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Abstract: The detection of anomalous data patterns is one of the most prominent machine learning
use cases in industrial applications. Unfortunately very often there are no ground truth labels
available and therefore it is good practice to combine different unsupervised base learners with
the hope to improve the overall predictive quality. Here one of the challenges is to combine base
learners that are accurate and divers at the same time, where another challenge is to enable model
explainability. In this paper we present BHAD, a fast unsupervised Bayesian histogram anomaly
detector, which scales linearly with the sample size and the number of attributes and is shown to
have very competitive accuracy compared to other analyzed anomaly detectors. For the problem of
model explainability in unsupervised outlier ensembles we introduce a generic model explanation
approach using a supervised surrogate model. For the problem of ensemble construction we propose
a greedy model selection approach using the mutual information of two score distributions as a
similarity measure. Finally we give a detailed description of a real fraud detection application from
the corporate insurance domain using an outlier ensemble, we share various feature engineering
ideas as well as discuss practical challenges.

Keywords: Bayesian anomaly detection; outlier ensembles; insurance claims fraud; unsupervised
learning; model explanation

1. Introduction

The detection of outliers or anomalous data patterns is one of the most prominent
machine learning use cases in the industry. Applications range from quality control,
intrusion detection, web log analytics to medical applications. In the finance industry
the prediction of credit card fraud (cf. Buonaguidi et al. 2022), stock market anomalies
and insurance claim fraud (cf. Gomes et al. 2021) are the most common examples of
anomaly detection (see Phua et al. 2010 for a survey of fraud detection). Statistically an
anomalous observation (or an outlier) could be defined as “[. . . ] an observation which
deviates so much from other observations as to arouse suspicions that it was generated
by a different mechanism.” (Hawkins 1980). Some popular methods for outlier detection
are based on the distance between observations (cf. Angiulli and Pizzuti 2002; Knorr
and Ng 1997), others are based on the variance of angles between sample points in high
dimensional feature spaces (Kriegel et al. 2008) or use the number points in specific regions
of the space (“density-based”) to define outliers (cf. Aggarwal 2012; Breunig et al. 2000;
Papadimitriou et al. 2003). Since methods for outlier detection are mostly unsupervised
this makes model diagnosis (or evaluation) and model selection challenging due to the lack
of ground truth. For this reason instead of selecting a single “best” model it is common
practice to use ensemble approaches instead (cf. Zimek et al. 2014). Ensemble learning
uses various base detectors to achieve a better predictive accuracy compared to using a
single base detector. Those methods involve two main steps: (i) creating a candidate set
of base detectors and (ii) combining the base detectors to get an improved model score.
In general the balance of accuracy and diversity of the involved base detectors is crucial
to form good model ensembles (cf. Schubert et al. 2012), since we would like to combine
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models that are accurate, but make different errors on a given data set (“diversity”). Since
ensemble learning often means combining many black-box models with each other the
task of model explanation (or interpretability) becomes even more challenging. In many
industrial applications, like in banking or insurance, model interpretability is crucial due to
regulatory requirements.

In this paper we will focus on the application of outlier ensembles for the detection
of insurance claim fraud. For this purpose we use a combination of different approaches,
like generative neural networks, density-based approaches, kernel methods and tree-based
methods among others. In this context we will first introduce an own probabilistic anomaly
detection method in Section 2, which will be one component in our final outlier ensemble
used to detect insurance fraud. For this the work presented in Knuth (2019) on Bayesian
density estimation will be extended to the domain of anomaly detection. For this purpose
and in contrast to the aforementioned work an informative hierarchical prior for the
unknown number of bins is introduced and the posterior predictive distribution is used to
formulate a Bayesian anomaly detection algorithm (BHAD). BHAD scales linearly with
the size of the data and allows a direct explanation of individual anomaly scores due to
its simple linear functional form, which makes it very suitable for practical applications
when model interpretability is crucial. Other histogram-based outlier approaches like in
Koufakou et al. (2007) or Goldstein and Dengel (2012) are on the other hand not based on a
probabilistic framework and hence do not allow direct statistical inference regarding the
unknown quantities, like the number of histogram bins, which is estimated as a step of
BHAD (see Section 2). Although not directly related to the aforementioned model there is a
growing literature of unsupervised probabilistic methods for fraud detection, see Ekin et al.
(2019); Zafari and Ekin (2019).

In a simulation study (Section 4) and also using two popular benchmark datasets
(Section 5) we analyze the predictive performance of the used candidate models and also
compare them with different model ensembles. The results suggest that the proposed
BHAD model has very competitive performance compared to other more complex models
like variational autoencoders, in fact it is among the best performing candidates while
offering individual score interpretability. Since selecting accurate and divers candidates is
crucial to form powerful model ensembles we use a variation of the original Greedy model
selection approach (Schubert et al. 2012) in Section 3.2 using the more general mutual
information of two score distributions as a selection criterion instead of a (weighted)
Pearson correlation as originally suggested by the authors.

Since providing model explanations can be a challenging task, especially in an ensem-
ble of unsupervised black box models we propose a model-agnostic approach for such
situations in Section 3.3. The idea is to fit a meta (or surrogate) model to a “pseudo target”,
i.e., the predicted output of the model ensemble, and then regress it onto the original feature
variables. The approach allows using standard regression and classification techniques as a
global model explainer, which can be combined with any state-of-the-art model explanation
approach like LIME, SHAP etc. To the best of our knowledge, this approach although
simple and straightforward to implement has not been proposed in the outlier detection
literature yet.

In Section 6 an outlier ensemble model using Greedy model selection of base detec-
tors is then utilized to detect fraudulent insurance claims using data from the corporate
insurance domain. Finally in Section 6.2 we present some empirical results of a corporate
insurance industry application for five countries. For the latter task also various ideas for
the extraction of predictive features are shared with the readers. For example, building
features based on an own fuzzy names matching algorithm is outlined as well as using
different NLP approaches for handling unstructured claim descriptions. In this context we
also discuss common data quality issues in practice regarding valid labels which could give
some guidance to practitioners working in the field of insurance fraud detection. Section 7
summarizes the results and concludes.

To summarize, in this paper we make the following contributions:
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• we present BHAD, a novel Bayesian histogram-based anomaly detection method,
which directly estimates the unknown number of bins using an informative hierarchi-
cal prior

• we introduce a generic approach to enable local and global model explanations for
outlier ensembles using a supervised surrogate model

• we propose a variation of the Greedy model selection algorithm of Schubert et al.
(2012) using the mutual information of two score distributions as a similarity measure

• we give a detailed description of a real insurance claims fraud detection application
and share various feature engineering ideas, e.g., utilizing natural language processing
and clustering techniques

Next we will outline a Bayesian anomaly detector based on a hierarchical Categorical-
Dirichlet mixture approach which can be used for continuous and/or categorical features.

