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Abstract: We consider the problem where a modeller conducts sensitivity analysis of a model
consisting of random input factors, a corresponding random output of interest, and a baseline
probability measure. The modeller seeks to understand how the model (the distribution of the input
factors as well as the output) changes under a stress on the output’s distribution. Specifically, for a
stress on the output random variable, we derive the unique stressed distribution of the output that is
closest in the Wasserstein distance to the baseline output’s distribution and satisfies the stress. We
further derive the stressed model, including the stressed distribution of the inputs, which can be
calculated in a numerically efficient way from a set of baseline Monte Carlo samples and which is
implemented in the R package SWIM on CRAN. The proposed reverse sensitivity analysis framework
is model-free and allows for stresses on the output such as (a) the mean and variance, (b) any
distortion risk measure including the Value-at-Risk and Expected-Shortfall, and (c) expected utility
type constraints, thus making the reverse sensitivity analysis framework suitable for risk models.

Keywords: distortion risk measures; expected utility; Wasserstein distance; robustness and sensitivity
analysis; model uncertainty

1. Introduction

Sensitivity analysis is indispensable for model building, model interpretation, and
model validation, as it provides insight into the relationship between model inputs and
outputs. A key tool used for sensitivity analysis are sensitivity measures, that assign to
each model input a score, representing an input factor’s ability to explain the variability of
a model output’s summary statistic; see Saltelli et al. (2008) and Borgonovo and Plischke
(2016) for an in-depth review. One of the most widely used output summary statistic is the
variance, which gives rise to sensitivity measures, e.g., the Sobol indices, that apportion
the uncertainty in the output’s variance to input factors. In many applications, such
as reliability management and financial and insurance risk management, however, the
variance is not the output statistic of concern and instead quantile-base measures are used;
indicatively, see Asimit et al. (2019); Fissler and Pesenti (2022); Maume-Deschamps and
Niang (2018); Tsanakas and Millossovich (2016). Furthermore, typical for financial risk
management applications is that model inputs are subject to distributional uncertainty.
Probabilistic (or global) sensitivity measures, however, tacitly assume that the model’s
distributional assumptions are correctly specified; indeed, sensitivity measures based on
the difference between conditional (on a model input) and unconditional densities (of
the output) are termed “common rationale” Borgonovo et al. (2016). Examples include
indices, such as Borgonovo’s sensitivity measures Borgonovo (2007), the f -sensitivity index
Rahman (2016), and sensitivity indices based on the Cramér–von Mises distance Gamboa
et al. (2018), we also refer to Plischke and Borgonovo (2019) for a detailed overview and to
Gamboa et al. (2020) for estimation of these sensitivity measures. Recently, Plischke and
Borgonovo (2019) define sensitivity measures that depend only on the copula between input
factors, whereas Pesenti et al. (2021) propose a sensitivity measure based on directional
derivatives that take dependence between input factors into account. Estimating these
sensitivities, however, may render difficult in application where joint observations are
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scarce, e.g., insurance portfolios, and their interpretation may be limited as dependence
structures are commonly specified by expert opinions Denuit et al. (2006).

We consider an alternative sensitivity analysis framework proposed in Pesenti et al.
(2019) that (a) considers statistical summaries relevant to risk management, (b) applies to
models subject to distributional uncertainty, thus instead of relying on correctly specified
distributions from which to calculate sensitivity measures we derive alternative distribu-
tions that fulfil a specific probabilistic stress and are “closest” to the baseline distribution;
and (c) studies reverse sensitivity measures. Differently to the framework proposed in
Pesenti et al. (2019) who use the Kullback–Leibler divergence to quantify the closedness
of probability measures, in this work we consider the Wasserstein distance of order two
to measure the distance between distribution functions. The Wasserstein distance allows
for more flexibility in the choice of stresses including survival probabilities (via quantiles)
used in reliability analysis, risk measures employed in finance and insurance, and utility
functions relevant for decision under ambiguity.

