibration prohibitively expensive. We avoid this problem exploiting
a Neural Networks based approach. In particular, we first build a multi-layered artificial
neural network, in the spirit of Bayer and Stemper (2018), to then improve accurancy
exploiting a Long Short Term Memory (LSTM) solution. All NNs are used to closely
approximate the function ϕ through input-output pairs {(xi, ϕ(xi))}N

i=1 called labeled data.

5.1. Calibration Objective

We consider the Heston model in (10) with model parameters µ ∈ M ⊆ Rm and
market information ξ ∈ ε ⊆ Rk (A10). Let the market implied volatility (IV) quotes

Q :=
(

Q(M(1), T(1)), . . . , Q(M(N), T(N))
)T
∈ RN of N European options with moneyness

M(i) and time to maturity T(i). The corresponding model IV quotes are:

ϕ(µ, ξ) :=
(

ϕ
(

µ, ξ, M(1), T(1)
)

, . . . , ϕ
(

µ, ξ, M(1), T(1)
))T
∈ RN .

We define the residual function R(µ) :M 7→ RN as

R(µ) := ϕ(µ, ξ)−Q. (11)

The calibration objective is achieved by minimizing the following quantity:

µ∗ = arg min
µ∈M

∣∣∣∣∣∣W 1
2 R(µ)

∣∣∣∣∣∣2
2
= arg min

µ∈M

∣∣∣∣∣∣W 1
2 [ϕ(µ, ξ)−Q]

∣∣∣∣∣∣2
2

:= Ψ(W, ξ, Q) , (12)

where W = diag[ω1, . . . , ωN ] ∈ RN×N is the weight matrix.
This is a non-linear optimization problem in the parameters µ ∈ M ⊆ Rm and it

might be solved by Levenberg–Marquardt (LM) algorithm.
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Proposition 1 (LM calibration). Suppose R : O→ RN be a twice differentiable function on an
open set O ⊆ Rm and N > m. Denote by J : O→ RN×m the Jacobian of R w.r.t. µ ∈ Rm:

[Jij] 1≤i≤N
1≤j≤m

=

[
∂Ri(µ)

∂µj

]
1≤i≤N

1≤j≤m

=

[
∂ϕi(µ, ξ)

∂µj

]
1≤i≤N

1≤j≤m

.

The algorithm starts with a value µ0 ∈ Rm. At each iteration with the current estimation
µk ∈ Rm the update ∆µ ∈ Rm solves:

[J(µk)
TW J(µk) + λIm]∆µ = J(µk)

TWR(µk) , (13)

where Im ∈ Rm×m denotes the identity and λ ∈ R.

As mentioned above, finding the solution of (13) in a stochastic volatility setting is not
an easy task: both the IV map φ : I → R+ and its Jacobian J : O→ RN×M are unknown in
analytical form. For this reason, we propose a deep calibration procedure.

5.2. Deep Calibration Procedure

The IV map ϕ̃ : I → R+, see Definition A11, is approximated with the purpose of gener-

ating a set of labeled dataD :=
{(

x(i), ϕ̃
(

x(i)
))
| x ∈ I

}n

i=1
∈ (I ×R+)n, n ∈ N. We denote

this function ϕNN : I → R+. In this case, the neural network is used as a regression tool to
learn the implied volatility map ϕ: the NN’s degree of accuracy must be as greater as possi-

ble, and it is related to the data set D =
{(

µ(i), ξ(i), M(i), T(i), ϕ̃
(

µ(i), ξ(i), M(i), T(i)
))}n

i=1
∈ (I ×R+)n, n ∈ N. We aim to proxy the liquidity by inverse bid-ask spread of traded
European Call Options on S&P 500 and then run a KDE (Kernel Density Estimation) on
samples {M(i), T(i)}n

i=1 using a smoothing bandwidth and weights {Li}n
i=1. We assume

to do not have prior knowledge on the model parameters µ, and we sample the from the
uniformly continuous marginal distribution.