2. Bhad: Bayesian Histogram-Based Anomaly Detector
2.1. Likelihood Function

First let’s assume we observe an i.i.d. sample of scalar real-valued observations
yi, i = 1, . . . , N and we want to estimate the unknown probability density function (p.d.f.).
We will first present a Bayesian version of a univariate histogram estimator and then show
how this can be used in the context of multivariate anomaly detection.

Assume the following piecewise-constant data model (cf. Knuth 2019) for the i-th
observation yi ∈ R:

f (yi|π, ξ, K) =
K

∑
k=1

1(ξk−1 ≤ yi < ξk) ·
πk
νk

(1)

with yi ∈ [ξ0, ξK], ∀i, where ξ0 < ξ1 < · · · < ξK denote the knots which we will assume as
known for simplicity as well as the number of bins K. Also let νk = ξk − ξk−1 denote the
bin width, which will be assumed equal across bins, i.e., νk = ν, ∀k.1

Let πk = Pr(yi ∈ Bk), k = 1, . . . , K, denote the (unknown) probability of the observa-
tion i falling into the k-th bin, with Bk = [ξk−1, ξk).2

For a model with K bins this constitutes the entire range of the observed data V = K · ν
(Ibid.). For the vector y ≡ (y1, . . . , yN) the joint data density function is given as:

f (y|π, ξ, K) =
K

∏
k=1

N

∏
i:yi∈Bk

(
K
V

)
· πk (2)

For brevity let ξ ≡ (ξ0, ξ1, . . . , ξK) and π ≡ (π1, . . . , πK) be the vector of knots and bin
probabilities, respectively.

Next define an auxiliary variable z(k)i ≡ 1(yi ∈ Bk) ∈ {0, 1} to indicate the assignment
of yi to one of the K categories, i.e., yi is mapped to a K-dimensional “one-hot” vector zi with
one in the k-th component and otherwise zeros. From Equation (2) it can be recognized that
the sample density function, as a function of π, has the form of a categorical (or multinoulli)
Cat(π1, . . . , πK) distribution with p.m.f. f (z(k)i = 1) = πk and hence the joint data density

is a multinomial distribution with sufficient statistics nk = ∑N
i=1 z(k)i , where N = ∑K

k=1 nk.
For the subsequent analysis we define an N× K sparse indicator matrix Z with row vectors
zi, i = 1, . . . , N and represent the data y in terms of the matrix Z instead.

2.2. Prior Distributions

In a Bayesian context the unknown model parameters are treated as random variables
(rather than fixed and unknown population quantities) to which prior distributions are
assigned in order to express the available knowledge about the statistical task. In the
following we treat the bin probabilities πk, k = 1 . . . K, as well as the number of bins, K, as
random model parameters on which we would like to do inference.
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Conditional on K, the likelihood function of π in Equation (2) has the form of a multi-
nomial distribution and hence we could use a conjugate Dirichlet prior, Dir(π|α1, . . . , αK),
with hyperparameters αk > 0, ∀k. To express lack of prior knowledge we use the corre-
sponding objective Jeffreys prior (see Jeffreys 1961) with αk = 1/2, ∀k:

p(π|K) =
Γ(K

2 )

Γ( 1
2 )

K
·

K

∏
k=1

π−1/2
k (3)

with Γ(.) denoting the Gamma function.
Next we would like to express our prior knowledge regarding the number of bins K.

Assuming a flat prior would assign the same prior probability to all values, which does not
seem suitable for all contexts. Following the principle of parsimony we therefore prefer
simpler over complicated models, i.e., a model with less number of bins over a model with
many number of bins. Subsequently we use the geometric prior probability mass function
of Scargle et al. (2013):

p(K|γ; Kmax) = c0 · γK , K = 1, . . . , Kmax (4)

with prior hyperparameter γ and normalization constant c0. The latter can be derived

using basic properties of the geometric series ∑J
j=0 γj = 1−γJ+1

1−γ for γ 6= 1. Note this prior
assigns more weight to models with fewer bins for 0 < γ < 1 and the smaller γ the more
pronounced this weighting effect will be.

As the prior in (4) is sensitive to choices in γ, we also model this hyperparameter
explicitly by assigning a uniform prior density Uγ(0, 1) to it, which leads to a hierarchical
prior for the number of bins. This is in contrast to the aforementioned authors who treat
this hyperparameter as known in their analysis.

This leads to the joint prior for the number of bins K and the hyperparameter γ:

p(K, γ|Kmax) =
1− γ

1− γKmax+1 · γ
K ·Uγ(0, 1) (5)

2.3. Posterior Distributions

Combining the prior with the likelihood in Equation (2) using Bayes theorem and
noting that the likelihood is independent of γ the joint posterior is given by (omitting
conditioning on ξ and Kmax subsequently):

p(π, K, γ|Z) ∝ p(π|K) · p(K, γ) · f (Z|π, K) (6)

In the outlier analysis below we will condition on a given number of bins per feature as
well as on a γ value. For this we will compute the maximum-a-posteriori (MAP) estimates
(K̂MAP, γ̂MAP) = arg maxK,γ p(K, γ|Z) based on the joint posterior p(K, γ|Z). We first
compute γ̂MAP based on the marginal posterior of γ:

p(γ|Z) =
Kmax

∑
k=1

p(K = k, γ) · f (Z|K = k) (7)

with f (Z|K) the marginal likelihood of K, i.e., after analytically integrating out the bin
probabilities π using properties of the Dirichlet distribution (cf. Knuth 2019; Murphy 2012):

f (Z|K) =
∫

p(π|K) · f (Z|π, K) · dSK (8)

=
Γ(∑K

k=1 αk)

∏K
k=1 Γ(αk)

·
(

K
V

)N
·
∫ K

∏
k=1

π
∑N

i=1 z(k)i +αk−1
k · dSK (9)
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=

(
K
V

)N
·

Γ(K
2 )

Γ( 1
2 )

K
· ∏K

k=1 Γ(nk +
1
2 )

Γ(N + K
2 )

(10)

with SK denoting the (K− 1)-dimensional simplex with (π1, . . . , πK) ∈ SK, i.e., the support
of the Dirichlet distribution and nk = ∑N

i=1 z(k)i . Note that the last equation follows from
using the normalizing constant of the Dirichlet distribution and assuming a Jeffreys prior
for π, i.e., αk = 1/2, ∀k.