Central to the reverse sensitivity analysis framework is a baseline model, the 3-tuple
(X, g,P), consisting of random input factors X = (X1, . . . , Xn), an aggregation function
g : Rn → R mapping input factors to a univariate output Y = g(X), and a probability
measure P. The methodology has been termed reverse sensitivity analysis by Pesenti et al.
(2019) since it proceeds in a reverse fashion to classical sensitivity analysis where input
factors are perturbed and the corresponding altered output is studied. Indeed, in the reverse
sensitivity analysis proposed by Pesenti et al. (2019) a stress on the output’s distribution is
defined and changes in the input factors are monitored. The quintessence of the sensitivity
analysis methodology is, however, not confined to stressing the output’s distribution, it is
also applicable to stressing an input factor and observing the changes in the model output
and in the other inputs. Throughout the exposition, we focus on the reverse sensitivity
analysis that proceeds via the following steps:

(i) Specify a stress on the baseline distribution of the output;
(ii) Derive the unique stressed distribution of the output that is closest in the Wasserstein

distance and fulfils the stress;
(iii) The stressed distribution induces a canonical Radon–Nikodym derivative dQ∗

dP ; a
change of measures from the baseline P to the stressed probability measure Q∗;

(iv) Calculate sensitivity measures that reflect an input factors’ change in distribution from
the baseline to the stressed model.

Sensitivity testing using divergence measures–in the spirit of the reverse sensitivity
methodology–has been studied by Cambou and Filipović (2017) using f -divergences on a
finite probability space; by Pesenti et al. (2019) and Pesenti et al. (2021) using the Kullback–
Leibler divergence; and Makam et al. (2021) consider a discrete sample space combined
with the χ2-divergence. It is however known that the set of distribution functions with finite
f -divergence, e.g., the Kullback–Leibler and χ2 divergence–around a baseline distribution
function depends on the baseline’s tail-behaviour, thus the choice of f -divergence should
be chosen dependent on the baseline distribution Kruse et al. (2019). The Wasserstein
distance on the contrary, automatically adapts to the baseline distribution function in that
the Wasserstein distance penalises dissimilar distributional features such as different tail be-
haviour Bernard et al. (2020). The Wasserstein distance has enjoyed numerous applications
to quantify distributional uncertainty, see, e.g., Blanchet and Murthy (2019) and Bernard
et al. (2020) for applications to financial risk management. In the context of uncertainty
quantification, Moosmüeller et al. (2020) utilise the Wasserstein distance to elicit the (un-
certain) aggregation map g from the distributional knowledge of the inputs and outputs.
Fort et al. (2021) utilises the Wasserstein distance to introduce global sensitivity indices
for computer codes whose output is a distribution function. In this manuscript we use the
Wasserstein distance as it allows for different stresses compared to the Kullback–Leibler
divergence. Indeed, the Wasserstein distance allows for stresses on any distortion risk mea-
sures, while the Kullback–Leibler divergence only allow for stresses on risk measures which
are Value-at-Risk (VaR) and VaR and Expected Shortfall jointly, see Pesenti et al. (2019).
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This paper is structured as follows: In Section 2, we state the notation and definitions
necessary for the exposition. Section 3 introduces the optimisation problems and we derive
the unique stressed distribution function of the output which has minimal Wasserstein
distance to the baseline output’s distribution and satisfies a stress. The considered stresses
include constraints on risk measures, quantiles, expected utilities, and combinations thereof.
In Section 4, we characterise the canonical Radon–Nikodym derivative, induced by the
stressed distribution function, and study how input factors’ distributions change when
moving from the baseline to the stressed model. An application of the reverse sensitivity
analysis is demonstrated on a mixture model in Section 5.

All proofs are delegated to Appendix A.

2. Preliminaries

Throughout we work on a measurable space (Ω,A) and denote the sets of distribution
functions with finite second moment by

M =

{
G : R→ [0, 1]

∣∣∣∣ G non-decreasing, right-continuous , lim
x↘−∞

G(x) = 0 ,

lim
x↗+∞

G(x) = 1 , and
∫

x2 dG(x) < +∞
}

,

and the corresponding set of square-integrable (left-continuous) quantile functions by

M̆ =
{

Ğ ∈ L2([0, 1])
∣∣ Ğ non-decreasing & left-continuous

}
.

or any distribution function G ∈ M, we denote its corresponding (left-continuous) quantile
function by Ğ ∈ M̆, that is Ğ(u) = inf{ y ∈ R |G(y) ≥ u}, u ∈ [0, 1], with the convention
that inf ∅ = +∞. We measure the discrepancy between distribution functions on the real
line using the Wasserstein distance of order 2, defined as follows.

