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Abstract: While both zero-inflation and the unobserved heterogeneity in risks are prevalent issues in
modeling insurance claim counts, determination of Bayesian credibility premium of the claim counts
with these features are often demanding due to high computational costs associated with a use of
MCMC. This article explores a way to approximate credibility premium for claims frequency that
follows a zero-inflated Poisson distribution via variational Bayes approach. Unlike many existing
industry benchmarks, the proposed method enables insurance companies to capture both zero-
inflation and unobserved heterogeneity of policyholders simultaneously with modest computation
costs. A simulation study and an empirical analysis using the LGPIF dataset were conducted and it
turned out that the proposed method outperforms many industry benchmarks in terms of prediction
performances and computation time. Such results support the applicability of the proposed method
in the posterior ratemaking practices.

Keywords: approximate credibility premium; claim frequency; posterior ratemaking; variational
Bayes; zero-inflated Poisson distribution

1. Introduction

Credibility premium has been widely used in actuarial practice to capture unobserved
heterogeneity of policyholders via historical claim experiences. Traditionally, the Poisson-
gamma random effects model has been used as a benchmark to model claim frequency
with unobserved heterogeneity (Dionne and Vanasse 1989).

It is also well-known that the traditional Poisson-gamma random effects model can
enjoy natural conjugacy between the underlying distribution and the prior distribution
of the random effects so that both the posterior distribution of the random effects and
predictive premiums are readily available in closed forms, which is quite effective to
compute individual premium for millions of policyholders.

In spite of the aforementioned benefits, the traditional Poisson-gamma random ef-
fects model can be too restrictive due to natural indication of zero-inflation in claim fre-
quency, which has been shown in many empirical studies including, but not limited to,
Shi and Zhao (2020), Zhang et al. (2020), and Lee (2021).

Inspired by presence of zero-inflation in a longitudinal setting, Boucher and Denuit (2008)
and Boucher et al. (2009) discussed possible use of zero-inflated Poisson models for panel data
and subsequently derived credibility premiums under the proposed model. Zhao and Zhou
(2012) used copula models to consider zero-inflation and time-dependence simultaneously.
Lee and Shi (2019) is another example of using zero-inflated marginal distributions and
copulas for longitudinal claims. Chen et al. (2019) considered a non-parametric approach
to estimate the individual unobserved heterogeneity using zero-inflated Poisson likelihood
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with fused LASSO penalty. Note that credibility premiums with these models are less
computationally tractable compared to the traditional models such as Poisson-gamma
random effects models.

While using a complicated model enables us to consider more realistic features of
the observed data, calibration of such model may suffer from computational burden on
the optimization and the opacity of the model, which makes the use of such model less
attractive to the practitioners.

In this regard, there have been some attempts to approximate the Bayes credibility
premium under a complicated model with relatively simpler form. Bühlmann credibility
premium was proposed as a linear approximation of Bayes credibility premium (Bühlmann
and Gisler 2006). Najafabadi (2010) and Najafabadi et al. (2012) considered a new approach
to approximate the Bayes credibility premium with a simpler credibility premium via
maximum entropy principle. However, their models do not include regression coefficients
so that it may not capture observed heterogeneity in tariffication unlike the aforementioned
literature. Oh et al. (2021) used similar approach to analyze impacts of historical frequency
and severity on posterior ratemaking.

In this article, we propose a new approach to consider zero-inflation and time-
dependence of claim frequency that provide a relatively simpler form of credibility pre-
mium via variational Bayes (VB) method. VB approach has received a lot of attention as
a powerful alternative to Markov Chain Monte Carlo (MCMC) method. VB method is
based on optimization, which provides the closest approximation to the true posterior
(Jordan et al. 1999). Among a predetermined family of distributions, VB finds an optimal
distribution using Kullback–Leibler (KL) divergence as a measure to characterize the dis-
similarity. Ranganath et al. (2014) suggested a new optimization technique for VB using
Monte Carlo (MC) estimates. Recently, Saha et al. (2020) proposed a geometric variational
Bayes approach that uses L2 distance instead of KL divergence.

This paper is organized as follows. In Section 2, we briefly review the concept of VB
and specify our proposed model with details of optimization and premium calculation.
Section 3 provides a simulation study to assess applicability of the proposed method.
Section 4 presents estimation and validation results on an actual insurance dataset. We
conclude the paper in Section 5 with a few remarks.