Then the conditional posterior mass function of K given γ̂MAP is computed using
Equations (4) and (8) from which K̂MAP can then be calculated:

p(K|γ̂MAP, Z) = p(K|γ̂MAP) · f (Z|K) (11)

The posterior of the bin probabilities follows from the conjugacy of the multinomial
distribution and the corresponding Jeffreys prior and is given by

p(π|K, Z) ∝
K

∏
k=1

π
αk−1
k ·

N

∏
i: z(k)i =1

πk
νk

∝
K

∏
k=1

π
nk−1/2
k (12)

with sufficient statistics nk = ∑N
i=1 z(k)i as above and hence has the well-known form of a

Dir(π|α?1 , . . . , α?K) p.d.f. with updated posterior parameters α?k = nk + 1/2.3

For illustration purposes we have generated an independent N = 7000 sample from
a multi-modal Cauchy mixture distribution, see Figure 1. The corresponding posteriors
of the number of bins and of γ are depicted in Figure 2 from which the MAP estimates
K̂MAP = 54 and γ̂MAP = 0.68 were computed.4

Figure 1. Cauchy data with density estimates.

Figure 2. Posteriors of number of bins (left) and of γ (right).

2.4. Anomaly Prediction

For a new data point zN+1 we need the posterior predictive distribution f (zN+1|z1, . . . , zN)

in order to evaluate the probability of the event z(s)N+1 = 1 with s = 1, . . . , K. Conditional on
MAP estimates γ̂ and K̂ and after analytically integrating out the bin probabilities π the
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posterior predictive probability of z(s)i = 1 has the following simple form (cf. Murphy 2012,
p. 83):

f (z(s)N+1 = 1|K̂, γ̂, Z)

=
∫

f (z(s)N+1 = 1|π, K̂, γ̂) · p(π|K̂, Z) · dSK̂

∝
αs + ns

∑K̂
k=1(αk + nk)

(13)

with αk = 1/2, ∀k when using the Jeffreys prior, the sufficient statistics nk of the multinomial
distribution and SK the support of the Dirichlet distribution.

We can next use the above to construct a simple but efficient unsupervised anomaly de-
tector based on the posterior predictive probabilities in Equation (13). Let xi ≡ [xi,1, . . . , xi,D]

T ,
i = 1, . . . , N, be a feature vector where the D independent features can have mixed scale
level (e.g., categorical, ordered, continuous etc.).5 In the case of continuous features we
partition their support into Kj, j = 1 . . . D, disjoint intervals as described above, whereas in
case of discrete features each level constitutes its own histogram bin.

As anomaly score for observation i we will use the average posterior predictive proba-
bilities over the feature space in Equation (13). It can be shown using Bayesian reasoning
(see Nelson 2017) that for a given set of probabilities the geometric mean represents the
correct average probability and hence we will use the geometric average of the posterior
predictive probabilities (assuming feature independence) as anomaly score or equivalently
the arithmetic average in log-space:

S(zi) =
1
M

D

∑
j=1

Kj

∑
sj=1

log( f (z
(sj)

i,j = 1|K̂j, γ̂j, Zj)) (14)

with z
(sj)

i,j = 1 if for feature j the original observation i is assigned to the sj-th interval with

sj = 1 . . . Kj, zi is a M-dimensional binary vector for the bin assignments, with M = ∑D
j=1 Kj,

and Zj denotes an N × Kj sparse matrix with Kj dimensional binary row vectors zi,j.
We call this model: Bayesian Histogram Anomaly Detector (BHAD). The used Bayesian

density estimator is in contrast to the one used in Knuth (2019) who does not use the fea-
ture independence restriction when computing the multi-dimensional histograms, but at
higher computational costs which often can be a problem in industrial applications. Also in
contrast to the aforementioned work since our goal is anomaly detection our main quantity
of interest is the predictive distribution, which is not of primary relevance when the goal is
pure density estimation and hence inference. The steps to compute BHAD are sketched in
Algorithm 1.

It is interesting to observe that the proposed Bayesian anomaly detector bears some
resemblance to other works like for example the Attribute Value Frequency (AVF) algorithm
of Koufakou et al. (2007), if we set the prior hyperparameters αk = 0, ∀k. However the
AVF algorithm was proposed for the use of categorical data only, whereas BHAD can be
applied to categorical and numerical features.6 Another detection method similar to the
one presented here is the “Histogram-based outlier score (HBOS)” of Goldstein and Dengel
(2012). However since BHAD directly computes the posterior of the unknown parameters
(π1, . . . , πK), K and γ we not only get point estimates for these quantities, but a whole
distribution as a measure of uncertainty. This is in sharp contrast to the two aforementioned
works, which are not based on an explicit probabilistic framework and hence do not allow
straightforward statistical inference, like for example the computation of predictive bounds
for the number of bins K. Also note that setting αk 6= 0 in BHAD this corresponds to Laplace
smoothing through the introduction of the “pseudo counts” αk and hence to smoother or
less sparse score distributions compared for example to the AVF algorithm.
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Algorithm 1: Bayesian Histogram-based Anomaly Detector
/* Set maximum number of bins KMax for all features */;
j← 1; /* Features */
T := ∅; /* Sufficient statistics */
while j ≤ D do

Compute p(γj|Zj) using Equations (7) and (8);
Compute γ̂j = arg maxγ p(γj|Zj);
Compute p(Kj|γ̂j, Zj) using Equation (11);

Compute K̂j = arg maxK p(Kj|γ̂j, Zj);
Compute sufficient statistics τj = {n1, . . . , nK̂j

} based on Zj;

Compute posterior predictive prob. in Equation (13) based on Zj using τj ;
T ← T ⋃

τj ;
j← j + 1;

end
Compute Scores = (S(z1), . . . , S(zN)) using Equation (14);
return Scores;

After having assigned a score to each sample in the data set, using expression (14), we
calculate a left-tail decision threshold as the p%—quantile (e.g., 1%) of the score distribution.
All observations with anomaly score not exceeding that threshold are taken as outliers.
Note that this scoring rule has O(N ·M) complexity, where M = ∑D

j=1 Kj and therefore
scales linearly with sample size and the number of attributes (i.e., bins) which makes it a
fast unsupervised anomaly detection algorithm.

3. Model Combination

Generally speaking any statistical model can be perceived as a (hopefully “useful”)
approximation to the (unknown) data generating process (see Box 1979). In the context
of unsupervised learning the selection of the most useful base learner can be tricky due
to the lack of labels (i.e., ground truth) which might help the statistician within a model
selection task. This motivates using an ensemble of outlier detectors instead of a single
detector since the former combines the strength of different base algorithms and thus can
lead to an overall performance improvement. The basic idea of ensemble methods is that
some models might do better on a particular subset of the feature space whereas others
might do better on other regions of the feature space and therefore combining them could
(although not necessarily in practice) lead to a boost in performance (cf. Zhou 2012).

