
Citation: Collamore, Jeffrey F.,

Hasitha de Silva, and Anand N.

Vidyashankar. 2022. Sharp

Probability Tail Estimates for

Portfolio Credit Risk. Risks 10: 239.

https://doi.org/10.3390/

risks10120239

Academic Editor: Anita Behme

Received: 27 October 2022

Accepted: 1 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

Sharp Probability Tail Estimates for Portfolio Credit Risk
Jeffrey F. Collamore 1,* , Hasitha de Silva 2 and Anand N. Vidyashankar 3

1 Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5,
2100 Copenhagen, Denmark

2 Department of Mathematics, George Mason University, 4000 University Drive, Fairfax, VA 22030, USA
3 Department of Statistics, George Mason University, 4000 University Drive, Fairfax, VA 22030, USA
* Correspondence: collamore@math.ku.dk

Abstract: Portfolio credit risk is often concerned with the tail distribution of the total loss, defined to
be the sum of default losses incurred from a collection of individual loans made out to the obligors.
The default for an individual loan occurs when the assets of a company (or individual) fall below a
certain threshold. These assets are typically modeled according to a factor model, thereby introducing
a strong dependence both among the individual loans, and potentially also among the multivariate
vector of common factors. In this paper, we derive sharp tail asymptotics under two regimes: (i) a
large loss regime, where the total number of defaults increases asymptotically to infinity; and (ii) a
small default regime, where the loss threshold for an individual loan is allowed to tend asymptotically
to negative infinity. Extending beyond the well-studied Gaussian distributional assumptions, we
establish that—while the thresholds in the large loss regime are characterized by idiosyncratic factors
specific to the individual loans—the rate of decay is governed by the common factors. Conversely, in
the small default regime, we establish that the tail of the loss distribution is governed by systemic
factors. We also discuss estimates for Value-at-Risk, and observe that our results may be extended to
cases where the number of factors diverges to infinity.

Keywords: large deviations; tail approximations; Value-at-Risk; Expected Shortfall; model uncer-
tainty; multiple types; risk management

MSC: 60F10; 91-10; 91G40; 91G70

1. Introduction

Banks, insurance companies, and other financial institutions frequently maintain and
manage large credit portfolios. The main risk associated with such portfolios is that debtors
may default on their obligations. Portfolio credit risk is concerned with large but rare
loss events induced by defaults. Factor models are commonly used to represent the asset
returns of a company, and defaults are said to occur when these assets fall below a certain
threshold. From a statistical perspective, correlation between defaults of distinct companies
is introduced by allowing the assets to share systemic factors, also referred to as latent
factors or random effects. Specifically, if Yi denotes the value of the i-th firm (as determined
by its assets), then this dependence can be modeled, in the simplest case, by setting

Yi = aZ + bεi, i = 1, . . . , n, (1)

where a2 + b2 = 1, {εi} are independent and identically distributed (i.i.d.) random variables
and independent of Z. A useful feature of (1) is that, conditioned on the latent variable Z,
the assets {Yi} are independent. When Z and {εi} are Normally distributed, (1) reduces to
the widely used single-factor Gaussian model, referred to as the Gaussian copula model
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in the literature. More generally, assuming that there are k, possibly dependent, factors
influencing the asset variable Yi, an additive factor model takes the form

Yi =
k

∑
j=1

ajZj + bεi, i = 1, . . . , n. (2)

The i-th firm is then said to default if Yi < d, where d represents the threshold; in other
words, setting Xi = 1{Yi<d}, and letting Ln := ∑n

i=1 UiXi, where Ui is the loss incurred
when the i-th loan defaults, then Ln denotes the total loss due to defaults, and our primary
focus in this paper is to provide sharp tail approximations of P(Ln > nxn) under different
asymptotic regimes, where either xn ↑ 1, or d is replaced by dn ↓ −∞ as n→ ∞.

To motivate (2) from a financial perspective, it is helpful to briefly review the classical
framework originally introduced by Merton (1974). To this end, beginning with a single
loan to a firm with assets V(t) at time t, it is natural to model V(t) according to the
stochastic differential equation

dV(t)
V(t)

= mdt + σdW(t), (3)

for some mean drift m and volatility σ, where {W(t)} is a standard Brownian motion. Now,
if the firm is to repay a loan of size K at the future time T, then default occurs if V(T) < K.
Upon integrating and applying Ito’s formula, we see that, viewed from the current time t,
this default will happen if

Y :=
W(T)−W(t)

σ
√

T − t
<

log K− log V(t)− (σ/2−m)(T − t)
σ
√

T − t
:= d, (4)

where the threshold d denotes the “distance to default”. Now consider a portfolio of loans
to a collection of firms. Let the values of the n firms be given by V1, . . . , Vn; then the model
in (3) can be extended to

dVi(t)
Vi(t)

= midt +
l

∑
j=1

σijdWj(t), i = 1, . . . , n, (5)

where (W1(t), . . . , Wl(t)) is l-dimensional Brownian motion, and µi and σij are positive
constants for all i, j. Using the reasoning leading to (4), it follows that the default occurs
when Vi(T) < Ki; and this is equivalent to

Yi <
log Ki − log Vi(t) +

(
σ2

i /2−mi
)
(T − t)

σi
√

T − t
:= di, (6)

which, after conducting simple algebra, yields that

Yi :=
k

∑
j=1

σij

σi

(Wj(T)−Wj(t)√
T − t

)
< di (7)

for σ2
i = ∑k

j=1 σ2
ij. Thus, choosing one component of the Brownian motion to be firm-specific

for each loan, and the remaining factors to be common among all loans (so that l = k + n),
we are led to the factor model

Yi =
k

∑
j=1

aijZj + biεi, i = 1, . . . , n, (8)

where aij and bi are positive constants for all i, j, and Z1, . . . , Zk and {εi} are i.i.d. stan-
dard Normal random variables, which is (2), but with (aij, bi, di) in place of (aj, b, d) and
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an independent Normal assumption on the factors. The variables Z1, . . . , Zk represent
the common factors, while the random variables {εi} represent the idiosyncratic factors (or
individual factors).

The Gaussian assumption has often been criticized and other distributional assump-
tions have been suggested. For instance, Schönbucher (2000), Gordy (2003), Hull and White
(2004), and Burtschell et al. (2009) propose extensions of factor models with non-normal
distributions, including Archimedean and t-copula models. The reference Bush et al. (2011)
analyzes a dynamic extension of Vasicek’s homogeneous single factor model in which
the systematic risk factors follow a Brownian motion. Some large deviation estimates
for sums of random variables have been provided in Maier and Wüthrich (2009), where
the dependencies are modeled according to a copula (rather than through a threshold
factor model).

The aim of this work is to develop sharp asymptotics for the tails of the total loss
distribution. Such tail asymptotics were first introduced under independent Gaussian
assumptions in Glasserman et al. (2007). However, in contrast, we will adopt a general
framework where both the common and idiosyncratic factors are allowed to assume very
general distributions (and not necessarily the same distributions). Our work seems to
provide the first theoretical results that are nonlogarithmic and do not invoke convenient
tail assumptions (as are specified in the Normal or regularly varying distributions, and
their multivariate extensions via the Gaussian and t-copulas).