Definition 1 (Wasserstein Distance). The Wasserstein distance (of order 2) between two distri-
bution functions F1 and F2 is defined as Villani (2008)

W2(F1 , F2) = inf
π∈Π(F1, F2)

{(∫
R2
|z1 − z2|2 π(dz1, dz2)

) 1
2
}

,

where Π(F1, F2) denotes the set of all bivariate probability measures with marginal distributions F1
and F2, respectively.

The Wasserstein distance is the minimal quadratic cost associated with transporting
the distribution F1 to F2 using all possible couplings (bivariate distributions) with fixed
marginals F1 and F2. The Wasserstein distance admits desirable properties to quantify
model uncertainty such as the comparison of distributions with differing support, e.g., with
the empirical distribution function. Moreover it is symmetric and forms a metric on the
space of probability measures; we refer to Villani (2008) for an overview and properties of
the Wasserstein distance. It is well known (Dall’Aglio 1956) that for distributions on the
real line, the Wasserstein distance admits the representation

W2(F1 , F2) =

(∫ 1

0

∣∣F̆1(u)− F̆2(u)
∣∣2du

) 1
2

.

3. Deriving the Stressed Distribution

Throughout this section we assume that the modeller’s baseline model is the 3-tuple
(X, g,P) consisting of a random vector of input factors X = (X1, . . . , Xn), an aggregation
function g : Rn → R mapping input factors to a (for simplicity) univariate output Y = g(X),
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and a probability measure P. The baseline probability measure P reflects the modeller’s
(statistical and expert) knowledge of the distribution of X and we denote the distribution
function of the output by F(y) = P(Y ≤ y). The modeller then performs reverse sensitivity
analysis, that is tries to understand how prespecified stresses/constraints on the output
distribution F, e.g., an increase in jointly its mean and standard deviation or a risk measures
such as the Value-at-Risk (VaR) or Expected Shortfall (ES), affects the baseline model, e.g.,
the joint distribution of the input factors. For this, we first define the notion of a stressed
distribution. Specifically, for given constraints we call a solution to the optimisation problem

arg min
G∈M

W2(G, F) subject to stresses/constraints on G , (1)

a stressed distribution. In problem (1), the baseline distribution F is fixed and we seek
over all alternative distributions G ∈ M the one who satisfies the stress(es) and which has
smallest Wasserstein distance to F. The solution to problem (1)–the stressed distribution–
may be interpreted as the most “plausible” distribution function arising under adverse
circumstances. Examples of stresses and constraints considered in this work include an
increase (decrease), compared to their corresponding values under the reference probability
P, in e.g., the mean, mean and standard deviation, distortion risk measures, and utility
functions, and combinations thereof.

Next, we recall the concept of weighted isotonic projection which is intrinsically
connected to the solution of optimisation problem (1); indeed the stressed quantile functions
can be uniquely characterised via weighted isotonic projections.

Definition 2 (Weighted Isotonic Projection Barlow et al. (1972)). The weighted isotonic projec-
tion `↑w of a function ` ∈ L2([0, 1]) with weight function w : [0, 1]→ [0,+∞), w ∈ L2([0, 1]), is
its weighted projection onto the set of non-decreasing and left-continuous functions in L2([0, 1]).
That is, the unique function satisfying

`↑w = arg min
h∈M̆

∫ 1

0
(`(u)− h(u))2 w(u) du .

When the weight function is constant, i.e., w(x) ≡ c, c > 0, we write `↑(·) = `↑c(·), as in
this case the isotonic projection is indeed independent of c. The weighted isotonic projection
admits not only a graphical interpretation as the non-decreasing function that minimises
the weighted L2-distance from ` but has also a discrete counterpart: the weighted isotonic
regression Barlow et al. (1972). Numerically efficient algorithms for calculating weighted
isotonic regressions are available, e.g., the R package isotone De Leeuw et al. (2010).

In the next sections, we solve problem (1) for different choices of constraints. Specifi-
cally, for risk measures constraints (Section 3.1), integral constraints (Section 3.2), Value-at-
Risk constraints (Section 3.3), and expected utility constraint (Section 3.4), and in Section 3.5
we consider ways to smooth stressed distributions. Using these stressed distributions, we
derive the stressed probability measures in Section 4 and study how a stress on the output
is reflected on the input distribution(s).