For classification (see Dietterich 2000; Valentini and Masulli 2002) and clustering tasks
(see Gosh and Acharya 2011) model ensembles are widely used and have a sound theoretical
foundation. Methods like boosting, bagging, stacking etc. are nowadays standard ensemble
strategies in practice as well as in research. Aggarwal (2012) provides a review of recent
outlier ensemble methods and also highlights the relationship of ensemble analysis to the
bias-variance trade-off. Because of the unsupervised nature of anomaly detection it is much
harder though to reduce bias in outlier ensembles due to the absence of labels. Therefore
the idea is to use an average of base detectors to reduce model-specific variance instead.
Subsequently we will compare and discuss different approaches to outlier ensembles. From
a practical point of view we have to answer the following questions: (i) which models out of
a given candidate set of models,M, should be selected for ensemble construction? (ii) How
to normalize the different score distributions? (iii) And how to combine the different score
distributions to an ensemble score distribution?

For the first question we will focus on two strategies, namely (1.) using a static (or full)
ensemble (i.e., all models inM) versus (2.) a dynamic ensemble construction, which selects
a subset of candidates based on statistical criteria. For the latter we will use the “Greedy
Ensemble construction” approach of Schubert et al. (2012). The two main requirements
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for an ensemble to improve over its base models (and similar to ensembles in supervised
learning tasks) are that the base learners themselves have high accuracy and are diverse
at the same time, i.e., they make independent errors on new samples. The latter point
should intuitively make sense because if the ensemble scores were on the other hand highly
associated there would be no real improvement in predictive performance by combining
them compared to just using a single base detector.

For score normalization there are mainly two strategies being used in the literature
(cf. Aggarwal 2012): normalizing the base model scores so that their distributions are more
comparable, e.g., by using the usual location/scale standardization (’z-transformation’).
Alternatively if the original scores are of less importance (e.g., the actual score differences)
and only the relative order of the samples is of interest then the underlying rank series
can be used instead of the actual scores. For score combination it is common to use some
sort of aggregation function, like the (weighted) average of the model component scores
(or ranks) per sample, the median score or the minimum or maximum (depending on the
model), see Zimek et al. (2014) for a general discussion of the challenges involved with
outlier ensembles.

3.1. Static Ensemble Approach

In the model applications presented below we will use model averaging among
other strategies for the prediction of anomalies in the data. The goal there is to apply a
weighted average to the score distributions of different anomaly detectors: p(S) = ∑J

j=1 ωj ·
p(S|Mj), j = 1, . . . , J. From a statistical viewpoint the model weights should express model
uncertainty related to the different candidates, i.e., the different errors committed by the
candidate models. In a supervised learning setting we could use the underlying loss (or
risk) function to measure predictive uncertainty of the different algorithms. In a Bayesian
framework we could use the prior predictive distribution (or model marginal likelihood)
to compute model weights based on model posterior probabilities (cf. Vosseler and Weber
2018). Unfortunately neither of this is applicable here so we are left with more “ad-hoc”
approaches to model weight construction. The most obvious approach is to assign uniform
(“uninformative”) weights to the different ensemble components to express lack of prior
knowledge. Another approach is to assign weights to the different models according to
their score (or rank) similarity to other models, measured by some statistical association
measures, e.g., Spearman’s rank correlation. The problem with such an approach is however
that a lack of ensemble diversity is being rewarded and one could clearly argue that this
approach questions the model combination idea as a whole. In the most extreme situation of
perfect association of the considered candidate models one could simply pick any arbitrary
candidate to arrive at the same model performance as with the full ensemble, thus gaining
no improvement at all but having higher computational training costs.

3.2. Dynamic Ensemble Approach

Rather than using all candidate models and combining them a more advanced ap-
proach is to employ a dynamic ensemble construction (cf. Campos et al. 2018; Zhao et al.
2019). Because of the absence of labels in the unsupervised setting it is common to construct
a pseudo ground truth score vector, which can be converted to a binary vector to yield a
pseudo target variable. The benefit of using a pseudo ground truth in an unsupervised set-
ting is clearly that one can borrow ideas from binary classification to build model ensembles,
e.g., Boosting (cf. Campos et al. 2018).

We will use the Greedy ensemble approach presented in Schubert et al. (2012); Zimek
et al. (2014). In contrast to the mentioned works we will not use the weighted Pearson
correlation on the ranks7 to measure the similarity between two different outlier detectors,
but pursue an information theoretic approach, by calculating the mutual information of
their score distributions. The latter takes into account not only the first two moments of a
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(score) distribution but also higher moments that capture shape. For two random variables
X and Y the mutual information is defined as

I(x; y) =
∫
X

∫
Y

p(x, y) · log
(

p(x, y)
p(x) · p(y)

)
· dx dy (15a)

= EX,Y

(
log
(

p(x, y)
p(x) · p(y)

))
(15b)

with I(x; y) ≥ 0.
For two outlier detectors and their empirical score distributions expression (15) can be

estimated by first estimating the joint and marginal densities, e.g., using a Gaussian mixture
model,8 and then taking a random sample from the fitted joint distribution to approximate
the expectation in (15b) via basic Monte Carlo integration. Alternatively, one could estimate
the above expression by using histogram estimators for the joined and marginal densities
and then summing over the two-dimensional (binned) support. In our analysis below we
will use the latter approach for computational reasons.

In Algorithm 2 the model selection approach of Schubert et al. (2012) with mutual
information is sketched for an ease of reference.