To describe our results, let {Yn} be given as in (2), and, as before, let

Ln =
n

∑
i=1

UiXi, for Xi = 1{Yi<d},

where d ∈ R and {Ui} is an i.i.d. sequence, independent of {Xi}. As the random variable
Ui represents the loss incurred when the ith loan defaults, we have that Ui = liVi, where
li is the size of the ith loan and Vi ∈ [0, 1] represents the recovery rate. Assume that the
sequence {Ui} is i.i.d. and independent of {Xi}, and assume without loss of generality that
E[Ui] = 1. Furthermore, set Z = −∑k

j=1 ajZj. Then conditional on Z , the central tendency
of {Ln/n} is given by

lim
n→∞

1
n

E
[

Ln

∣∣∣Z] = E[UiXi|Z ] = p(Z), (9)

where
p(Z) = P(Xi = 1|Z) = P( bεi < d +Z|Z), (10)

by (2). Then by the conditional Chebyshev inequality,

P
(∣∣∣∣ Ln

n
− p(Z)

∣∣∣∣ > ε

∣∣∣∣Z) ≤ Var(Ln|Z)
n2ε2 =

p(Z)(1− p(Z))
nε2 ,

implying that {Ln/n} converges in probability to p(Z) conditioned on Z . Hence,

P
(

Ln

n
> x

)
= E

[
P
(

Ln

n
> x

∣∣∣Z)]→ P
(

p(Z > x)
)

as n→ ∞. (11)

In particular, if k = 1 in (2) and Z d
= aZ ∼ Normal(0, a2), then it follows from (11) that

P
(

Ln

n
> x

)
= P

(
aZ > p−1(x)

)
= 1−Φ

(
bΦ−1(x)− d

a

)
, (12)

which is a formula originally established in Vasicek (1991).
As observed in Glasserman et al. (2007), this last equation shows that a meaningful

asymptotic result can only be obtained by studying the problem in a limiting sense, e.g.,
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by letting xn ↑ 1, or by replacing the threshold d with dn and letting dn ↓ −∞. Notice that
as x ↑ 1, the right-hand side of (12) converges to zero, and using the formula for the tails
of a Normal distribution (as given, e.g., in Chow and Teicher (1997)), this term decays
asymptotically as

a
bΦ−1(x)

exp

(
−
(

b
a

Φ−1(x)
)2
)

. (13)

In particular, taking x ≡ xn = Φ(s
√

log n) and letting n→ ∞, this last expression is
asymptotic to

a
b

1
log n

exp

(
−s2

(
b
a

)2
log n

)
; (14)

and hence

lim
n→∞

1
log n

log
(

1−Φ
(

bΦ−1(xn)− d
a

))
= − s2b2

a2 , (15)

suggesting that P(Ln > nxn) will exhibit a similar limit behavior to that of P(p(Z) > xn);
namely,

lim
n→∞

1
log n

log P(Ln > nxn) = −
s2b2

a2 .

Asymptotics of this type were established on a logarithmic scale in Glasserman et al.
(2007) for Gaussian k-factor models with finitely many types.

Letting {xn} be a sequence converging to one and satisfying certain regularity con-
ditions, our first main result examines the decay of P(Ln > nxn) as n → ∞ for the factor
model in (2). Setting Z = −∑k

j=1 ajZk and letting FZ denote its distribution function, then
we establish that

P
(

Ln

n
> xn

)
∼ F̄Z (p−1(xn)) as n→ ∞, (16)

where p(·) is given as in (10) and is thus determined by the distribution of the idiosyncratic
factors {εi}. On the other hand, the tail decay is determined by F̄Z := 1 − FZ , i.e., by
the common factors, thus exhibiting an interesting interplay between the roles of the com-
mon factors and the individual factors associated with the given loans. [Here and in the
following, f (xn) ∼ g(xn) as n → ∞ means that limn→∞( f (xn)/g(xn)) = 1.] We estab-
lish this result under very general assumptions on the common factors Z1, . . . , Zk and
the idiosyncratic sequence {εi}, where, in principle, we do not even assume that any of
these random variables have a common distribution. However, as in Glasserman et al.
(2007) and the heuristic estimate (15), the rate at which {xn} tends to one must satisfy
certain weak constraints (requiring that {xn} does not grow “too quickly”), where these
constraints are dependent both on the distributions of Z1, . . . , Zk and on {εi}. Specifically,
we describe a range of possible values for {xn} (in contrast to a single sequence, as in
Glasserman et al. (2007)), and also provide a uniform estimate for (16) within this range.
We emphasize here that our result is the first to study sharp asymptotics for a general class
of distributions and, in particular, in the context of the Gaussian model. In the process, we
also introduce a new approach based on a simple conditioning argument combined with
Hoeffding’s concentration inequality. We also relate our estimate to Value-at-Risk estima-
tion, and describe an extension to multiple types, where the default level d and parameters
a = (a1, . . . , ak) and b are allowed to belong to different classes, and hence are allowed to
vary amongst the different loans.

The asymptotic regime described in (16) can be viewed as the large loss regime, where
defaults occur simultaneously because, as xn ↑ 1, it becomes increasingly likely that
the given loans default, and default occurs under the conditional law of large numbers
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whenever Z exceeds the theshold p−1(xn). In Glasserman et al. (2007), a small default regime,
is also considered, where the default theshold d is replaced with a sequence {dn}, where
dn ↓ −∞, and default occurs when Xn < dn, where Xn is again given as in (2). Note
that as n → ∞, we have that P(Xn < dn) → 0, so as n increases, the quality of the credit
increases. Thus, this regime considers high-quality credits, with small default probabilities,
and thus the event {Ln > nx} will decay to zero, even when x ∈ (0, 1) is fixed. For the
small-default regime, we once again adopt a rather general framework, where the common
factors and idiosyncratic factors may assume general distributions, as in (16). Under some
natural conditions on the decay of dn ↓ −∞, we show that if the distribution of {εi} is
symmetric, then

P
(

Ln

n
> x

)
∼ F̄Z (|b|F−1

ε (x)− dn) as n→ ∞, (17)

where Fε denotes the distribution function of εi. [A corresponding result also holds under
general assumptions on {εi}.] Since x is fixed, we note that the quantity on the right-hand
side is determined by the rate of decay of F̄Z (C − dn) for some constant C, i.e., the rate
of decay behaves roughly like F̄Z (|dn|); and similarly, the tail behavior of Z will also
determine how large the sequence {dn} may be chosen. Thus, we see that the decay rate in
(17) and the choice of {dn} are both essentially determined by Z and hence the common
factors, while the idiosyncratic factors plays no role in determining the rate of decay in
this estimate.