2. Proposed Methodology
2.1. Claim Frequency Model with Longitudinality and Zero-Inflation

Let Nit be the number of accidents for each policyholder i at time t = 1, . . . , Ti. In-
surance exposure eit ∈ [0, 1] and explanatory variables xit are defined accordingly. Tra-
ditionally, claims frequency has been modeled by Poisson distribution with covariates
as follows:

Nit|xit, eit
indep∼ P(νit), where νit = eit exp(xitα). (1)

Based on usual longitudinality of Property and Casualty (P&C) insurance claim
datasets, one can also consider the following extension by incorporating random effects
as follows:

Nit|θi
indep∼ P(νitθi), where νit = eit exp(xitα), θi ∼ πN(θ). (2)

Note that we enforce a restriction on πN(θ) so that E[θi] = 1, due to the identifiabil-
ity issue.

By assuming πN(θ) ∝ θγ−1 exp(−θγ), one can easily show that the predictive distri-
bution of Ni,Ti+1 is given as

Ni,Ti+1|Ni1, Ni2, . . . , NiTi ∼ NB
(

Ti

∑
t=1

Nit + γ,
νi,Ti+1

∑Ti+1
t=1 νit + γ

)
,
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so that

E
[
Ni,Ti+1|Ni1, Ni2, . . . , NiTi

]
=

∑Ti
t=1 Nit + γ

∑Ti
t=1 νit + γ

νi,Ti+1, (3)

which has been shown in actuarial literature including, but not limited to, Frangos and
Vrontos (2001), Jeong (2020), and Jeong and Valdez (2020).

While use of the aforementioned Poisson-gamma model allows us to evaluate the
individual predictive premium for a large portfolio at ease and naturally captures possible
overdispersion, such a model cannot reflect the possibility of zero-inflation in claim fre-
quency. Therefore, one can incorporate both zero-inflation and longitudinality of the claim
frequency as follows:

Nit|θi
indep∼ ZIP(pit, νitθi) where pit =

exp(xitη)

1 + exp(xitη)
, (4)

where N∼ZIP(p, ν) means

P(N = n) = p · 1{n=0} + (1− p) · νn exp(−ν)

n!
.

In spite of flexibility of the model in (4), we have some issues on the posterior analysis
of θ with the proposed model. If we assume π(θ) ∝ θγ−1e−θγ, we cannot obtain the closed
form expression of the posterior density π(θi|Fi,Ti ) := π(θi|Ni1, . . . , Ni,Ti ), which is defined
as follows:

π(θi|Fi,Ti ) =
π(θi)∏Ti

t=1 p(Nit|θi)∫ ∞
0 π(θi)∏Ti

t=1 p(Nit|θi)dθi
. (5)

By noting π(θi|Fi,Ti ) ∝ π(θi)∏Ti
t=1 p(Nit|θi), one can try to find posterior samples of

θi by MCMC, which is usually quite time consuming and sometimes infeasible to be imple-
mented for calculation of individual predictive premium in an insurance portfolio, which
usually contains millions of policyholders. According to a numerical experiment in the
Section 4 of Ahn et al. (2021a), it turns out that a use of MCMC for calculation of individual
predictive premium requires excessive amounts of time compared to other methods.

In this regard, we have developed a new approach that are less computationally
expensive and more accurate to approximate the true posterior π(θi|Fi,Ti ) via a surro-
gate function using variational Bayes method. See the Section 2.2 for the details of our
variational algorithm.

2.2. Variational Bayes

Variational Bayes (VB) is an optimization method for obtaining the best approximation
to the true posterior among the predetermined family of distributions.

In the following, we propose a use of variational Bayes approach to approximate
π(θi|Fi,Ti ) defined in (5). Considering an insurance portfolio with M policyholders, we
define prior distributions for the random effects θ = (θ1, . . . , θM)> as follows:

π(θ) =
M

∏
i=1

π(θi)

π(θi) ∼ Gamma(γ, γ). (6)

Observe that we use the same values for both shape parameter and rate parameter in
(6) such that E[θi] = 1 for i = 1, . . . , M. Given θ, the likelihood of model (4) is written as:
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L(N | θ) =
M

∏
i=1

L(Ni | θi),

L(Ni | θi) =
Ti

∏
t=1

(
1{Nit=0}pit + (1− pit)

(νitθi)
Nit e−νitθi

Nit!

)
,

where Ni = (Ni1, . . . , Ni,Ti )
>. As the first step for using VB method, a family of distribu-

tions needs to be selected. We call the family of distribution variational family (VF) in
which each distribution can be easily controlled by its own parameters. While there is no
universal rule for the choice of VF family, one simple choice of VF is mean-field family
(Blei et al. 2017), where the latent variables are mutually independent.