As a second step, we proceed with backpropagation. Let L ∈ N the number of hidden
layers, nj, 1 ≤ j ≤ L the number of nodes for each hidden layers and Shmodel

the function
space spanned by the NN with model parameters given by hmodel = (L, n1, . . . , nL). We
denote by X : Ω → I a random input and consider hmodel fixed; we have to learn the
function that minimizes the generalization error:

f ∗hmodel
= arg min

fhmodel
∈Shmodel

= || fhmodel
(X)− ϕ̃(X)||2L2(Ω), X ∼ G , (14)

where G ∈ {GHeston}. In practical training, we can rewrite (14) as follows:

f ∗hmodel
= arg min

fhmodel
∈Shmodel

1
nvalid

nvalid

∑
i=1

[
fhmodel

(
x(i)
)
− ϕ̃

(
x(i)
)]2

. (15)

We adopt the Adam optimizer in order to prevent the so called zigzag phenomenon of
Gradient Descent in long and sharp valleys of the error surface. With this optimization
procedure we end up with the hyper parameters hopt = {γ, β}. Here, γ is the global warning
rate and β is the mini-batch size used. From now on, Ahopt : In → Shmodel

denotes the Adam
optimizer that maps Dtrain to a local minimizer f ∗hmodel

.
Let us define a hyperparameter response functionH as:

H(hopt, hmodel) =
1

nvalid

nvalid

∑
i=1

[
[Ahopt(Dtrain)]hmodel

(x(i))− ϕ̃(x(i))
]2

. (16)
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In order to gain an accurate neural network, we need to find the hyper parameters
which minimize (16). The problem becomes:

(h∗opt, h∗model) = arg min
(hopt ,hmodel)

H(hopt, hmodel) . (17)

These two parameters play an important role: hmodel determines the capacity of Shmodel
,

while hhopt oversees the local minimum at which the optimization procedure converges and
how fast this happens. Algorithm 1 (Bayer and Stemper 2018) summarizes the main steps
of the method.

Algorithm 1: Deep calibration algorithm
Input: Implied volatility map ϕNN and its Jacobian JNN , market quotes Q, market

info ξ
Parameters :Lagrange multiplier λ0 > 0, maximun number of iteration nmax,

minimum tolerance of step norm εmin, bounds 0 < β0 < β1 < 1
Output: Calibrated model parameters µ∗

1 Initialize model parameters µ = µ0 and step counter n = 0;
2 Compute R(µ) = ϕNN(µ, ξ)−Q and JNN(µ) and solve normal equation (13) for ∆µ:

while n < nmax and ||∆µ||2 > ε do
3 compute relative improvement cµ =

||R(µ)||2||R(µ|∆µ)||2
||R(µ)||2−||R(µ)+JNN(µ)∆µ ||2

with respect to
predicted improvement under linear model;

4 if cµ ≤ β0 then reject ∆µ, set λ = 2λ;
5 if cµ ≥ β1 then accept ∆µ, set µ = µ + ∆µ and λ = 1

2 λ;
6 compute R(µ) and JNN(µ) and solve normal equations (13) for ∆µ;
7 set n = n + 1
8 end

6. Empirical Results

In this section, we apply our findings to the solution of the Black–Scholes–Barenblatt
equation as well as to calibrate the Heston model. In both cases, we start adopting the
neural network structure proposed in Raissi (2018), using Tensorflow 1.1 (Abadi et al. 2016)
on a HP PRO BOOK 450 G8 with an Intel Core i7-1165G7 CPU 2.80 GHz × 8 with 16
Gigabyte (GB) RAM.

6.1. Black–Scholes–Barenblatt Equation

The Black–Scholes–Barenblatt (BSB) equation (Li et al. 2019) arises from the Black–
Scholes equation and generalizes it considering a nonlinear source term.

The price V(S, t) of an European option with underlying S is given by the famous
Black–Scholes equation:

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S
− rV = 0 .

It is important to note, that that latter equation depends on two parameters (could be
functions), namely, the volatility σ and the risk-free interest rate r.

The exact choice of r and σ is not easy, but upper and lower bounds on them can be
imposed with reasonable certainty. With this bounds we can compute the range and all
admissible option prices.