We conclude by observing that estimates such as (16) and (17) also provide some
insight into the role of dependence amongst the common factors Z1, . . . , Zk, which, in the
existing literature, are generally assumed to be independent. From a practical perspective,
these factors will generally be dependent, with their dependence described through the
distribution of the random variable Z . For example, in the Normal case, this dependence is
characterized through a covariance matrix, while for general elliptical distributions, such as
the t-distribution, this dependence is characterized through the corresponding dispersion
matrix. As an example, we calculate the rate function in the Normal case, and illustrate
how this dependence influences the rate of decay in our estimates.

The rest of the paper is organized as follows. Section 2 is concerned with the main
results in the large loss and small default regimes, while Section 3 describes extensions to
multiple types, and to a nonstandard formulation of the problem, where the number of
factors is allowed to tend to infinity as the number of loans tends to infinity.

2. Sharp Tail Asymptotics

Given an arbitrary random variable R, denote the distribution function of R by FR,
the corresponding density by fR, and its mean value by µR (assuming that these ex-
ist). Furthermore, let F̄R(z) := 1− FR(z) denote the tail probability, ∀z ∈ R. Finally let
λR(z) := fR(z)/F̄R(z) denote the hazard function, and let ΛR(z) =

∫ z
0 λR(x)dx denote the

cumulative hazard function. It is well known that P(R > z) = e−ΛR(z).
Throughout this section, assume that

Ln =
n

∑
i=1

UiXi,

where Xi = 1{Yi<d} denotes the default of the ith lendor, and assume that Xi and Ui
are mutually independent for each i and that the sequence {Ui} is i.i.d. Without loss of
generality, we assume that E[Ui] = 1, and since Ui denotes the loss of an individual loan,
we further assume that Ui ≤ l, where l < ∞ denotes the loan size. As in the previous
section, we model {Yi} according to the factor model (2), where it is also assumed that
(a2

1 + · · ·+ a2
k) + b2 = 1.

Throughout this article, we will always assume that the random variables Z1, . . . , Zk
and ε1, ε2, . . . have a density with unbounded support, and that Fε is strictly increasing and



Risks 2022, 10, 239 6 of 20

continuous, implying, in particular, that Fε has a proper inverse. Furthermore, in (2), we
assume that {εi} is independent of {Z1, . . . , Zk}.

2.1. Tail Approximation for the Large Loss Regime

For any given x ∈ R, set z(x) = p−1(x), where we recall that p(·) denotes the
conditional default probability of an obligor. In other words, z(x) solves the equation
x = p(z(x)), describing the threshold value where default becomes “likely” for Z ≥ z. In
particular, the ith obligor defaults if Yi = ∑d

i=1 aiZi + bεi < d, or equivalently if sgn(b)εi <
(d +Z)/|b|, where sgn(b) = b/|b| and

Z := −
k

∑
i=1

aiZi.

Letting ε̃ = sgn(b)ε, this leads to the equation

x = p(z(x)) = Fε̃

(
d + z(x)
|b|

)
, or p−1(x) ≡ z(x) = |b|F−1

ε̃ (x)− d. (18)

Of course, if Fε has a symmetric distribution—as is often the case—then Fε̃ may be replaced
with Fε in the previous equation, and this comment holds for all of the results in the article.

As stated in the introduction, it follows by Vacicek’s law of large numbers that, condi-
tioned on Z ,

Ln

n
→ p(Z) := Fε̃

(
d +Z
|b|

)
≥ x when Z ≥ z(x), (19)

where we have used the monotonicity of Fε(·). Thus,

P
(

Ln

n
> x

∣∣∣∣Z = z
)
→ 0 for z < z(x),

while

P
(

Ln

n
> x

∣∣∣∣Z = z
)
→ 1 for z > z(x).

Thus, letting xn ↑ 1, we expect by a simple conditioning argument that

P
(

Ln

n
> xn

)
=
∫
R

P
(

Ln

n
> xn

∣∣∣∣Z = z
)

dFZ (z) ∼
∫ ∞

z(xn)
dFZ (z), (20)

as n→ ∞, provided that

∫ z(xn)

−∞
P
(

Ln

n
> xn

∣∣∣∣Z = z
)

dFZ (z) ∼ o(F̄Z (z(xn))) as n→ ∞. (21)

This leads to our first main result.

Theorem 1. Let {xn} be chosen such that xn ↑ 1 as n→ ∞, and let 1 > yn ≥ xn be chosen such
that the cumulative hazard of Z satisfies

ΛZ (p−1(xn))

n(1− yn)2 = o(1) as n→ ∞. (22)

Furthermore, assume that there exists a finite constant M such that {(λZ (v)/λε∗(v)) : v ≥ M}
is bounded from above for large M, where ε∗i = bεi − d; and the density fZ (z) is nonincreasing for
z ≥ M. Then

lim
n→∞

sup
xn≤x≤yn

∣∣∣∣P(Ln > nx)
F̄Z (p−1(x))

− 1
∣∣∣∣ = 0. (23)
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The conditions of the theorem are widely satisfied, as we now illustrate through a
few of examples. As a first example, suppose that the common factors Z1, . . . , Zk and
idiosyncratic factors ε1, ε2, . . . have the standard Normal distribution. If {Z1, . . . , Zk} are in-
dependent (which is not required for our general result), thenZ := −

(
a1Z1 + · · ·+akZk

)
∼

Normal(0, ‖a‖2), where ‖a‖2 = a2
1 + · · ·+ a2

k , and by (18), z(x) = bΦ−1(x)− d. Returning
to the main result in Glasserman et al. (2007), now suppose that xn = yn = Φ(s

√
log n) for

s ∈ (0, 1), where Φ is the distribution function of a standard Normal distribution. Then
p−1(xn) ≡ z(xn) = bs

√
log n− d. Since Φ̄(y) ∼ (Ce−y2/2)/y as y→ ∞ for some constant

C, it follows by a direct calculation that

n(1− xn)
2 ∼ C2n

s2 log n
e−(s
√

log n)2 ∼ C2

s2 log n
n1−s2

, n→ ∞, (24)

while

ΛZ (p−1(xn)) = − log F̄Z (p−1(xn)) ∼
b2s2

2‖a‖2 log n, n→ ∞, (25)

using that Z ∼Normal(0, ‖a‖2). Thus, (22) holds, and hence it follows from (23) that

P
(

Ln

n
> xn

)
∼ F̄Z (p−1(xn)) ∼

C
(|b|s

√
log n− d)/‖a‖

e−(|b|s
√

log n−d)2/2‖a‖2
as n→ ∞,

using the definition of p−1(xn) in the last step, which is a sharper version of Glasserman
et al. (2007)’s main result specialized to the single-type case.

Alternatively, if (Z1, . . . , Zk)
′ ∼Normal(0, Σ), where Σ is a positive definite matrix,

then Z := −
(
a1Z1 + · · ·+ akZk

)
∼Normal(0, a′Σa), where a′ = (a1, · · · ak). Arguing as

before, it can be seen that

P
(

Ln

n
> xn

)
∼ F̄Z (p−1(xn))

∼
(

C
(|b|s

√
log n− d)/a′Σa

)
e−(|b|s

√
log n−d)2/2a′Σa as n→ ∞.