3.1. Risk Measure Constraints

This section considers stresses on distortion risk measures, that is we derive the unique
stressed distribution that satisfies an increase and/or decrease of distortion risk measures
while minimising the Wasserstein distance to the baseline distribution F.
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Definition 3 (Distortion Risk Measures). Let γ ∈ L2([0, 1]) be a square-integrable function
with γ : [0, 1]→ [0,+∞) and

∫ 1
0 γ(u) du = 1. Then the distortion risk measure ργ with distortion

weight function γ is defined as

ργ(G) =
∫ 1

0
Ğ(u)γ(u) du for G ∈ M . (2)

The above definition of distortion risk measures makes the assumption that positive
realisations are undesirable (losses) while negative realisations are desirable (gains). The
class of distortion risk measures includes one of the most widely used risk measures in
financial risk management, the Expected Shortfall (ES) at level α ∈ [0, 1) (also called Tail
Value-at-Risk), with γ(u) = 1

1−α1{u>α}, see, e.g., Acerbi and Tasche (2002). The often
used risk measure Value-at-Risk (VaR), while admitting a representation given in (2), has a
corresponding weight function γ that is not square-integrable. We derive the solution to
optimisation problem (1) with a VaR constraint in Section 3.3.

Theorem 1 (Distortion Risk Measures). Let rk ∈ R, ργk be a distortion risk measure with weight
function γk and assume there exists a distribution function G̃ ∈ M satisfying ργk (G̃) = rk for all
k ∈ {1, . . . , d}. Then, the optimisation problem

arg min
G∈M

W2(G, F) subject to ργk (G) = rk k = 1, . . . , d, (3)

has a unique solution given by

Ğ∗(u) =

(
F̆(u) +

d

∑
k=1

λkγk(u)

)↑
, (4)

where the Lagrange multipliers λk are such that the constraints are fulfilled, that is ργk (G
∗) = rk

for all k = 1, . . . , d.

In the above theorem, and also in later results, we assume that there exists a dis-
tribution function which satisfies all constraints. This assumption is not restrictive and
requires that, particularly, multiple constraints are chosen carefully, e.g., imposing that∫ 1

0 Ğ(u)du > 1
1−α

∫ 1
α Ğ(u)du for α ∈ (0, 1), i.e., the mean being larger than the ESα, cannot

be fulfilled by any distribution function; thus, a combination of stresses not of interest to a
modeller.

We observe that the optimal quantile function is the isotonic projection of a weighted
linear combination of the baseline’s quantile function F̆ and the distortion weight functions
of the risk measures. A prominent group of risk measures is the class of coherent risk mea-
sures, that are risk measures fulfilling the properties of monotonicity, positive homogeneity,
translation invariance, and sub-additivity; see Artzner et al. (1999) for a discussion and
interpretation. It is well-known that a distortion risk measure is coherent, if and only if,
its distortion weight function γ(·) is non-decreasing Kusuoka (2001). For the special case
of a constraint on a coherent distortion risk measure that results in a larger risk measure
compared to the baseline’s, we obtain an analytical solution without the need to calculate
an isotonic projection.

Proposition 1 (Coherent Distortion Risk Measure). If ργ is a coherent distortion risk measure
and r ≥ ργ(F), then optimisation problem (3) with d = 1 has a unique solution given by

Ğ∗(u) = F̆(u) +
r− ργ(F)∫ 1

0 (γ(u))
2 du

γ(u) .
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We illustrate the stressed distribution functions for constraints on distortion risk
measures in the next example. Specifically, we look at the α-β risk measures which are a
parametric family of distortion risk measures.

Example 1 (α-β Risk Measure). The α-β risk measure, 0 < β ≤ α < 1, is defined by

γ(u) = 1
η

(
p1{u<β} + (1− p)1{u≥α}

)
,

where p ∈ [0, 1] and η = p β + (1− p) (1− α) is the normalising constant. This parametric
family contains several notable risk measures as special cases: for p = 0 we obtain ESα, and for
p = 1 the conditional lower tail expectation (LTE) at level β.

Moreover, if p < 1
2

(
p > 1

2

)
the α-β risk measure emphasises losses (gains) relative to gains

(losses). For α = β and p < 1
2 , the risk measure is equivalent to κ(ESα[Y]− λE[Y]), where

κ = (1−2p) (1−α)
η and λ = p

κ η .