For example, if we consider vanilla puts and calls, we know that the option prices have
a monotone and convex behavior and in this case envelopes are described by a linear Black–
Scholes equation. However, if we have options which prices have a different behavior
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(non-monotone and non-convex), then the envelopes must be found from a fully non linear
equation as follow:

ut = −
1
2

Tr[σ2diag(X2
t )D2u] + r(u− (Du)′x) , (18)

with terminal condition u(T, x) = g(x). The latter being related to the following system of
Forward–Backward SDEs:

dXt = σdiag(Xt)dWt , t ∈ [0, T]

X0 = ξ

dYt = r(Yt − Z′tXt)dt + σZ′tdiag(Xt)dWt , t ∈ [0, T)

YT = g(XT) .

(19)

To verify the effectiveness and accuracy of the algorithm, we need the exact value of
the solution of the BSB equation, which is given by the following lemma (Beck et al. 2019):

Lemma 1. Let c, σmax, r, T ∈ (0, ∞), σmin ∈ (0, σmax), d ∈ N , let σ̄ : R → R be the function
that satisfies for all x ∈ R the following:

σ̄(x) =

{
σmax : x ≥ 0
σmin : x < 0 ,

(20)

and let g : Rd → R and u : [0, t] × Rd → R be the function that satisfies for all t ∈ [0, T],
x = (x1, . . . , xd) ∈ Rd that g(x) = c||x||2Rd = c ∑d

i=1 |xi|2 and

u(t, x) = exp([r + |σmax|2](T − t))g(x). (21)

Then, it holds for all t ∈ [0, t], x = (x1, . . . , xd) ∈ Rd that u ∈ C∞([0, T] × Rd,R),
u(T, x) = g(x), and

∂u
∂t

(t, x) +
1
2

d

∑
i=1
|xi|2

∣∣∣∣∣σ̄
(

∂2u
∂x2

i
(t, x)

)∣∣∣∣∣
2

∂2u
∂x2

i
(t, x) = r(u(t, x)− 〈x, (∇xu)(t, x))〉Rd . (22)

Proof. Since u is infinitely differentiable and (21) ensures that ∀ t ∈ [0, T], x = (x1, . . . , xd) ∈
Rd, then we have:

u(t, x) = exp(−t[r + |σmax|2] + T[r + |σmax|2])g(x). (23)

Hence, we obtain that for all t ∈ [0, T], x = (x1, . . . , xd) ∈ Rd, i ∈ {1, 2, . . . , d} it
holds that

∂u
∂t

(t, x) = −[r + |σmax|2]u(t, x) (24)

〈x, (∇xu)(t, x))〉Rd = exp(−t[r + |σmax|2] + T[r + |σmax|2])〈x, (∇g)(x)〉Rd

= exp(−t[r + |σmax|2] + T[r + |σmax|2])〈x, 2cx〉Rd

= 2cexp(−t[r + |σmax|2] + T[r + |σmax|2])||x||2Rd = 2u(t, x)

(25)

and
∂2u
∂x2

i
(t, x) = 2cexp(−t[r + |σmax|2] + T[r + |σmax|2]) > 0 , (26)
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hence, exploiting (20), ∀t ∈ [0, T], x = (x1, . . . , xd) ∈ Rd, i ∈ {1, 2, . . . , d}, we have:

σ̄

(
∂2u
∂x2

i
(t, x)

)
= σmax . (27)

Equations (24)–(27) ensure that for all t ∈ [0, T], x = (x1, . . . , xd) ∈ Rd it holds that

∂u
∂t

(t, x) +
1
2

d

∑
i=1
|xi|2

∣∣∣∣∣σ̄
(

∂2u
∂x2

i
(t, x)

)∣∣∣∣∣
2

∂2u
∂x2

i
(t, x)− r(u(t, x)− 〈x, (∇xu)(t, x))〉Rd

= −[r + |σmax|2]u(t, x) +
1
2

d

∑
i=1
|xi|2

∣∣∣∣∣σ̄
(

∂2u
∂x2

i
(t, x)

)∣∣∣∣∣∂2u
∂x2

i
(t, x)− r(u(t, x)− 2u(t, x))

= −[r + |σmax|2]u(t, x) +
1
2

d

∑
i=1
|xi|2|σmax|2

∂2u
∂x2

i
(t, x) + ru(t, x)

=
1
2

d

∑
i=1
|xi|2|σmax|2

∂2u
∂x2

i
(t, x)− |σmax|2u(t, x)

= |σmax|2
[

1
2

d

∑
i=1
|xi|2

∂2u
∂x2

i
(t, x)− u(t, x)

]

= |σmax|2
[

1
2
||xi||2Rd

∂2u
∂x2

i
(t, x)− u(t, x)

]
= |σmax|2

[
c||xi||2Rd exp(−t[r + |σmax|2] + T[r + |σmax|2])− u(t, x)

]
= 0 ,

so the proof is completed.