Finally, taking the logarithm and scaling by log n, we obtain the weaker result

lim
n→∞

1
log n

log P
(

Ln

n
> xn

)
= − s2b2

a′Σa
, (26)

which explicitly shows the effect of dependence (through the matrix Σ) on the risk estimate.
Once again, note that by taking Σ to be the k× k identity matrix, we recover the result in
Glasserman et al. (2007) for the single-type case.

As a second example, suppose that the common factors are mutually independent
and have a symmetric two-sided subexponential distribution. Then Z+

i := Zi ∨ 0 has a
subexponential distribution ∀i, and consequently by a slight modification of Albrecher and
Asmussen (2010), Proposition IX.1.9, we have that

P(Z > u) ∼
k

∑
j=1

P

(
Z+

j >
u
|aj|

)
as u→ ∞.

In particular, if {Z+
i } has a regularly varying distribution with parameter α (and the

distribution is equally divided along the positive and negative axes), then

P(Z > u) ∼ 1
2
(|a1|α + · · ·+ |ak|α)L(u)u−α as u→ ∞,

for a slowly varying function L(·), where L(x) = βα in the Pareto(α, β) case.
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Now if the common factors {Zi} have a Pareto(α, β) distribution, and if the idiosyn-
cratic factors {εi} have the standard Gaussian distribution, then the ratio λZ (v)/λε∗(v)
tends to zero as v → ∞, as can either be verified by direct calculation or by observing
the Pareto(α, β) has heavier tails than the Gaussian distribution. Turning to the condi-
tion (22), suppose that as in the previous example, xn = yn has been chosen such that
xn = Φ(s

√
log n) for s ∈ (0, 1). Then, just as before, we have that (24) holds, while

ΛZ (p−1(xn)) = − log F̄Z (p−1(xn)) ∼ log
(

β + p−1(xn)
)α

= α log
(

β + bF−1
ε (Φ(s

√
log n))− d

)
∼ α log(bs

√
log n), n→ ∞.

Thus, (22) is easily satisfied (and a much wider choice of {xn}, {yn} is also possible). Finally,
by (23), we conclude that

P
(

Ln

n
> xn

)
∼ F̄Z (p−1(xn)) ∼

βα(
β + bs

√
log n− d

)α as n→ ∞, (27)

where we have used that F−1
ε (xn) = Φ−1(Φ(s

√
log n)) = s

√
log n.

Additional examples involving Gamma distributions and stretched exponential distri-
butions for the common factors can be derived along the lines of the above examples; see
de Silva (2016) in the one-factor case. In the multi-factor case, where the factors are light-
tailed, it can often be challenging to identify the precise distribution of the sumZ . However,
if Z1, . . . , Zk belong to a class which is closed under convolution, then this distribution
can be identified as the same type of distribution as the individual factors Zi. This is, for
example, the case with the Normal distibution or the Gamma distribution.

Next we turn to the proof of Theorem 1. First, we begin by establishing a lemma
needed in this proof.

Lemma 1. Assume that there exists a finite constant M such that {(λZ (v)/λε∗(v)) : vs. ≥ M}
is bounded from above for large M, where ε∗i = bεi − d; and the density fZ (z) is nonincreasing for
z ≥ M. Then for any sequence {δn} such that δn = o(1− yn) as n→ ∞, and for any x ∈ [xn, yn]
(where {xn, yn} is given as in Theorem 1), we have that

F̄Z (p−1(x + δn)

F̄Z (p−1(x− δn))
≥ 1− γn for all n ≥ some N0 (28)

for some sequence {γn} ↓ 0 as n→ ∞.

Proof of Lemma 1. Since fZ (z) is assumed to be nonincreasing for large z,

F̄Z (p−1(x− δn))− F̄Z (p−1(x + δn)) ≤ 2δn fZ (p−1(x− δn))(p−1)′(x− δn)

for sufficiently large n and x ∈ [xn, yn] ↑ 1 (and hence p−1(x) ↑ ∞). Thus, to establish (28),
we need to show that

δn
fZ (p−1(x− δn))(p−1)′(x− δn)

F̄Z (p−1(x− δn))
≤ 1

2
γn, n ≥ N0. (29)

To verify (29), note that p is the distribution function of ε∗i = bεi − d, and hence

λε∗(p−1(v)) =
fε∗(p−1(v))

1− Fε∗(p−1(v))
=

p′(p−1(v))
1− v

, ∀v,
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and differentiating the equation p(p−1(v)) = v then yields(
p−1

)′
(v) =

1
p′(p−1(v))

=
1

λε∗(p−1(v))
1

1− v
, ∀v. (30)

Substituting this last expression into the left-hand side of (29), we now see that (29) holds
provided that (

δn

1− x + δn

)
λZ (p−1(x− δn))

λε∗(p−1(x− δn))
≤ 1

2
γn, n ≥ N0, (31)

Now λZ (z)/λε∗(z) is assumed to be bounded for sufficiently large z. Finally, choose
δn = o(1− yn) as n→ ∞. Then in the denominator on the right-hand side of (31), we have
that (1− x + δn) ≥ (1− yn + δn) ∼ 1− yn as n→ ∞, and the lemma follows.

Proof of Theorem 1. For any v ∈ R, set z(v) = p−1(v). Throughout the proof, let Ez(v)[·],
Varz(v)(·) denote conditional expectation and conditional variance given Z = z(v).

The idea of the proof is to study P(Ln > nxn) over the regions

{Z ≥ p−1(x + δn)}, {Z ≤ p−1(x− δn)}, and {p−1(x− δn) < Z < p−1(x + δn)},

respectively and show that P
(

Ln > nx;Z ≥ p−1(x + δn)
)
→ 1, while the probabilities in

the other regions converge to zero.
Let {δn} be a positive-valued sequence, where δn = o(1 − yn). For any v ∈ R,

p(z(v)) := p ◦ p−1(v) = v, and thus Ez(v)[UiXi] = E[Ui]p(z(v)) = v (using the indepen-
dence of {Ui} and {Xi} and the fact that {Xi} has a Bernoulli distribution). Hence by
Chebyshev’s inequality,

P
(∣∣∣∣ Ln

n
− v
∣∣∣∣ > δn

∣∣∣∣Z = z(v)
)
≤ 1

nδ2
n

Varz(v)(UiXi) ≤
C

nδ2
n

, (32)

where Varz(v)(UiXi) ≤ E[U2
i ] := C < ∞. Next, given x, set vn = x + δn. Then setting v to

be equal to vn in the previous equation yields

P
(

Ln

n
> x

∣∣∣∣Z = z(vn)

)
= P

(
Ln

n
− vn > −δn

∣∣∣∣Z = z(vn)

)
≥ 1− C

nδ2
n

. (33)

First observe that P(Ln(z) > nx|Z = z) is monotonically increasing in z since, if
z1 < z2, then Xi(z1) = 1{bεi<d+z1} = 1 implies Xi(z2) = 1. Thus, Ln(z1) ≤ Ln(z2).
Consequently,

P
(

Ln

n
> x;Z ≥ z(vn)

)
=
∫ ∞

z(vn)
P
(

Ln

n
> x

∣∣∣∣Z = z
)

dFZ (z)