For the sake of containing observed or estimated information (Nit, pit, νit) and main-
taining connection with the prior distribution, our choice of variational family is indepen-
dent gamma family as follows:

Q =

{
q(θ; γq) =

P

∏
i=1

q(θi; γq) | q(θi; γq) ∼ Gamma

(
γq +

T

∑
t=1

Nit, γq +
T

∑
t=1

(1− pit)νit

)}
.

Note that

Eq[θi] =
∫ ∞

0
θiq(θi; γq)dθi =

γq + ∑Ti
t=1 Nit

γq + ∑Ti
t=1(1− pit)νit

,

which converges to the method of moment estimate ̂E
[
θi|Fi,Ti

]
=

∑
Ti
t=1 Nit

∑
Ti
t=1(1−pit)νit

as Ti → ∞

since θi = E[Nit |θi ]
(1−pit)νit

. As a special case of the proposed model, if pit, the zero-inflation
probability, equals 0 for all i and t, then the variational distribution q(θ; γq) coincides with
the true posterior distribution.

We point out that a variational distribution q(θ; γq) ∈ Q is characterized by a pa-
rameter γq referred to as the variational parameter, which will be updated in our VB
algorithm. Although the variational family Q does not always contain the true posterior,
we can find the optimal distribution q(θ; γ∗q ), which is closest to the true posterior in terms
of Kullback–Leibler (KL) divergence:

KL(q ‖ π(θ|FT)) = Eq
[
log q(θ; γq)− log π(θ|FT)

]
. (7)

Here, we define a function of the variational parameter:

L(γq) := Eq
[
log π(θ) + log L(N | θ)− log q(θ; γq)

]
. (8)

The function (8) is called the Evidence Lower Bound (ELBO). One can easily show that
minimizing (7) is equivalent to maximizing (8) (Wainwright and Jordan 2008) such that

q(θ; γ∗q ) = arg max
γq>0

L(γq).

In order to find γ∗q , we employ a version of gradient descent algorithm, the stochastic
optimization method in Ranganath et al. (2014). For this, it is needed to compute the
gradient of the ELBO:
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∇γqL(γq) = ∇γq

∫ {
log π(θ) + log L(N | θ)− log q(θ; γq)

}
q(θ; γq)dθ

=
∫ {

log π(θ) + log L(N | θ)− log q(θ; γq)
}
∇γq q(θ; γq)− q(θ; γq)∇γq log q(θ; γq)dθ

=
∫
∇γq log q(θ; γq)

{
log π(θ) + log L(N | θ)− log q(θ; γq)

}
q(θ; γq)dθ

−
∫

q(θ; γq)∇γq log q(θ; γq)dθ

= Eq

[
∇γq log q(θ; γq)

{
log π(θ) + log L(N | θ)− log q(θ; γq)

}]
, (9)

where ∇γq means ∂
∂γq

. The third equality is due to the fact ∇γq q(θ; γq) = q(θ; γq)∇γq

log q(θ; γq) and the last equality holds because the expected value of the score function
is zero: ∫

q(θ; γq)∇γq log q(θ; γq)dθ =
∫
∇γq q(θ; γq)dθ

= ∇γq

∫
q(θ; γq)dθ

= ∇γq 1 = 0.

Below is the detailed derivation of (9):

∇γq log q(θ; γq) =
M

∑
i=1
∇γq log q(θi; γq),

∇γq log q(θi; γq) = ∇γq

[(
γq +

T

∑
t=1

Nit

)
log

(
γq +

T

∑
t=1

(1− pit)νit

)
− log Γ

(
γq +

T

∑
t=1

Nit

)

+

(
γq +

T

∑
t=1

Nit − 1

)
log θi −

(
γq +

T

∑
t=1

(1− pit)νit

)
θi

]

= log

(
γq +

T

∑
t=1

(1− pit)νit

)
+

γq

γq + ∑T
t=1(1− pit)νit

+
∑T

t=1 Nit

γq + ∑T
t=1(1− pit)νit

−
Γ′
(

γq + ∑T
t=1 Nit

)
Γ
(

γq + ∑T
t=1 Nit

) + log θi − θi.