Figure 1 displays the baseline F̆Y and the stressed Ğ∗Y quantile functions of a random variable
Y under a 10% increase on the α-β risk measure with β = 0.1, α = 0.9, and various p ∈
{0.25, 0.5, 0.75}. The baseline distribution is chosen to be FY is Lognormal(µ, σ2) with parameters
µ = 7

8 and σ = 0.5. We observe in Figure 1 that the stressed quantile functions Ğ∗Y have, in all
three plots, a flat part which straddles β = 0.1 and a jump at α = 0.9. The length of the flat part is
increasing with increasing p while the size of the jump is decreasing with increasing p. This can
also be seen in the stressed densities g∗Y which have, for all values of p, a much heavier right albeit a
much lighter left tail than the density of the baseline model. Thus, under this stress, both tails of the
baseline distribution are altered.

0.0 0.2 0.4 0.6 0.8 1.0

100

101

p=0.25

G *
Y

FY

0.0 0.2 0.4 0.6 0.8 1.0

100

101

p=0.5

G *
Y

FY

0.0 0.2 0.4 0.6 0.8 1.0

100

101

p=0.75

G *
Y

FY

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5
p=0.25

g *
Y

fY

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5
p=0.5

g *
Y

fY

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5
p=0.75

g *
Y

fY

Figure 1. Top panels: Baseline quantile function F̆Y (blue dashed) compared to the stressed quantile
function Ğ∗Y (red solid) for a 10% increase on the α-β risk measure with β = 0.1, α = 0.9, and various
values of p. The green line `(·) is the function, whose isotonic projection equals ĞY(·). Bottom panels:
corresponding baseline fY and stressed g∗Y densities.

3.2. Integral Constraints

The next results are generalisations of stresses on distortion risk measures to integral
constraints, and include as a special case a stress jointly on the mean, the variance, and
distortion risk measures.



Risks 2022, 10, 141 7 of 23

Theorem 2 (Integral). Let hk, h̃l : [0, 1]→ [0, ∞) be square-integrable functions and assume there
exists a distribution function G̃ ∈ M satisfying

∫ 1
0 hk(u)Ğ(u) du ≤ ck and∫ 1

0 h̃l(u)
(
Ğ(u)

)2 du ≤ c̃l for all k = 1, . . . , d, and l = 1, . . . , d̃. Then the optimisation problem

arg min
G∈M

W2(G, F) subject to
∫ 1

0
hk(u)Ğ(u) du ≤ ck , k = 1, . . . , d,

∫ 1

0
h̃l(u)

(
Ğ(u)

)2 du ≤ c̃l , l = 1, . . . , d̃,

has a unique solution given by

Ğ∗(u) =

(
1

Λ̃(u)

(
F̆(u) +

d

∑
k=1

λkhk(u)

))↑Λ̃

,

where Λ̃(u) = 1 + ∑d̃
k=1 λ̃k h̃k(u) and the Lagrange multipliers λ1, . . . , λd and λ̃1, . . . , λ̃d are

non-negative and such that the constraints are fulfilled.

A combination of the above theorems provides stresses jointly on the mean, the
variance, and on multiple distortion risk measures.

Proposition 2 (Mean, Variance, and Risk Measures). Let m′ ∈ R, σ′ > 0, rk ∈ R, and
distortion risk measures ργk , k = 1, . . . , d. Assume there exists a distribution function G̃ ∈ M
with mean m′, standard deviation σ′, and which satisfies ργk (G̃) = rk, for all k = 1, . . . , d. Then
the optimisation problem

arg min
G∈M

W2(G, F) subject to
∫

x dG(x) = m′,∫
(x−m′)2 dG(x) =

(
σ′
)2 and

ργk (G) = rk, k = 1, . . . , d,

has a unique solution given by

Ğ∗(u) =

(
1

1 + λ2

(
F̆(u) + λ1 + λ2m′ +

d

∑
k=1

λk+2 γk(u)

))↑
,

and the Lagrange multipliers λ1, . . . , λd+2 with λ2 6= −1 are such that the constraints are fulfilled.