For simulations, we used the following parameters: T = 1, σ = 0.4, r = 0.05,
ξ = (1, 0.5, 1, 0.5, . . . , 1, 0.5) ∈ R100, and g(x) = ||x||2, so that (18) becomes:

ut = −
1
2

Tr[0.16 diag(X2
t )D2u] + 0.05(u− (Du)′x)

u(T, x) = ||x||2 ,

and the corresponding FBSDE:

dXt = 0.4 diag(Xt)dWt , t ∈ [0, 1]

X0 = (1, 0.5, . . . , 1, 0.5)

dYt = 0.05(Yt − Z′tXt)dt + 0.4Z′tdiag(Xt)dWt , t ∈ [0, T)

Y1 = ||X1||2 .

(28)

As we said before, we take the following as explicit solution of (18):

u(t, x) = exp(0.21(1− t))||x||2 ,

having fixed σ. We employed a 5-layer deep neural network with 256 neurons for each
hidden layer to approximate the unknown solution u(t, x). Time domain has been subdi-
vided into N = 10 equally spaced interval to then apply the Adam optimizer minimizing
the loss function (9) with 100 different realizations of the the underlying Brownian motion..
In Figure 2 we plot the learned solution u(t, Xt) at a representative realizations of the
underlying high-dimensional process Xt. The latter shows how the whole solution, rather
than only the terminal points, has been approximated. Moreover, Figure 3 shows how
the error decreases in the number of Adam’s iterations, witnessing the goodness of the
implemented NN-architecture in accurately approximate the exact solution u(t, Xt). Both
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pictures are obtained after, resp., 2× 103, 3× 103, 3× 103, 2× 103 consecutive iterations of
Adam with decreasing learning rates (10−3,10−4, 10−4, 10−5).

Figure 2. Evaluations of the learned solution Yt = u(t, Xt) at representative realizations of the
underlying high-dimensional process Xt.

Figure 3. Relative error mean between exact u(t, Xt) and approximate.

6.2. Heston Calibration via Neural Network

In this empirical example, we use the SPX option price data from 15 January 2018 to
9 April 2019, as in Bayer and Stemper (2018). Specifically, we focus on Time to Maturity
and Strike Price to estimate the joint distribution (M, T) denoted with K(M,T). We filter the
dataset by inverse bid-ask spread, where the inverse bid-ask is the difference between the
quoted prices (either by a single market maker or in a limit order book) for an immediate
sale (ask) and an immediate purchase (bid) for stocks, futures contracts, options, or currency
pairs in some auction scenario. The size of the bid–ask spread in a security is one measure
of the liquidity of the market and of the size of the transaction cost, to consider options with
a good liquidity level. In Figure 4 we can see that the higher liquidity level is concentrated
in the region bounded by −0.1 ≤ m ≤ 0.29 and 1

365 ≤ T ≤ 0.2.
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(a) (b)
Figure 4. Liquidities by inverse bid-ask spread with traded European options. (a) Call; (b) Put.

For this reason, we bound the domain of IV map to this region. Now, the aim is
to estimate the density distribution K(M,T). We apply Kernel Density Estimate (KDE), a
non-parametric way to estimate the probability density function of a random variable,
using the function GRINDSEARCHCV in SCIKIT-LEARN with a Gaussian kernel to select
the optimal value for the bandwidth. Then, we generate a sample of one million elements
(two columns with time to maturity and moneyness) from the distribution. Finally, we add
the parameters µ, ρ, λ, ν̄, ν0 of Heston model extracted from a Uniform distribution U , see
Table 1, and the value of IV.

Table 1. Marginal priors of the model parameters µ for synthetically generating D. The interest rate r
is fixed.