With step sizes ρl , l = 0, 1, 2, . . . , which satisfy Robbins–Monro conditions (Robbins
and Monro 1951), and using Monte Carlo (MC) estimate for (9), we iteratively update the
given initial γ0

q until the ELBO converges:

γl+1
q ← γl

q + ρl∇̂γqL(γq), l = 0, 1, . . .

where ∇̂γqL(γq) =
1
S ∑S

s=1 log π(θs) + log L(N | θs)− log q(θs; γq) is the MC estimate for
(9) based on the samples from the current variational distribution, θ1, . . . , θS ∼ q(θ, γl

q).

3. Data and Results

To assess applicability of the proposed method, here we perform numerical studies
using both simulated datasets and an actual insurance claim portfolio, which correspond to
the aforementioned actuarial application where we have indication of zero-inflation in the
claim counts observed over time. In this section, we first introduce the industry benchmarks
for the ratemaking purpose. After that, both the proposed model and the benchmarks
are calibrated with given data. Finally, the posterior premiums under each model are
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computed and compared to the actual claim counts in the out-of-sample validation set to
assess the prediction performances.

Note that all the calculations in this section and thereafter were performed using R,
and a computer with Intel Core i7-8565U at 1.80 Ghz 4 cores, 16 GB memory.

3.1. Simulation Study

We generate {Nit}i=1,...,5000, t=1,...,6 with the following hierarchical distributions:

Nit|θi ∼ ZIP(pit, νitθi), θi ∼ G(γ, γ), and Xit ∼ N (0, 1),

where

pit =
exp(η0 + η1Xit)

1 + exp(η0 + η1Xit)
, νit = exp(α0 + α1Xit),

η0 = 1, η1 = −2, α0 = −2.5, α1 = 2, and γ = 3.8.

We consider some frequency models and corresponding premium calculation for
comparison. First, we use models without zero-inflation whose premium calculation are
given as follows:

• Naive Poisson (NP): ̂E
[
Ni,Ti+1 |Fi,Ti

]
= ν̂i,Ti+1.

• Poisson-Gamma (PG): ̂E
[
Ni,Ti+1 |Fi,Ti

]
=

γ∗+∑
Ti
t=1 Nit

γ∗+∑
Ti
t=1 ν̂it

ν̂i,Ti+1.

Note that NP and PG models are specified with the same mean structure so that we
estimated α̂0 and α̂1 via glm function in R, which are still consistent regardless of possible
misspecification in the working correlation structure. (Zeger et al. 1988) The estimation

took around 0.07 s and the a priori premium ̂E
[
Ni,Ti+1

]
= exp(α̂0 + α̂1Xi,Ti+1) is the same

in both NP and PG models while the posterior premiums vary.
Further, we also used models with zero-inflation whose premium calculations are

given as follows:

• Naive ZIP (NZIP): ̂E
[
Ni,Ti+1 |Fi,Ti

]
= (1− p̂i,Ti+1)ν̂i,Ti+1.

• Proposed (VB): ̂E
[
Ni,Ti+1 |Fi,Ti

]
=

γ∗+∑
Ti
t=1 Nit

γ∗+∑
Ti
t=1(1− p̂it)ν̂it

(1− p̂i,Ti+1)ν̂i,Ti+1.

• Bayes (BA): ̂E
[
Ni,Ti+1 |Fi,Ti

]
= (1− p̂i,Ti+1)ν̂i,Ti+1 · 1

R ∑R
r=1 θ

(r)
i where {θ(r)i }r=1,...,R are

posterior samples of θi via MCMC. Note that the value of R should be large enough
for the convergence of the posterior distribution while it also has a substantial impact
on the computational time. To achieve a balance between the computational cost and
prediction accuarcy, we set R = 30,000.

• True (TR): ̂E
[
Ni,Ti+1 |Fi,Ti

]
= (1− p̂i,Ti+1)ν̂i,Ti+1θi.

Again, due to the same mean structure, η̂0, η̂1, α̂0 and α̂1 are commonly estimated via
zeroinfl function in R for ZIP, VB, BA, and PG models. γ∗ is estimated via variational
Bayes approach and used both in PG and VB models. The estimation took around 1.27 s
and the a priori premium

̂E
[
Ni,Ti+1

]
=

exp(η̂0 + η̂1Xi,Ti+1)

1 + exp(η̂0 + η̂1Xi,Ti+1)
exp(α̂0 + α̂1Xi,Ti+1),

is the same while the posterior premiums vary.
Note that our main interest is to establish a way to compute the predictive premium

of Ni,T+1 given Ni,1, . . . , Ni,T with less computational cost. While one could estimate α and
γ (note that θi are treated as random in our framework) via applying an EM algorithm as
in Tzougas and Karlis (2020) or Tzougas and Jeong (2021), we chose a rather simpler way
as in Pechon et al. (2019, 2020), to focus on different characterizations of E[θi|Ni,1, . . . , Ni,T ]
under different models. Note that the comparison of all models were done at the same
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ground (the fixed effects were estimated in the same way as long as they have the same
marginal mean structure) to assure that we make a fair comparison of the models.