Similarly to the original approach of Schubert et al. (2012) using a weighted measure
of association we restrict the calculation of the mutual information to a balanced sample
instead of using the full data set. By definition the “normal” (“majority or negative”)
observations will be dominating the sample and since we are more interested here in
“anomalous” (“minority or positive”) observations we a-priorily assume that p% (e.g., 5%)
of the observations are positives.9 To balance the computation of the mutual information
we therefore only use the next p% of observations in a ranked series, i.e., the negatives that
are close to being positives.10

Algorithm 2: Greedy Model Selection
J := Set of individual outlier detectors;
K := Union set of top-k outliers;
ν := Target vector (=Pseudo ground truth);
/* with νi = 1 if sample i ∈ K and νi = 0 otherwise */
E := ∅ /* Initialize ensemble */;
Sort J by mutual information (MI) with ν;
E← E

⋃
getFirst(J) ;

SE ← Combine scores in E ;
Sort J by mutual information with SE;
while J 6= ∅ do

i← getFirst(J);
if MI(E

⋃
i, ν) > MI(E, ν) then

E← E
⋃

i ;
SE ← Combine scores in E ;
Sort J by mutual information with SE;
/* in decreasing order */

end
end
return E;

3.3. Model Explanation

A crucial part of any deployed machine learning solution is model explanation, i.e.,
providing a human-friendly explanation to the user as to why an observation (here: a
claim) was scored the way it was scored. Unfortunately most research around model
explainability focuses on supervised learning problems (see Adadi and Berrada 2018;
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Molnar 2022 for an overview) and hence cannot be used in the context of unsupervised
anomaly detection. One recent exception is the work presented in Oliveira et al. (2021),
however the latter work does not deal with ensembles but only with the case of a single
anomaly detector and hence cannot be used here. For this reason we propose the following
approach which is simple to implement and works well in practice. Recall that after having
trained the outlier ensemble we have learned different (score) functions f̂1(X), . . . , f̂M(X)
whose outputs are combined, e.g., using an arithmetic average (“pseudo target”), to yield
a final ensemble score s̃ for observation i: s̃(Xi) =

1
M ∑M

m=1 f̂m(Xi), i = 1, . . . , N. In order
to explain the mapping g : X 7→ s̃(X) we train a global “surrogate” model, e.g., a linear
regression. For example using a linear model for the explanation of individual score values
s̃i we simply calculate the “effects”, i.e., the weight per feature j times the feature value
of an instance: e f f ect(i)j = β jXi,j, j = 1, . . . , J. Individual effects of a feature, e f f ect(i)j ,
could then be further compared to some summary statistics like the median or higher
order statistics of the distribution of e f f ectj (cf. Molnar 2022). In case a more complex
surrogate model, like for example Light GBM, would be used to achieve a better fit we
could simply apply any preferred model explanation method like SHAP (see Lundberg
and Lee 2017) subsequently to get individual score explanations. To our knowledge, this
approach although simple and straightforward to implement has not yet been proposed in
the outlier detection literature. Independently from the above Zhao et al. (2021) recently
proposed an approach to accelerate the scoring on new data points with a large number
of unsupervised, heterogeneous outlier detectors. The authors use a similar idea like us,
i.e., approximating unsupervised outlier detectors by supervised regression models using
the predicted values as pseudo ground truth. However their focus is to achieve faster
offline prediction in outlier ensembles and not to enable local ensemble explainability and
therefore they train a surrogate model for each single outlier detector rather than for the
whole ensemble as we do.

Another approach that we used in practice (although not as generally applicable as
the above) was to utilize the above presented BHAD also as a model explainer (“surrogate
model”). Recall from Section 2 that due to the linearity of the model we can simply check
which terms in expression (14) contribute the most to the individual anomaly score value of
observation i. Although this seems like a brute-force approximation to the actual ensemble
model we could show at least empirically that for many used data sets the BHAD would
be highly correlated with the other candidate models in the ensemble and hence using it as
an approximation seems not too restrictive. A user could then be presented the five most
influential features per observation i alongside with the associated values F̂j(xi,j) where F̂j
is the empirical cumulative distribution function of feature j.

We will next study the predictive performances of the discussed models in a Monte
Carlo experiment and also using two popular benchmark datasets for outlier detection.

4. Simulation Experimental Design

As a data generating process (DGP) we use a two-component multivariate Student-t
mixture distribution. Let zi ∈ {0, 1}, i = 1 . . . N, be the latent assignment of observation i,
where 1 means fraudulent and 0 otherwise. Further let π ≡ Prob(zi = 1) be the probability
of being an outlier. The generative process is given by:

zi ∼ Bern(π) for i = 1, . . . , N (16a)

Σ(j) ∼Wp(V0, ν(j)) (16b)

Xi|(zi = j, Σ(j)) ∼ Np(µ
(j)
0 , Σ(j)) for j = 1, 2 (16c)

Here Bern(.) denotes the Bernoulli distribution, Wp(.) denotes the p-dimensional
Wishart distribution with ν(j) > p− 1 degrees of freedom and known p× p symmetric
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positive semi-definite scale matrix V0 > 0. Finally Np(.) denotes the p-dimensional Normal
distribution with component-specific first and second moments.

As base learners for the outlier ensemble we use the following models: Variational
Autoencoder (VAE) with Gaussian prior (see Kingma and Welling 2014), VAE with stick-
breaking prior (i.e., a Dirichlet process) (SB-VAE) (see Nalisnick and Smyth 2017), the
Bayesian histogram anomaly detector (BHAD) of Section 2, Isolation forest (Liu et al. 2012),
One-class SVM (OCSVM), average k-Nearest Neighbors (kNN)-based outlier detector,
Angle-based Outlier Detector (ABOD) (Kriegel et al. 2008) and the Local Outlier Factor
(LOF) (Breunig et al. 2000).

Note: although VAEs were originally not developed for the task of anomaly detection,
but rather for compression or dimensionalty reduction, they can easily be used for this
purpose, cf. An and Cho (2015); Chen et al. (2018); Gomes et al. (2021). For this we re-
interpret the reconstruction error of the variational lower bound on the marginal likelihood
of a data point i (see Equation (3) in Kingma and Welling 2014) as an anomaly score for that
observation. This means that sample points that have a high reconstruction error associated
are declared to be anomalous compared to other points.

After having prepared the training data11 we independently train each of the candidate
models. For ensemble construction we compare the greedy model selection with mutual
information (see Algorithm 2) with the greedy model selection with weighted Pearson
correlation using boosting (see Campos et al. 2018) and a full ensemble, i.e., using all
candidate models. In terms of model combination we use a simple arithmetic average of
the model score ranks as well as the minimum model rank per observation. In our Monte
Carlo experiments we use π = 0.01 for p = 30 with µ

(1)
0 = −1, µ

(2)
0 = 0.5, V0 = 1p · 1.5,

ν(j) = 3p, ∀j and take N = 30,000 random draws from the DGP in (16). For each sample
{xi}N

i=1 we train an outlier ensemble and repeat this M = 100 times. Figure 3 shows a
sample of the DGP projected along the first three singular vectors:

Figure 3. Draw from the mixture DGP (compressed).