≥ F̄Z (z(vn))P
(

Ln

n
> x

∣∣∣∣Z = z(vn)

)

≥ F̄Z (z(vn))

(
1− C

nδ2
n

)
. (34)

Recalling that p−1(vn) = z(vn), this leads to the estimate

1 ≥ P(Ln > nx;Z ≥ z(vn))

F̄Z (p−1(vn))
≥
(

1− C
nδ2

n

)
, (35)

uniformly in x ∈ [xn, 1− δn] (where the left inequality follows after noticing that the middle
term is a conditional probability). Then by Lemma 1,

P(Ln > nx;Z ≥ z(vn))

F̄Z (p−1(x))
→ 1 as n→ ∞, (36)
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uniformly for x ∈ [xn, yn].
Next, for any w ∈ R, again observe that Ez(w)[UiXi] = w, and consequently by

Hoeffding’s inequality

P
(

Ln

n
− w > δn

∣∣∣∣Z = z(w)

)
≤ e−2nδ2

n/l2
, (37)

where l is the maximum value of the bounded random variable U. Given x, now set
wn = x− δn. Since P(Ln(z) > nx|Z = z) is monotonically increasing in z,

P
(

Ln

n
> x;Z ≤ z(wn)

)
=
∫ z(wn)

−∞
P
(

Ln

n
> x

∣∣∣∣Z = z
)

dFZ (z)

≤ P
(

Ln

n
> x

∣∣∣∣Z = z(wn)

)
≤ e−2nδ2

n/l2
. (38)

Then
P(Ln > nx;Z ≤ z(wn))

F̄(p−1(x))
≤ exp

{
−2nδ2

n
l2 + ΛZ (p−1(x))

}
, (39)

where we have used the representation F̄Z (v) = e−ΛZ (v) for any v. Then the right-hand
side of (39) tends to zero provided that

ΛZ (p−1(x))
nδ2

n
≤ ΛZ (p−1(xn))

nδ2
n

= o(1) as n→ ∞, (40)

which holds under the assumption (22) and the choice of δn = o(1− yn).
Finally observe that

P
(

Ln

n
> x; z(wn) < Z < z(vn)

)
≤ F̄Z (p−1(vn))− F̄Z (p−1(wn));

hence by Lemma 1,

P(Ln > nx; z(wn) < Z < z(vn))

F̄Z (p−1(x))
=

F̄Z (p−1(x + δn))

F̄Z (p−1(x))
− F̄Z (p−1(x− δn))

F̄Z (p−1(x))
= 0, (41)

uniformly for x ∈ [xn, yn]. By combining (36), (39), (40), and (41), we obtain the statement
of the theorem.

2.2. Some Consequences of Theorem 1

A natural application of Theorem 1 is to risk management, where one evaluates Value-
at-Risk and Expected Shortfall for a credit risk portfolio. Recall that for a random variable
R, the Value-at-Risk at level α ∈ (0, 1) is defined by

VaRα(R) = inf{x : P(R > x) ≤ 1− α} = qα(FR),

where qα denotes the α-level quantile, while Expected Shortfall is defined by

ESα(R) =
1

1− α

∫ 1

α
VaRv(R)dv. (42)

When the distribution function FR has a nonzero density function (as we assume here), so
FR is strictly increasing and continuous, these definitions simplify to the following:

P(R > VaRα(R)) = 1− α; ESα(R) =
1

1− α

∫ ∞

VaRα(R)
xdFR(x).
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We first focus our discussion on Value-at-Risk estimates. Now by Theorem 1, it follows
that for x ∈ [xn, yn], ∣∣∣∣P( Ln

n
> x

)
− F̄Z

(
p−1(x)

)∣∣∣∣ ≤ γn F̄Z (p−1(x)), (43)

where γn is a sequence which tends to zero as n→ ∞ (whose magnitude can be inferred
from the proof of Theorem 1). Note that if this estimate were exact (i.e., the right-hand side
of (43) were zero, then it would suffice to compute the Value-at-Risk of Z , where

1− α = F̄Z (VaRα(Z)) = F̄Z
(

p−1 ◦ p (VaRα(Z))
)

,

suggesting that VaRα(Ln/n) ≈ p(VaRα(Z)). For a precise upper bound, let n be fixed and
choose β such that (1− β)(1− γn) ≤ 1− α. Now choose x = p(VaRβ(Z)). Then

P
(

Ln

n
> x

)
≤ (1+γn)F̄Z (p−1(x)) = F̄Z

(
p−1 ◦ p (VaRβ(Z))

)
= (1+γn)(1− β) ≤ 1− α,

implying that VaRα(Ln/n) ≤ p(VaRβ(Z)).
Turning to the expected shortfall, notice from (42) that one can obtain tail behavior

from the tails of FR(·). Using the tail estimates from previous subsection, one can obtain
estimates for the expected shortfall.

Next we turn to the problem of characterizing the path which leads to the rare event
{Ln > nxn}, where xn ↑ 1 as n → ∞. In Dembo et al. (2004), it is suggested that, if we
fix xn = x ∈ (µ, 1) for µ > E[U1X1] and condition on Z = z, then {Ln/n} attains a high
level x > µ by exponentially shifting the distribution UiXi, as mandated by the Gibbs
conditioning principle. However, Theorem 1 suggests that the event {Ln/n > xn} (or
{Ln/n > x}) is actually triggered by an unusually large value for Z , and that under this
choice of Z , the event {Ln/n > xn} occurs by following the expected mean trajectory
of the increments {UiXi} similar to the branching process case as discussed in Ney and
Vidyashankar (2008). Thus, it is more natural to focus on the random variable Z , and
to characterize which value of Z is most likely to occur when the event {Ln > nxn}
is observed.

For this purpose, let {∆n} be any nondecreasing sequence, and consider P(|Z − z(xn)|
> ∆n|Ln > nxn), where z(xn) = p−1(xn) describes the threshold, where the conditional
event {Ln > nxn|Z = z} transitions from being a rare event (for z < z(xn)) to a likely
event (for z > z(xn)). Then

P
(
Z > z(xn) + ∆n

∣∣∣∣ Ln

n
> xn

)
=

P( Ln > nxn|Z > z(xn) + ∆n)P(Z > z(xn) + ∆n)

P(Z > z(xn))

∼ P(Z > z(xn) + ∆n)

P(Z > z(xn))
as n→ ∞, (44)

where the last step follows from Theorem 1. Conversely, applying Hoeffding’s inequality
as in the proof of Theorem 1, we also have that

P
(
Z < z(xn)− ∆n

∣∣∣∣ Ln

n
> xn

)
=

P( Ln > nxn|Z < z(xn)− ∆n)P(Z < z(xn)− ∆n)

P(Z > z(xn))
= o(1) (45)
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as n → ∞, since by reasoning as in (39) (and the discussion following this equation), we
obtain under the assumption (22) that

P
(

Ln

n
> xn

∣∣∣∣Z < z(xn)− ∆n

)
= o(P(Z > z(xn)) as n→ ∞,

for any nondecreasing sequence {∆n} (and, in fact, the previous equation also holds
for a sequence {∆n} which decreases to zero). Combining (44) and (45), we arrive at
the following.