Parameter Marginal

η U [0, 5]
ρ U [−1, 0]
λ U [0, 10]
ῡ U [0, 1]
υ0 U [0, 1]

Last column’s values have been computed exploiting the HESTON PRICES function
based on the Levenberg–Marquardt algorithm, see Proposition 1. The latter allows to
compute European Call prices under the Heston dynamic via associated closed form
solution and by using the QUANTLIB library (a free/open-source library for quantitative
finance) providing many financially oriented solvers 1. We end up with IV values for every
simulation, then used to train the neural network. In particular, we consider 900,000
samples for the training set, 45,000 for the test set and 55,000 for the validation set.

The first NN that we apply, a ReLU Fully Connected Neural Network (FCNN), is the same
as the one proposed in Bayer and Stemper (2018). It is based on a 4-hidden layer NN with
ReLU as activation function and 512 neurons for each layer the output layer being linear
(no activation function), and with tensors denoted by rectangles.

The second NN-approach we propose belongs to the family of Recurrent Neural
Network (RNN), a class of artificial NNs where connections between nodes form a directed
or undirected graph along a temporal sequence. The latters, may present some problems
when working with time series forecasting, as in our case. Accordingly, we choose to use a
Long Short Term Memory Neural Network (LSTM) (Hochreiter and Schmidhuber 1997), which
is capable of learning long-term dependencies. The chain structure is the same as RNN but,
instead of a single layer, there are four layers interacting with each other in a special way.

The key ingredient of LSTMs is the cell state, the horizontal line running through the
top of the diagram. The cell state is a kind of conveyor belt; it runs through the entire chain,
with only a few minor linear interactions. This type of neural network has the ability to
remove or add information to the cell state, carefully regulated by structures called gates.
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Each of this gates is composed by a sigmoid neural layer and a point-wise multiplication
operation. In our case, we consider two hidden layers with 64 neurons for each one.

Once the neural networks are assembled, we train them in Dtrain and use Dval as a
validation set. The performance are evaluated considering the loss curve generated during
the training, the training time, the loss computed on the test set and the Relative Error (RE)
between the IV obtained with NN and the IV computed by classic Fourier-based method:

RE(µ, m, T) :=
|ϕNN(µ, ν0, em, T)− ϕ̃(µ, ν0, em, T)|

ϕ̃(µ, ν0, em, T)
. (29)

Both neural networks are stopped using the callback EarlyStopping: this allows us to
decide what performance measure use in order to end training. In our case, we would seek
a minimum for both validation loss and mean squared error and a maximum for validation
accuracy. We impose patients (number of epoch with no improvement) equal to 3.

The loss curves in Figure 5 show that both neural networks have a good but different
behavior. Indeed, both of them decrease quickly, but the FCNN train and the validation
loss are very close to each other, with some exception epoch where the model shows a large
gap between the validation and the train. This does not happen in the case of LSTM, since
both curves decrease and reach a point of stability with a smaller gap.

Looking at the computational time, we end up with a very import result: FCNN spend
about 59 min while LSTM only 21. This huge difference suggests that LSTM might better
explain the link between model parameters and the IV surface in a shorter time. This
evidence is also confirmed by the errors computed on the test set and on a random dataset
generated by setting the parameters of the model and varying only time to maturity and
log-moneyness. The results are 9.7× 10−6 and 3.6× 10−6, respectively. From Equation (29)
we obtain the heatmaps with different time to maturity and log moneyness; we compute
this error in a new dataset with random log moneyness and time to maturity and fixed
model parameters. As the heatmap of interpolated relative errors shows, in both models
there are small errors throughout most of the IV surface, with increased relative errors
only for times on the short and long end, which may be attributed to less training due to
less liquidity; see Figures 6 and 7. The mean of DNN and LSTM are 0.09388463628 and
0.035987278, respectively.

(a) (b)
Figure 5. Train loss and validation loss of training. (a) Loss of FCNN; (b) Loss of Multi layer LSTM.
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Figure 6. Error between the theorical value and FCNN.

Figure 7. Error between the theoretic value and the LSTM.