In our model trainings we use the following (hyper) parameter settings:
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• Gaussian VAE: we choose 80 training epochs, learning rate of 0.001, latent space of
dimension 10 and a single fully connected hidden layer with 200 nodes in the encoder
and decoder network (see Kingma and Welling 2014 for details)

• SB-VAE: we choose α = β = 2 as shape hyperparameters of the Beta prior p.d.f. used
in the stickbreaking algorithm, a learning rate of 0.001 and the network architecture as
for the VAE (see Nalisnick and Smyth 2017 for details).12

• Bayesian histogram-based anomaly detector (BHAD) using KMax = 60
• Isolation Forest with M = 200 number of trees
• One-class SVM with radial basis function kernel
• Average k-Nearest Neighbors over k = 2, 4, 6, 10
• Angle-based outlier detector (ABOD) using k = 10
• Local Outlier Factor (LOF) using k = 10
• Greedy algorithm with weight boosting using a drop rate d = 0.3 (see Campos et al. 2018)

The results of the Monte Carlo experiment are shown in Table 1. There the Monte
Carlo estimates of F1 score, Precision, Recall and the area under the ROC curve (AUC)
are reported for each of the single models as well as for different ensemble approaches.
Note that since we know the DGP and hence the true “state of nature” we can evaluate
the different models as we would do in a binary classification setting. To correct for the
class imbalance we calculate F1, precision and recall based on a re-weighted sample, with
sample weight of observation i being inversely proportional to the relative frequency of
its class.

Table 1. Results—Monte Carlo experiment.

Model F1 Score Precision Recall AUC

SB-VAE 0.9791 0.9996 0.9598 0.9998
VAE 0.9566 0.9991 0.9180 0.9977

BHAD 0.9715 0.9995 0.9455 0.9996
IForest 0.9437 0.9989 0.8947 0.9986

OCSVM 0.9390 0.9987 0.8865 0.9974
kNN 0.9828 0.9997 0.9671 0.9999

ABOD 0.9533 0.9924 0.9176 0.9966
LOF 0.9723 0.9999 0.9477 0.9999

Full ensemble 1 0.9735 0.9995 0.9493 0.9997
Minimum rank 2 0.9640 0.9993 0.9317 0.9997
Greedy MInfo 3 0.9817 0.9997 0.9651 0.9998

Greedy Pearson 4 0.9828 0.9997 0.9671 0.9999
1 Full ensemble: Arithmetic model average with uniform weights; 2 Minimum rank: Minimum model rank per
observation; 3 Greedy MInfo: Model selection using mutual information; 4 Greedy Pearson: Model selection using
weighted Pearson correlation with Boosting.

From Table 1 we can see that all base learners are able to detect the true outliers
in the data very well, which was somehow to be expected given the simplicity of the
synthetic data set. Furthermore the results suggest that the proposed Bayesian anomaly
detector (BHAD) achieves very competitive results compared to other more established
methods. Although the more computationally expensive SB-VAE and k-NN perform
slightly better than BHAD in terms of F1 score and AUC this difference is not statistically
significant according to an approximate paired z-test for the difference in proportions as
well as a McNemar-Test (see Dietterich 1998) with significance level 5%. Comparing the
performances of the two versions of the Greedy model selection in terms of F1 score and
AUC with the other ensembles and single candidates it can observed that the Greedy
algorithm achieves a better predictive quality, except for the k-NN model, which is the
best performing approach here (although the difference to the Greedy ensembles is again
not significant).
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To analyze the diversity of the different ensemble components we can calculate the
similarity matrix using, for example, Spearman’s rank correlation ρ (see Figure 4). From
there we can observe that the candidate models although quite different from a statistical
viewpoint are relatively strongly connected. In particular the overall high correlation of
the BHAD with the other base detectors should be noticed (in average: 0.91). One way to
further improve diversity among the different candidate models is to train the models on
various hyperparameter settings.

Figure 4. Spearman’s ρ of score distributions.

5. Application: Benchmarks Datasets

Next we will apply the same set of candidate models and ensemble approaches to
two popular benchmark datasets in the literature on outlier detection (cf. Schubert et al.
2012): (1.) the pendigits (Pen-Based Recognition of Handwritten Digits) dataset and (2.) the
Wisconsin-Breast Cancer (Diagnostics) dataset (WBC). Both datasets are originally taken
from the UCI machine learning repository. The pendigits dataset is originally a multiclass
classification dataset having 16 integer attributes and classes 0, . . . , 9. In this dataset, all
classes have equal frequencies, so the number of objects in one class (corresponding to the
digit “0”) is reduced by a factor of 10%. On the other hand the Wisconsin-Breast Cancer
dataset is originally a classification dataset, which records the measurements for breast
cancer cases. There are two classes, benign and malignant. The malignant class of this
dataset is downsampled to 21 points, which are considered as outliers, while points in the
benign class are considered inliers.13

In our benchmark analysis we draw a stratified sample of 80% of the data points
(without replacement). As stratum we use the binary target variable (0: no anomaly, 1:
anomaly). We train the models on this random sample and calculate the same performance
metrics as used in Section 4 above. This was repeated M = 100 times until finally we
calculate average performance metrics over all Monte Carlo runs.

The results are depicted in Tables 2 and 3, respectively. For the pendigits data (Table 2)
it can be seen from the AUC column that although the two versions of the greedy algorithm
give very good results, a single Isolation forest is actually slightly better. On the other hand
BHAD is only slightly worse than the Isolation forest, however a McNemar test indicates
that the difference in performance is not statistically significant.

For the WBC dataset a single BHAD is the best performing model alongside with an
ensemble model with Greedy model selection.
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Table 2. Results: Pendigits dataset.

Model F1 Score Precision Recall AUC

SB-VAE 0.6670 0.5030 0.9901 0.6691
VAE 0.6669 0.5027 0.9904 0.6452

BHAD 0.7767 0.6523 0.9600 0.9410
IForest 0.7900 0.6714 0.9609 0.9508

OCSVM 0.7004 0.5532 0.9542 0.8304
kNN 0.6838 0.5333 0.9525 0.7290

ABOD 0.6727 0.5237 0.9401 0.6714
LOF 0.6731 0.5143 0.9739 0.5125

Full ensemble 0.7022 0.5556 0.9543 0.8515
Minimum rank 0.7245 0.5832 0.9563 0.8635
Greedy MInfo 0.7759 0.6512 0.9601 0.9412

Greedy Pearson 0.7766 0.6520 0.9601 0.9409

Table 3. Results: Wisconsin-Breast Cancer (Diagnostics) dataset.

Model F1 Score Precision Recall AUC

SB-VAE 0.6941 0.5329 0.9954 0.8924
VAE 0.6703 0.5071 0.9886 0.7556

BHAD 0.8152 0.6988 0.9793 0.9485
IForest 0.7967 0.6734 0.9763 0.9390

OCSVM 0.7225 0.5778 0.9642 0.6693
kNN 0.7797 0.6507 0.9734 0.9252

ABOD 0.7295 0.5912 0.9539 0.9027
LOF 0.6865 0.5278 0.9823 0.7903

Full ensemble 0.7183 0.5720 0.9660 0.9113
Minimum rank 0.7608 0.6242 0.9749 0.9091
Greedy MInfo 0.8089 0.6882 0.9821 0.9482

Greedy Pearson 0.8105 0.6902 0.9824 0.9485

Next we will present some results of a fraud detection project from the domain of
corporate insurance.