By doing so, we focus on the efficiency of each model to incorporate the unobserved
heterogeneity rather than estimation accuracy of the fixed effects. Note that the true model
assumes perfect knowledge on the unobserved heterogeneity θi for each policyholder i
(while it still allows for possible estimation errors in the fixed effects), which is not available
in practice and only used as an (unattainable) benchmark.

After the benchmarks and the proposed model are specified, we assess the prediction
performances of the models via root-mean squared error (RMSE), mean absolute error
(MAE) that are defined as follows:

RMSE :

√√√√ 1
M

M

∑
i=1

(Ni,Ti+1 − N̂i,Ti+1)2,

MAE :
1
M

M

∑
i=1
|Ni,Ti+1 − N̂i,Ti+1|.

(10)

Note that RMSE and MAE measure the discrepancy between the actual values and
predicted values in L2 and L1 norms, respectively, so that we prefer a model with lower
values of RMSE and MAE. We also prefer a model with less computation time since it is
required to evaluate individual posterior premium for a portfolio that consists of millions
of policyholders in general. Out-of-sample validation results with the simulated data are
provided in Table 1.

Table 1. Out-of-sample validation with simulated data.

NP PG NZIP VB BA TR

RMSE 5.1342 3.4719 4.1796 2.9404 3.3008 0.7636
MAE 0.4254 0.3940 0.4068 0.3768 0.3835 0.2822

Computation Time 0.07 1.57 1.27 380.33 6492.93 1.27

3.2. Case Study—Posterior Ratemaking with the LGPIF Data

For the empirical analysis, a public dataset on insurance claim provided by the Wis-
consin Local Government Property Insurance Fund (LGPIF) is used. The dataset consists
of claims information on multiple coverages and corresponding policy characteristics that
have been observed from years 2006 to 2011. Among the information on multiple coverage,
we only use inland marine (IM) claims information. Note that observations from years
2006–2010 are used to train the frequency models while observations from year 2011 are
used to validate the trained models and compare their performance. Table 2 summarizes
the distributions of covariates, which are used to determine rating factors for each policy-
holder via a regression model. For more detailed explanation and preliminary analysis of
given dataset, see Frees et al. (2016). Note that the LGPIF dataset used here is a so-called
traditional dataset while there has been emerging interest in new types of insurance claim
datasets, which are high-dimensional and contain more information on the heterogeneity
of the policyholders, such as telematics data (Gao et al. 2021). However, uses of such
high-dimensional data and related models are still in a developing stage. Further, analyses
of traditional datasets with limited range of features could be still meaningful, especially in
the sense that the proposed method explores an efficient way to capture the unobserved
heterogeneity of each policyholder that are not explainable by the available covariates.



Risks 2022, 10, 54 8 of 11

Table 2. Observable policy characteristics used as covariates.

Categorical Description Proportions
Variables

TypeCity Indicator for city entity: Y = 1 14%
TypeCounty Indicator for county entity: Y = 1 5.78%
TypeMisc Indicator for miscellaneous entity: Y = 1 11.04%
TypeSchool Indicator for school entity: Y = 1 28.17%
TypeTown Indicator for town entity: Y = 1 17.28%
TypeVillage Indicator for village entity: Y = 1 23.73%
NoClaimCreditIM No IM claim in three consecutive prior years: Y = 1 42.1%

Continuous Minimum Mean Maximum
Variables

CoverageIM Log coverage amount of IM claim in mm 0 0.8483 46.7493
lnDeductIM Log deductible amount for IM claim 0 5.340 9.210

Before we consider frequency models with zero-inflation, it is natural to test presence
of zero-inflation from the data. To detect the zero-inflation in Poisson distribution, equiv-
alently to test whether the zero-inflation parameter p0i = 0 or not, Van den Broek (1995)
showed that

S(α̃) =
(∑M

i=1
1{Ni=0}− p̃0i

p̃0i
)2

(∑M
i=1

1− p̃0i
p̃0i

)−∑M
i=1 Ni

' χ2(1) under H0 : p0i = 0,

where p̃0i = exp(−xiα̃). With this data, the value of S(α̃) for IM claims is 1.967 and
corresponding p-value is 0.08038. Therefore, one can conclude that there is a not negligible
level of overdispersion in IM claim frequencies.