To empirically check the goodness of the LSTM model error, we also analyzed it in a
different way: we computed the difference between the value given by the NN on the test
set and the true value in the dataset over the last value. The results are in Figure 8 where
the normalized histogram of the relative errors in the test set is shown with quantiles. From
this distribution we obtain a good approximation of ϕ with respect to ϕNN .
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Figure 8. Normalized histogram of RE on test set with quantiles.

Finally, the implied volatility surface generated by the two NN are shown in Figure 9.

(a) (b)
Figure 9. Implied volatility surface. (a) IV FCNN; (b) IV LSTM.

Once the NN are trained, we are able to proceed with the calibration step. We apply
the algorithm described in Algorithm 1 to initialize the parameters for the Heston model
following Gatheral (2011); Table 2 reports the initialization parameters.

Table 2. Comparison between the theoretical parameters and the neural networks parameters.

Parameter Theoretical FCNN LSTM

η 0.3877 0.3889 0.4124
ρ −0.7165 −0.6871 −0.7345
λ 1.3253 1.3421 1.105
ν̄ 0.0354 0.0312 0.0401
ν0 0.0174 0.0169 0.0171

Using the above steps, we compute the market quotes. At this point, the deep cali-
bration starts. First, we define a function that returns the implied volatility value and the
Jacobian matrix of the NN with respect to a specific input. It will be used in the iteration step
of the LM algorithm. Finally, deep calibration runs the algorithm, and after many iterations,
we will get the calibrated parameters for the Heston model. A comparison between the
obtained values is shown in Table 2. From the fitted values there is no clear evidence that
LSTM specification outperforms the FCNN or vice-versa. Indeed, the absolute value of
difference between calibrated and theoretical parameters is not better overall in neither case.
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However, considering the training time and the relative error in (29), we may conclude that
the LSTM specification performs better.

7. Conclusions

PDEs play a fundamental role in solving many practical problems, from physics to
financial mathematics. They can describe almost all time evolution models, but their
solution could be problematic due to the “curse of dimensionality”. It happens because real
world problems have a huge number of variables, making classic deterministic algorithms
(Finite Element of Finite Difference) unfeasible. In addition, the presence of non-linear
factors takes off any possibility to use probabilistic algorithms.

The growth of technology has given us powerful tools to overcome these problems.
With deep learning and, in particular, with deep neural networks, we are now able to
approximate the solution or part of them. In both experiments described in Raissi (2018) and
Bayer and Stemper (2018), neural networks solve the course of the dimensionality problem.

The approach initially suggested by Raissi (2018) and further developed in this paper
can be seen as an upgrade of the classical backward stochastic differential equation ap-
proximation provided in El Karoui et al. (1997). Furthermore, the solution of the algorithm
is a function which can be evaluated not only in the initial point, but also in the whole
space-time domain, see Figure 2, due to the independence between the parameters number
of NN and the number of points needed to discretize the time domain. Because of its
flexibility, we plan to extend the proposed NNs-based framework to consider second-order
backward stochastic differential system of equations.

Concerning calibration, we have shown that the stochastic volatility model can be
effectively approximated via NNs architectures, and also limited computational efforts,
hence reducing execution times if compared with those related to standard numerical
approaches. It is worth mentioning that, although our NN-scheme has been implemented
as a regression tool, it approximates the implied volatility map with high accuracy. More-
over, to better explain the relationship between data, we showed that our LSTM-inspired
solution (implemented via Keras) requires less training computation time, also with smaller
loss error.

The same procedure might also be used to calibrate the optimal interest rate r. This
could be conducted by using a priori on it by training the neural network on the r value.

In order to improve our performance, we also implemented a different approach,
exploiting TensorFlow and building our neural network piece by piece. Nevertheless,
the obtained numbers do not significantly improve that which we already obtained with
our methods, despite the increased quantity of software/hardware resources needed to
implement this new attempt.