Proposition 1. Let {∆n} be a nondecreasing sequence, and let z(xn) = p−1(xn). Then under the
conditions of Theorem 1,

P
(∣∣Z − z(xn)

∣∣ > ∆n

∣∣∣∣ Ln

n
> xn

)
∼ P(Z > z(xn) + ∆n)

P(Z > z(xn))
as n→ ∞. (46)

The main goal is to show that the right-hand side of (46) converges to zero, and thus
to identify z(xn) as the most likely value of Z under the rare event {Ln > nxn}. However,
to show that the right-hand side converges to zero, we need to make a correct choice of
∆n, which, in turn, will depend on the distribution of Z . For example, if Z has a Normal
distribution and ∆n = ∆ ∈ (0, ∞) for each n, then one easily calculates that

lim
n→∞

P(Z > z(xn) + ∆)
P(Z > z(xn))

= 0.

However, for distributions with heavier tails, a larger sequence {∆n} will be needed to
obtain a similar result. For subexponential distributions, it was suggested in Goldie and
Resnick (1988) and Asmussen and Collamore (1999) that one normalize according to the
so-called auxiliary function. In particular, if Z is subexponential with auxiliary function
h(·), then

P
(
Z − y
h(y)

>

∣∣∣∣Z > y
)
= P(W > y), for any y,

and for some random variable W, where

h(y) = E[Z − y|Z > y] =
1

F̄Z (y)

∫ ∞

y
F̄Z (w)dw.

For example, if Z is regularly varying with parameter α, then h(x) = x/α. Then choosing
∆n = γnh(z(xn)) for an arbitrary sequence γn → ∞, we obtain that

lim
n→∞

P(Z − z(xn) > γnh(z(xn)))

P(Z > z(xn))
≥ lim

k→∞
P(W > γk) = 0,

as desired.

2.3. Tail Approximation in the Small-Default Regime

An alternative formulation introduced in Glasserman et al. (2007) is to create a rare
event by letting the level of default (or “distance to default”) tend to infinity along the
negative axis, so that default occurs when Yi = ∑k

j=1 ajZi + bεi falls below a threshold

dn (rather than d); that is, we study X(n)
i = 1{Yi<dn}. Since dn ↓ −∞, it follows that

P(Yi < dn)→ 0 as n→ ∞. As noted previously, this formulation corresponds to the setting
of “high quality” credits. It is then natural to adapt the standard large deviation framework
and consider

P
(

Ln

n
> x

)
as n→ ∞, for any x ∈ (0, 1).
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As in the previous section, we condition onZ = −∑d
j=1 ajZj, and consider two regions,

namely the regions (−∞, zn(x)) and (zn(x), ∞), where zn(x) is again the threshold where,
conditional on Z = zn(x), the conditional probability that Ln exceeds nx transitions from
an “unlikely” to a “likely” event. To make this idea precise, set

pn(z) = P(Yi < dn|Z = z), (47)

where we observe (as in the argument leading to (18)) that with ε̃ = sgn(b)ε,

P(Yi < dn|Z = z) = Fε̃

(
dn + z
|b|

)
, (48)

where Fε̃ may again be replaced by Fε if we further assume that Fε has a symmetric
distribution. Finally, let

zn(x) = p−1
n (x) = |b|F−1

ε̃ (x)− dn. (49)

Then
x = pn(zn(x)) = P

(
X(n)

i = 1|Z = zn(x)
)

, (50)

and thus by the law of large numbers for triangular arrays, as n→ ∞,

P
(

Ln

n
> x

∣∣∣∣Z = z
)
→ 0 for z < zn(x),

while

P
(

Ln

n
> x

∣∣∣∣Z = z
)
→ 1 for z > zn(x).

Consequently, as in (20), we expect that

P
(

Ln

n
> x

)
=
∫
R

P
(

Ln

n
> xn

∣∣∣∣Z = z
)

dFZ (z) ∼
∫ ∞

zn(x)
dFZ (z), (51)

as n→ ∞, provided that

∫ zn(x)

−∞
P
(

Ln

n
> x

∣∣∣∣Z = z
)

dFZ (z) ∼ o(F̄Z (zn(x))) as n→ ∞. (52)

Examining the proof of Lemma 1, in particular, we see that the entire argument
can be repeated, but with pn(x) in place of p(x), and with ε∗i,n := bεi − dn in place of
ε∗i = bεi − d. Repeating the same argument that led to (31), but now with (pn(x), ε∗i,n) in
place of (p(x), ε∗i ), we obtain an analog of (31), namely the requirement that δn must be
chosen such that (

δn

1− x + δn

)
λZ (p−1

n (x− δn))

λε∗i,n
(p−1

n (x− δn))
≤ 1

2
γn, n ≥ N0, (53)

for some sequence γn ↓ 0 as n→ ∞. However, at this stage, the situation is a little different
than in the previous discussion, since in the denominator of (53), ε∗i,n = bεi − dn =⇒
λε∗i,n

(y) = λε((y + dn)/b), which by (49) implies that

λε∗i,n
(p−1

n (x− δn)) =
1
|b|λε̃

(
F−1

ε̃ (x− δn)
)

,

where the main observation is that the term in parentheses on the right-hand side does not
tend to infinity as n→ ∞, in contrast to the numerator in (53), where, in particular, we do
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have that p−1
n (x) = |b|F−1

ε̃ (x)− dn ↑ ∞. Thus, in contrast to Theorem 1, we now require
that {δn} be chosen such that

δn = o

(
1

λZ (|b|F−1
ε̃ (x)− dn)

∧ 1

)
as n→ ∞. (54)

Next, turning to the proof of Theorem 1, we see that, once again, the argument can
be repeated provided that nδ2

n → ∞ (in the application of Chebyshev’s inequality), and
provided that ΛZ (p−1

n (x)) = o(nδ2
n) (in the application of Hoeffding’s inequality). Since

the second subsumes the first, we concentrate on the application of Hoeffding’s inequality.
To this end, let δn be chosen so that (54) holds. Then we need

nδ2
n

(
1− ΛZ (|b|F−1

ε̃ (x)− dn)

nδ2
n

)
→ ∞ as n→ ∞,

which reduces to the requirement that

ΛZ (|b|F−1
ε̃ (x)− dn)

nδ2
n

= o(1) as n→ ∞. (55)

Now if the minimum in (54) is attained at λZ (·), then δn is chosen such that

δn

(
λZ
(
|b|F−1

ε̃ (x)− dn

))
= γn

for some sequence γn ↓ 0. Then

ΛZ (|b|F−1
ε̃ (x)− dn)

nδ2
n

=
1

nγ2
n

(
λZ (bF−1

ε̃ (x)− dn)
)2

ΛZ (|b|F−1
ε̃ (x)− dn). (56)

Since we are free to choose {δn}, hence {γn} as any sequence which decays to zero, the
right-hand side of (56) will be o(1) provided that

1
nγ2

n

(
λZ (bF−1

ε̃ (x)− dn)
)2

ΛZ (|b|F−1
ε̃ (x)− dn) = o(1) as n→ ∞. (57)

Conversely, if the minimum in (54) is attained at one, then δn = γn for some γn ↓ 0,
and then

ΛZ (|b|F−1
ε̃ (x)− dn)

nδ2
n

=
1

nγ2
n

ΛZ (|b|F−1
ε̃ (x)− dn), (58)

so we then need
1
n

ΛZ (|b|F−1
ε̃ (x)− dn) = o(1) as n→ ∞. (59)

This leads to the requirement that

1
n

{(
λZ (bF−1

ε̃ (x)− dn)
)2
∨ 1
}

ΛZ (|b|F−1
ε̃ (x)− dn) = o(1) as n→ ∞, (60)

which, we observe, depends only on Z and not on ε. This leads to the following theorem.