6. Application: Detection of Fraudulent Insurance Claims

One popular application of outlier/anomaly detection in the insurance industry is
claims fraud detection. A possible definition from the context of corporate insurance is
that claims fraud is considered as “the intentional deception and/or material misrepresentation
to another party about an insurance matter in order to receive money or other benefits which are
not rightfully theirs. Fraud occurs when an insured or a third-party deliberately misrepresents a
loss or part of a loss that, if true, would be covered by an insurance policy, but which in fact did
not occur.”14

In the following we will focus on an application in the context of the corporate
insurance domain. In practice upon establishing an Anti-Fraud business process it is
very common that there has not been any fraudulent claims detected yet, hence the need
for unsupervised learning methods. The lack of valid fraud labels puts an increased
emphasis on the feature engineering process. Therefore we will first dive a bit deeper in the
construction of relevant fraud features to capture potential fraudulent claims information.

6.1. Feature Engineering

Feature extraction in general is highly domain specific, for example, in a life insurance
scenario, a low lag between the policy start date and the death of the subject is sometimes
correlated to homicide, whereas in other insurance domains like corporate insurance it
might be indicative for fraudulent behavior.

In our construction of relevant features we view a claims event according to different
informational layers or dimensions.
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In Table A1 of the Appendix A the list of model features used in our application is
shown. As can be seen a larger group of features was derived from the claim description, i.e.,
from free text in which the claims handler briefly describes what has happened. All features
named “Claim description contains xxx and similar” were constructed as follows: after
having preprocessed each document15 (i.e., removal of stopwords, tokenization etc.) we
use pretrained GloVe word embeddings (see Pennington et al. 2014)16 We also tried training
custom word embeddings on the claim descriptions using Word2vec, Doc2vec, tf-idf and
FastText, however since the used claim descriptions are often rather short (sometimes only
two or three words) choosing a transfer learning approach, utilizing a model trained on
a large text corpus gave better results. We then aggregated the 300 dimensional GloVe
token embeddings by simple arithmetic averages to a document embedding for each
claim description. Since we want to construct a numeric feature that captures the semantic
similarity of a claim description with a given list of keywords “xxx” (e.g., “Claim description
contains water, damage, broken, repair and similar”), we also assign the word embeddings to
each token in the key word list and then use a similarity measure (e.g., cosine similarity) to
measure how “semantically” close the two vector representations are to each other.

Another interesting group of features can be motivated as follows: often it is beneficial
in the feature engineering process to control for (un)intended misspellings in unstructured
data like names, email addresses, telephone numbers, locations etc. From a data quality
perspective but also from a data analysis perspective we do not want to treat two terms
like “Apple” and “Appl” independently as they should actually be treated as one. For
this reason we developed a simple but effective approach for fuzzy names matching and
applied it to the insured names and claimant names to subsequently work with, e.g., a
(fuzzy) grouped insured name. For the fuzzy names matching we first take a corpus
of names (but it could be applied essentially to any character sequence without minor
modifications) and first convert each name to character n-grams (n = 3 gives good results
in most applications) after having preprocessed the data. Then based on the character
n-grams we fit a tf-idf model and represent each insured name by its tf-idf embedding. This
yields a n× k matrix D, where n is the number of insured names and k the dimension of the
tf-idf embedding. Using this matrix we calculate next an n× n distance matrix, which we
finally use in a DBSCAN clustering algorithm (see Ester et al. 1996). Many of the resulting
groups will be noise points (in the DBSCAN terminology) here, and hence form a singleton
cluster. This makes intuitively sense since misspellings should not occur so often. However
the interesting cases are the non-singleton clusters and these are then used instead of the
original names in further course of the analysis. In the list of used features in Table A1 the
term “per group” therefore refers to using the clusters from a fuzzy names matching step
instead of the original names.

Finally another group of features we would like to highlight here are based on the
concept of rolling time windows in order to capture anomalies (i.e., breaks) over time.
For example, the number of claims associated with A in the last Y days before date X.
We created several features of this kind for A = Insured, Claimant, Payee. For example:
number of claims for a particular policy within 90 days (“Rolling number of claims per
policy”). These features are also constructed based on the above described fuzzy names
matching groups.

Next we will present the results of a fraud detection project from the domain of
corporate insurance.

6.2. Empirical Results

In our empirical application we follow the same approach as outlined in the simulation
design above, i.e., we first train all models separately and then we use the greedy model
selection approach with mutual information. As a final “score” for observation i = 1, . . . , N
we use the arithmetic average ri = 1

J ∑J
j=1 ri,j of the rank ri,j per candidate model j.17

Working with rank statistics instead of the original scores has the advantage that we
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directly work with a normalized quantity and also that ranks can be easily understood by
less technical users.

For didactic reasons when presenting the model output to non-technical users we
choose to further map the averaged outlier ranks to a uniform discrete scale 1, 2, . . . , 5,
where a value of 5 indicates high fraud potential. For the mapping we induce a skewed
distribution shown in Figure 5 with relative frequency for a score of 5 equal to 1%, i.e., the
used contamination rate in all models.

Figure 5. Distribution of final fraud score.

As mentioned above at the time of writing we only had a very limited number of
observed fraud cases and no validated non-fraud cases available. This is the reason why we
focus on our model evaluation on the recall rather than on criteria that require positively-
negatively labelled data (like the F1 score). Also what should be noted is that in the
presented business application the actual use case is not directly fraud detection, but rather
more detecting “fraud referrals”. This means we want to rank a claims portfolio according
to our model and then propose the user a small subset of cases, namely the cases that
have a score of 4 (suspicious) or 5 (highly suspicious). Since we have limited ground truth
we focus on the evaluation of the recall (or hit rate) (= TP

TP+FN ), with TP the number of
true positives and FN the number of false negatives. In our case we declare a claim to be
a “positive” case if it’s among the referred cases of a dedicated fraud investigation team.
Table 4 depicts the model performances based on the collected labels (i.e., referrals) at
the time of writing. In the last column we also show the corresponding Bayesian highest
posterior density interval of the (unknown population) recall. The latter can be calculated
by assuming that the number of true positives follows a Binomial distribution, Bin(p),
and using a conjugate Beta prior for the unknown probability p that claim i is correctly
predicted given it is fraud (or at least a referral). Then using the resulting Beta posterior we
calculate the 95% highest posterior density interval to express uncertainty associated with
the reported numbers, e.g., due to small sample sizes.