Further research will be devoted to using more complex models, such as the Frac-
tional Heston Model, to see if we are able to improve the results using more complex
neural network.
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Appendix A. Notation

W Standard Brownian motion

Lp
n([0, T]) p ∈ [1, ∞), set of Rn-valued progressively measurable

processes Y s.t. E
∫ T

0 |Ys|pds < ∞

S2([0, T]) space of continuous F-semimartingale Y s.t.
E(supt∈[0,T]|Yt|2) < ∞

L2
ad([0, T]×Ω;Rk) space of F-adapted process in L2([0, t]×Ω;Rk)

L2
T(Rd) space of Ft-measurable random variables ξ s.t. E(|ξ|2) < ∞

H2
T(Rd) space of predictable process Y s.t. ||Y||2 = E(

∫ T
0 |Yt|2dt) < ∞)

Appendix B. Definition

Definition A1 (Probability space). A probability space is a triple (Ω,F ,P) where Ω is a abstract
set, F is a σ algebra of subsets of the set Ω and P is a probability measure on Ω.

Definition A2 (Random variable). A mapping X : Ω→ Rn, n ∈ N, is called an n-dimensional
random variable if, for each Borelian set B ∈ B(B), we have that X−1(B) ∈ F or, in other words,
X is F −measurable.

Definition A3 (Stochastic Process). A stochastic process is a family of random variables ξ(t)
parameterized by t ∈ T, where T ⊂ R is called parameter set.

Definition A4 (Independent Increments). We say that a stochastic process ξ(t), where t ∈ T,
has independent increments if

ξ(t1)− ξ(t0), . . . , ξ(tn)− ξ(tn−1)

are independent for any t0 < t1, · · · , tn s.t. t0, t1, . . . , tn ∈ T.

Definition A5 (Stationary Increments). A stochastic process ξ(t), where t ∈ T, is said to have
stationary increments if for any s, t ∈ T with s ≤ t, the increment ξ(t) − x(s) has the same
probability distribution as ξ(t− s)− ξ(0).

Definition A6 (Martingale). A stochastic process X = {Xt}{ ≥ 0 is a Ft-martingale w.r.t P if:

• EP[|Xt|] < ∞, ∀t ≥ 0;
• EP[Xt+s|Ft] = Xt, ∀t, s ≥ 0

Definition A7 (Adapted process). The process X is said to be adapted to the filtration (Fi)i∈I if
the random variable Xi : Ω→ S is a (Fi, Σ)-measurable function for each i ∈ I

Definition A8 (Lèvy process). We can say that X = {X(t)}t ≥ 0 is a Lèvy process if:

1. X has independent increments, i.e., Xt − Xs is independent of Fs, 0 ≤ s < t < ∞
2. X(0) = 0 a.s;
3. X has stationary increments, i.e., ∀t, h Xt+h − Xt has a distribution that is independent

of t;
4. it is continuous in probability, i.e., ∀t, ∀ε lims→t P(|Xt − Xs| > ε) = 0;
5. Xt has cadlag trajectories, i.e., right continuous and with left limit defined everywhere.
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Definition A9 (Stopping time). A random variable τ taking values in [0, T] is called a stopping
time if the event {τ ≤ t} ∈ Ft ∀t > 0.

Definition A10 (Pricing map). Consider a rough stochastic volatility model for an asset S with
model parameters µ ∈ M ⊆ Rm and possibly incorporated market information ξ ∈ ε ⊆ Rm, then
the fair price of a European Call option at time t = 0 is given by:

E[St(µ, ξ −M]+

where (M, T) ∈ Θ ⊆ R2 are the moneyness and time to maturity. Letting:

I := {(µ, ξ)× (M, T)|µ ∈ M, ξ ∈ ε, (M, T)T ∈ Θ} ⊆ Rm+k+2

be the pricing input space, we then define the pricing map P0 : I → R+ by:

(µ, ξ)× (M, T) 7→ E[St(µ, ξ −M]+

Definition A11 (IV map). Let µ, ξ, M, T be defined as in Definition (A10). The Black and Scholes
IV σIV(µ, ξ, M, T) corresponding to the theoretical model price P0(µ, ξ, M, T) satisfies:

P0(µ, ξ, M, T)− BS(M, T, σIV(µ, ξ, M, T)) !
= 0.

the function ϕ : I→ R+ given by:

(µ, ξ, M, T) 7→ σIV(µ, ξ, M, T))

is what we call the implied volatility map.

Note
1 https://quantlib-python-docs.readthedocs.io/en/latest/, (accessed on 13 September 2022).
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