Theorem 2. Let x ∈ (0, 1). Assume that the density fZ (z) is nonincreasing for z ≥ M, for some
M < ∞, and assume that λε is finite everywhere. Furthermore, let dn be chosen such that (60)
holds. Then

lim
n→∞

P(Ln > nx)
F̄Z (|b|F−1

ε̃ (x)− dn)
= 1. (61)
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As with the previous theorem, the main technical condition (given in (60)) is widely
satisfied, but again needs to be verified on a case-by-case basis. For example, if the common
factors are mutually independent with a symmetric two-sided Pareto(α, β) distribution,
then Z+

j = Zj ∨ 0 is subexponential, and, as before, it follows from a slight modification
of Albrecher and Asmussen (2010, Proposition IX.1.9), that

P(Z > u) ∼
k

∑
j=1

P

(
Z+

j >
u
|aj|

)
∼ β

2
(|a1|α + · · ·+ |ak|α)u−α as u→ ∞.

Since λZ (y) ∼ B/y as y → ∞ in the Pareto case, the maximum in (60) is attained at one
for large n. Then (60) requires that log(|dn|α)/n→ 0 as n→ ∞, or (log |dn|)/n→ 0. Then
Theorem 2 leads to the estimate

P
(

Ln

n
> x

)
∼ β

2
(|a1|α + · · ·+ |ak|α)|dn|−α as n→ ∞, (62)

which is asymptotically independent of x ∈ (0, 1). It is worth noticing here that dn ↓ −∞ at
an exponential rate; this allows for a large range of values to be classified as “good credit”
when the common factors are from a two-sided Pareto distribution.

The case of Gaussian factors is actually more intricate. Now suppose that the common
factors Z1, . . . , Zk are independent and have the standard Gaussian distribution, so that
Z = −

(
a1Z1 + · · ·+akZk

)
∼Normal(0, ‖a‖2), where ‖a‖2 = a2

1 + · · · + a2
k . Since the

hazard function of a Normal random variable grows linearly in the asymptotic limit, (60)
requires that d2

n F̄Z (const. + dn) ∼ d2
n · const.((log |dn|)−1/2d2

n = o(n) as n→ ∞, which
is satisfied for any sequence {|dn|} which increases to infinity and satisfies |dn| ≤ n1/4. For
this choice of dn, Theorem 2 yields that as n→ ∞,

P
(

Ln

n
> x

)
∼ C
‖a‖yn

e−y2
n/2‖a‖2

, where yn := bF−1
ε (x) + dn, (63)

and C is a constant.
We observe that, if one were to settle for logarithmic asymptotics rather than sharp

asymptotics, then in the proof of Theorem 2 for the Gaussian case, one could take
|dn| = s

√
n for s ∈ (0, 1], and δn = 1. Then the proof in Theorem 1 applies on the

logarithmic scale, provided that a logarithmic analog of Lemma 1 holds, namely

1
n

log
(

F̄Z (p−1
n (x + 1)/F̄Z (p−1

n (x− 1)
)
→ −∞

as n → ∞. Using that p−1
n (v) = bF−1

ε (v)− s
√

n for |dn| = s
√

n, we then obtain by direct
calculation that the left-hand side of the previous equation decays as

1
n

log
(

e−n(1− b
s
√

n )
/

e−n(1+ b
s
√

n )
)
→ −∞ as n→ ∞,

for some positive constant b. Consequently we obtain the weaker logarithmic analog of (63),
namely

lim
n→∞

1
n

log P
(

Ln

n
> x

)
= − s2

2‖a‖2 , (64)

which is Theorem 2.1 of Glasserman et al. (2007) in the single-type case. As discussed
previously, when Z = (Z1, . . . , Zk) is a set of dependent common factors with covariance
matrix Σ, one obtains

lim
n→∞

1
n

log P
(

Ln

n
> x

)
= − s2

2a′Σa
, (65)
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which again illustrates the role of the dependence in this asymptotic estimate. It is per-
tinent to notice here that there is a gap in the range of values of {dn} between the sharp
asymptotics and logarithmic asymptotics. Thus, the logarithmic asymptotics cover a wider
range of higher quality credits than what can be concluded from Theorem 2.

Referring back to the Pareto example, note that we could also introduce dependence
in this model by considering an elliptical distribution for Z = (Z1, . . . , Zk). Then the
dependence is characterized by the dispersion matrix, rather than the covariance matrix,
and this will then play a role in the asymptotic decay, similar to what is seen in (65), but
with a polynomial decay rather than exponential decay. Of course, further dependence
structures amongst the common factors could also be introduced using copulas. For more
details on elliptical distributions and copulas, see McNeil et al. (2015).

3. Some Extensions and Refinements
3.1. Multiple Types

In realistic problems, each loan will have its own default threshold d (the distance to
default), and there may be differences in the constants a = (a1, . . . , ak) and b among the
different loans. To address this problem, it is customary to divide the loans into different
classes (or “types”), where the constants d, a and b are fixed within a given class. More
precisely, suppose that there are m types of loans, where the number of loans of each type
are given by n1, . . . , nm, respectively. We assume that limn→∞(nj/n) = κj ∈ (0, 1). Then,
for all loans of type j (j ∈ {1, . . . , m}), set

Y(j)
i =

〈
aj, Z

〉
+ bjε

(j)
i , i = 1, . . . , nj,

where Z = (Z1, . . . , Zk) is the vector of common factors described in the previous sections,
aj ∈ Rk and bj ∈ R. Finally, assume that default occurs if Y(j)

i < dj, where dj ∈ R. Let

X(j)
i = 1

{Y(j)
i <dj}

, and set

L(j)
n =

nj

∑
i=1

UiX
(j)
i , i = 1, . . . , nj,

where, for simplicity, we assume that {Ui} is an i.i.d. sequence independent of j (i.e., the
same among all types) and E[Ui] = 1. Once again, our objective is to study P(Ln > nxn) as
n→ ∞, but where we now have Ln = L(1)

n + · · ·+ L(m)
n .