Table 4. Results—Insurance claims fraud detection.

Country Recall/Sensitivity 95% HPD 1 interval

UK 0.26 [0.19, 0.36]
US 0.14 [0.13, 0.16]

Spain 0.10 [0.02, 0.41]
Germany 0.55 [0.37, 0.72]

South-Africa 0.07 [0.02, 0.32]
1 HPD: Highest posterior density.

From Table 4 we observe that the recall varies between 7% and 55%, where the quite
different sample sizes per country are reflected in the width of the HPD intervals of p. The
variation in measured performances can also be attributed to the underlying data collection
process. The different countries have quite different processes when it comes to fraud
prevention and hence the way referrals get gathered are not driven by a homogeneous
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business process, which makes it more challenging to compare the results directly. Another
challenge in many other business applications is that some information accessible to a
human fraud expert are in paper files or email correspondences that in the end may drive
the decision towards or against being referred for further investigation or not. The current
model still produces quite some false positives (based on business feedback), but very often
the reason for not agreeing with the model’s prediction is outside of the model scope (i.e.,
not a part of the training data), so this remains a challenge in fraud applications.

7. Conclusions

The task of anomaly detection has many important industrial applications with fraud
detection in insurance being one of the most popular ones. For the latter we presented an
approach based on outlier ensembles using a variety of algorithms which were combined
to produce a final more powerful model. We also introduced BHAD, a Bayesian histogram-
based anomaly detector, which achieved very competitive predictive results compared
to other more complex models based on a Monte Carlo experiment as well as on two
popular benchmark datasets. BHAD has linear complexity with respect to the sample
size and the number of attributes and allows a straightforward explanation of individual
anomaly scores. It can be used for both continuous and discrete features, where in the
latter case obviously no binning is required. One critical issue with the BHAD is its feature
independence assumption, which might not be appropriate for some data sets. Another
debatable point is that BHAD assumes the knot positions of the histogram as known
rather than treating them as unknown parameters. For example, if interest was in inferring
the knot locations within a Bayesian model selection framework one could use a similar
approach as in Vosseler (2016) using MCMC. An alternative route here that has actually a
long tradition in non-parametric Bayesian statistics (cf. Müller et al. 2015) is to treat the
unknown probability distribution G of the data as a random probability measure to which
a prior probability model can be assigned. A commonly used prior for G here is a Dirichlet
process. An anomaly detection score could then be constructed in a similar way as for the
BHAD (at least in principle) based on the estimated density values.

We also compared a variation of the greedy algorithm of Schubert et al. (2012) using
mutual information of two score distributions with the original approach using Pearson
correlation. Overall we did not find evidence that using the mutual information criterion
results in a significant improvement gain. For model explanation in unsupervised outlier
ensembles we also proposed a model-agnostic approach, which approximates the ensemble
score by a supervised surrogate model. In principal, this approach can be utilized for
the explanation of real-valued anomaly scores (regression) as well as of binary anomaly
predictions (classification) in the same way.

Lastly we applied the presented methods to the problem of detecting fraudulent
insurance claims in the corporate domain. For some countries the model’s sensitivity
looks promising while for others yet not so much. Apart from the already discussed
data quality issue regarding reliable labels there are some routes that are promising for
improving the model. One obvious choice would be to make the “external” information
accessible to the model via additional features. Another potential future improvement is to
represent the claims data as a multidimensional undirected graph and then using standard
network metrics to derive additional model features. As more labels are being collected
it makes sense to also utilize this supervision to increase the model’s accuracy. For this
reason one alternative to the fully unsupervised approach presented here could be to use a
positive-unlabelled (PU) learning approach (see Elkan and Noto 2008) or a semi-supervised
approach once valid negative instances become available.
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Appendix A

Table A1. Used fraud model features.

Short Description Type

Diff. in days—notification date and date of loss numeric
Years of client relationship numeric

Number of claims per policy numeric
Rolling number of claims per policy numeric

Number of claims per claimant numeric
Rolling number of claims (insureds) per group of claimants numeric

Number of claims per insured numeric
Loss ratio per insured (in percentage) numeric

Claim description contains keywords for accidents and natural causes numeric
Claim description contains collision, impact, crash, sink, grounding and similar numeric

Claim description contains fire, burn and similar numeric
Claim description contains luggage, baggage, cash, money, item, belonging

and similar numeric

Claim description contains passenger, bodily injury, poisoning and similar numeric
Claim description contains plane, aircraft, helicopter and similar numeric

Claim description contains storm, wind, weather and similar numeric
Claim description contains stolen, theft,disappear and similar numeric

Claim description contains vessel, ship and similar numeric
Claim description contains water, damage, broken, repair and similar numeric

Claim description contains yacht and similar numeric
Claim description contains similar fraud keywords numeric

Diff. in days—date of policy expiration and date of notification numeric
Various interaction variables of claim amount and combinations of

above features numeric

Date of loss is public holiday categorical
Date of notification is public holiday categorical

Notes
1 Note expression (1) constitutes a proper density function.
2 Note by simply replacing the probabilities πk by their relative frequency counterparts nk/n yields the basic histogram density

estimator f̂H(yi), cf. Scott (2015).
3 We will omit conditioning on ξ in the following to keep notation simple.
4 For comparison: frequentist estimates using Sturges rule are K̂ = 30 and K̂ = 96 using Freedman-Diaconis rule.
5 With scalar yi replaced by scalar xi,j in the following.
6 Obviously the AVF algorithm could easily extended to continuous data, by simply using a discretization, like binning.
7 This is equivalent to the non-parametric Spearman’s ρ coefficient.
8 The only restriction on the selected density model is that we should know how to generate draws from it.
9 This is sometimes called the contamination rate in the literature.

10 This puts both groups of observations on the same footing since otherwise the mutual information would be driven by the vast
majority of non-outlier cases.

11 Here all features are normalized to having zero mean and variance of one.
12 We used the publicly available Theano code of the authors and integrated it into a generic scikit-learn Python class API.
13 Both datasets are available online from http://odds.cs.stonybrook.edu/ (accessed on 1 May 2022).

http://odds.cs.stonybrook.edu/
http://odds.cs.stonybrook.edu/
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14 This is the AGCS SE standard on Anti-Fraud issued by AGCS compliance.
15 Subsequently each claim description corresponds to a “document”.
16 These are easily accessible via Python libraries like spaCy.
17 Setting mini(ri) = 1 and maxi(ri) = N in case needed.
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