Based on such indications, now we train the models that were used in Section 3 except
for the true model, which assumes perfect knowledge on unobserved heterogeneity of the
policyholders. As in the simulation study, we first estimate the fixed effects, only α for the
models without zero-inflation via glm and η and α for the models with zero-inflation via
zeroinfl, respectively. Table 3 summarizes the estimated coefficients for the fixed effects.
Note that α̂ from the models without zero-inflation and α̂ from the ones with zero-inflation
are not comparable due to the presence of covariate impacts on zero-inflation.

Table 3. Estimation results of the fixed effects.

No ZI With ZI

α η α

Estimate p-Value Estimate p-Value Estimate p-Value

(Intercept) −4.0315 0.0000 3.6900 0.0011 −0.7553 0.4308
TypeCity 0.9437 0.0000 1.8268 0.0903 1.7887 0.0080
TypeCounty 1.7300 0.0000 −0.2296 0.8584 1.3579 0.0485
TypeMisc −2.7326 0.0071 0.9887 0.8437 −1.9120 0.6441
TypeSchool -0.9172 0.0010 2.9200 0.0076 1.5831 0.0396
TypeTown −0.3960 0.1531 1.4311 0.2196 0.7086 0.4187
CoverageIM 0.0664 0.0000 −0.2242 0.0002 0.0553 0.0000
lnDeductIM 0.1353 0.0031 −0.4826 0.0018 −0.2183 0.0509
NoClaimCreditIM −0.3690 0.0049 −0.3249 0.4854 −0.5103 0.0746

After the fixed effects are estimated, we can compute the individual posterior premi-
ums based on the covariates information in the out-of-sample validation set and claims
history of each policyholder under the specified models as in Table 4.
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Table 4. Out-of-sample validation result with actual dataset.

NP PG NZIP VB BA

RMSE 0.3797 0.2334 0.2291 0.1794 0.1873
MAE 0.1267 0.1167 0.1174 0.1098 0.1133

Computation Time 0.02 1.32 0.64 71.54 1310.58

4. Discussion of the Results

According to the out-of-sample validation results of the simulation study in Table 1,
it is observed that the proposed method, VB method outperforms NP, PG, NZIP, and BA
models in terms of predictive performances. (Note that the true model is the best in terms
of predictive performance as expected while it is not available in practice.) Even though the
computation time under BA model was excessive, its performance improvement was not
significant over other benchmarks. To assess the stability of the simulation results under the
parameter changes, we also performed simulation studies with different sets of parameters
and it showed the consistent pattern as in Table 1, while detailed results are omitted here.
Note that the simulation studies conducted here are still restrictive due to pre-specified
model structure and limited number of covariates so that there is no assurance that the
proposed model outperforms the full Bayes model in general. As in the simulation study,
the proposed model also shows the best performance on the prediction results with the
LGPIF data in terms of both RMSE and MAE, and much less computation time compared
to the BA model that uses MCMC to estimate the individual unobserved heterogeneity.

In that regard, the numerical illustrations given in Section 3 shows us the applicability
of the proposed method as an acceptable approximation of the true unobserved hetero-
geneity that requires much less computation time compared to a naive use of MCMC in the
presence of zero-inflation in claim counts.

5. Conclusions

As insurance companies are interested in better risk classification and tarrification
by incorporating prevalent features of claims data such as indication of zero-inflation and
the unobserved heterogeneity, computational costs in model calibration and individual
premium calculation have been obstacles of using complicated models. To tackle this issue,
we proposed a way to approximate the posterior density of the unobserved heterogeneity
in risks with consideration of zero-inflation, which leads to an analytic form of the posterior
premium. It was also shown that the proposed method can be used an alternative of full
Bayes method due to its predictive performance and less computation cost.

The proposed approach is limited in the sense that the random effect θ, which captures
the unobserved heterogeneity, is assumed to be static. It means there is no room for
evolution of the unobserved risk characteristics of a policyholder over time under this
model, which is somewhat unrealistic. While there are some research work focused on the
use of dynamic random effects for determination of credibility premium (Ahn et al. 2021b;
Pinquet 2020), calibration and prediction of dynamic random effects models are often
computationally intensive and intractable. Therefore, as a direction for future research, one
can expand the class of variational family so that impacts of dynamic random effects can
be incorporated in the posterior premium calculation.
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