As in the previous section, we seek to identify those choices of Z for which, conditional
on Z,

P
(

Ln

n
> xn

∣∣∣∣Z)→ 1,

where we have kept the conditioning on all of the factors Z1, . . . , Zk (rather than on
Z = −(a1Z1 + · · ·+ akZk)), since the values of Z satisfying the previous equation will lie
in different regions for different j, and the problem is genuinely multidimensional.

First notice that by the Vacicek’s law of large numbers applied to each type,

Lnj(Z)

nj
→ pj(Z) in probability,

where, for any z ∈ Rd,

pj(z) = E
[
UiX

(j)
i

]
= P

(
X(j)

i = 1
∣∣Z = z

)
= Fεj

(
dj −

〈
aj, z

〉
bj

)
.
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Hence, as n→ ∞,

Ln(Z)
n
→ p(Z) :=

m

∑
j=1

κj pj(Z) in probability. (66)

Now, for a fixed x, define a region

G(x) =
{

z ∈ Rk : p(Z) > x
}

, x ∈ [0, 1].

This set describes the values of z where (Ln(z)/n) → y > x. Then for any x ∈ [0, 1],
we have that P(Ln > nx|Z = z) → 0 for z ∈ (G(x))c, while P(Ln > nx|Z = z) → 1 for
z ∈ G(x). Now let {xn} be an increasing sequence such that xn ↑ 1 as n → ∞, and let ν
denote the probability measure of Z. Then arguing as in the beginning of Section 2.1, we
have by a simple conditioning argument and an application of Chebyshev’s inequality (as
in the proof of Theorem 1) that

P
(

Ln

n
> xn

)
=
∫
Rd

P
(

Ln

n
> xn

∣∣∣∣Z = z
)

dν(z) ∼
∫

G(xn)
dν(z), (67)

as n→ ∞, provided that∫
(G(xn))c

P
(

Ln

n
> xn

∣∣∣∣Z = z
)

dν(z) = o(ν(G(xn))) as n→ ∞. (68)

To develop an analog of Lemma 1, observe that the change in the function
p(z) := ∑m

j=1 κj pj(z) is determined by its partial derivatives, namely

∂

∂zi
p(z) =

m

∑
j=1

κj f ′εj

(
dj −

〈
aj, z

〉
bj

)(
−

aij

bj

)
for aj = (a1j, . . . , akj). (69)

Thus, a version of Lemma 1 can be established, but with the density function of a single
variable replaced with the elements of (69) reflected along the different directional vectors,
while the tail probabilities are replaced by the decay of p(z) in the various directions. This
leads to the estimate

P
(

Ln

n
> xn

)
∼ ν(G(xn)) as n→ ∞, (70)

where ν is the probability measure of Z, and the next step is to show that on the right-hand
side of the above expression,

ν(G(xn)) ∼ ν

 m⋂
j=1

Gj(xn)

 as n→ ∞,

where Gj(x) :=
{

z ∈ Rk : pj(Z) > x
}

(so the default occurs for every type). The details
are addressed in a forthcoming work.

Another issue which may be useful in applications is to incorporate migration proba-
bilities in the decision making. Allowing the factor model to change between rating classes
(and potentially allowing Ui to depend on j), where the index j above may be viewed as a
rating class, one could obtain the tail estimates using

r

∑
j=1

Pk

(
L(j)

n
n

> xn; R = j

)
Pk(R = r). (71)
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In the above expression, k is the initial class and j is the terminal class and Pk(R = r)
represents the migration probabilities. Alternatively, one could study the tail probability
associated with the entire portfolio under migration. Namely, allow the proportion of loans
in class j to change from κj to κ′j over a fixed time interval. Let r = (κ1, . . . , κm) denote the
proportion at the initial time, and r′ = (κ′1, . . . , κ′m) the proportion at the end of the time
interval, and let P(r, dr′) denote the transition probability from state r to r′. Then, letting
Ln(r′) denote the losses under r′, one could obtain tail estimate for the default probability
after migration using ∫

r′
P
(

Ln(r′)
n

> xn

)
P(r, dr′).

3.2. Tail Asymptotics for Divergent Number of Factors

In this section, we provide tail approximations in the large loss regime when the
number of factors, kn, diverges to infinity. Specifically, we consider the model

X(n)
i = a(n)1 Z(n)

1 + a(n)2 Z(n)
2 + · · ·+ a(n)kn

Z(n)
kn

+ b(n)ε(n)i , i = 1, 2 . . . , n, (72)

where {a(n)j : j = 1, . . . , kn} and b(n) are constants satisfying

kn

∑
j=1

(a(n)j )2 + (b(n))2 = 1, for all n ≥ 1. (73)

Let Zkn = −∑kn
j=1 a(n)j Z(n)

j . In this context, the definition of the loss function Ln

requires a slight modification. Following the discussions in the previous sections, the loss
can be expressed as

Ln =
n

∑
i=1

U(n)
i X(n)

i , (74)

where X(n)
i = 1{

Y(n)
i <d

}. Furthermore, let {U(n)
i : 1 ≤ i ≤ n} be i.i.d. with E

[
U(n)

i
]
= 1. We

observe that conditional on Zkn , the total loss is given by

Ln(Zkn) =
n

∑
i=1

U(n)
i 1

{b(n)ε(n)i <d+Zkn}
. (75)

Assuming that Z∞ = limn→∞ Zkn in probability, it follows by an application of the
conditional Chebychev inequality that {Ln(Zkn)/n} converges to p(Z∞) in probability.
Now, the rate of the convergence in the law of large numbers will depend on the rate
of increase of kn relative to n. There are multiple ways in which this relative increase
can occur. One approach involves investigating the behavior of P

(
Zkn > p−1(xn)

)
, as

before. Under mild conditions as in Glasserman et al. (2007), the above probability can be
approximated, as in Theorem 1, by P

(
Z∞ > p−1(xn)

)
. We state this formally as a theorem,

whose proof can, in principle, be constructed along the lines of Theorem 1. However, we
state a logarithmic-level result, whose proof can be found in the thesis of de Silva (2016)
(where an m-type extension is also given).

Theorem 3. Assume that {Z(n)
j : j = 1, 2, · · · kn, n ≥ 1} and are i.i.d. standard Gaussian random

variables and are mutually independent. Additionally, assume that
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lim inf
n→∞

kn

∑
j=1

(a(n)j )2 > 0; lim sup
n→∞

1
log n

kn

∑
j=1

(a(n)j )2 < 1;

and lim
n→∞

b2
n

∑kn
j=1(a(n)j )2

= γ2, 0 < γ < 1.

Then, for any 0 < s < 1,

lim
n→∞

1
log n

logP(Ln > sn log n) = −s2γ2. (76)

The conditions of the theorem essentially reduce the problem to a single-type factor
model, and sharper asymptotics can be described. However, more interesting situations
arise when these conditions are violated. For instance, if p−1(xn) ∼ kn as n → ∞, then
under Gärtner-Ellis type conditions from large deviation theory, the rate function of the
common factors and the tails of ε will play a role. These and other interesting extensions,
such as when the number of types also diverges to infinity, are studied in a forthcoming
work. Furthermore, another issue concerning model uncertainty is also addressed in a
forthcoming work.
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