Example 2 (Mean, Variance, and ES). Here, we illustrate Proposition 2 with the ES risk mea-
sure and three different stresses. The top panels of Figure 2 display the baseline quantile function
F̆Y and the stressed quantile function Ğ∗Y of Y, where the baseline distribution FY of Y is again
Lognormal(µ, σ2) with parameters µ = 7

8 and σ = 0.5. The bottom panels display the correspond-
ing baseline and stressed densities. The left panels correspond to a stress, where, under the stressed
model, the ES0.95 and the mean are kept fixed at their corresponding values under the baseline model,
while the standard deviation is increased by 20%. We observe, both in the quantile and density
plot, that the stressed distribution is more spread out indicating a larger variance. Furthermore, at
y ≈ 5.77 the stressed density g∗Y(y) drops to ensure that ES0.95(G∗Y) = ES0.95(FY). This drop is
due to the fact that a stress composed of a 20% increase in the standard deviation while fixing the
mean (i.e., without a constraint on ES) results in an ES that is larger compared to the baseline’s.
Indeed, under this alternative stress (without a constraint on ES) we obtain that ES0.95(G∗Y) ≈ 7.70
compared to ES0.95(FY) ≈ 6.87.

The middle panels correspond to a 10% increase in ES0.95 and a 10% decrease in the mean,
while keeping the standard deviation fixed at its value under the baseline model. The density plot
clearly indicates a general shift of the stressed density to the left, stemming from the decrease in the
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mean, and a single trough which is induced by the increase in ES. The right panels correspond to a
10% increase in ES0.95, a 10% increase in the mean, and a 10% decrease in the standard deviation.
The stressed density still has the trough from the increase in ES; however, the density is less spread
out (reduction in the standard deviation) and generally shifted to the right (increase in the mean).

0.0 0.2 0.4 0.6 0.8 1.0
10 1

100

101 G *
Y

FY

0.0 0.2 0.4 0.6 0.8 1.0
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Y
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FY
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0.0
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0.6

g *
Y

fY
ES0.95(G *

Y )
ES0.95(FY)

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

g *
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ES0.95(G *

Y )
ES0.95(FY)

0 2 4 6 8 10 12
0.0

0.1

0.2
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0.4

0.5

0.6

g *
Y

fY
ES0.95(G *

Y )
ES0.95(FY)

Figure 2. Top: Baseline quantile function F̆Y compared to the stressed quantile function Ğ∗Y . Bottom:
corresponding baseline fY and stressed g∗Y densities. Left: ES0.95 and the mean being fixed and a
20% increase in the standard deviation. Middle: 10% increase in ES0.95, 10% decrease in the mean,
and fixed standard deviation. Right: 10% increase in ES0.95, 10% increase in the mean, and 10%
decrease in standard deviation. Note that in the middle and right panel the green lines are equal to
the red lines.

3.3. Value-at-Risk Constraints

In this section we study stresses on the risk measure Value-at-Risk (VaR). The VaR at
level α ∈ (0, 1) of a distribution function G ∈ M is defined as its left-continuous quantile
function evaluated at α, that is

VaRα(G) = Ğ(α) .

We further define the right-continuous VaR+, that is the right-continuous quantile function
of G ∈ M evaluated at α, by

VaR+
α (G) = Ğ+(α) = inf{y ∈ R | F(y) > α} .

Theorem 3 (VaR). Let q ∈ R and consider the optimisation problem

arg min
G∈M

W2(G, F) subject to (a) VaRα(G) = q or

(b) VaR+
α (G) = q ,

and define αF such that VaRαF (F) = q. Then, the following holds

(i) under constraint (a), if q ≤ VaRα(F), then the unique solution is given by

Ğ∗(u) = F̆(u) +
(
q− F̆(u)

)
1{u∈(αF ,α]} ;

if q > VaRα(F), then there does not exist a solution.
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(ii) under constraint (b), if q ≥ VaR+
α (F), then the unique solution is given by

Ğ∗(u) = F̆(u) +
(
q− F̆(u)

)
1{u∈(α,αF ]} ;

if q < VaR+
α (F), then there does not exist a solution.

The above theorem states that if the optimal quantile function exists it is either the
baseline quantile function F̆ or constant equal to q. Moreover, the stressed quantile function
(if it exists) jumps at α which implies that the existence of a solution hinges on the careful
choice of the stress. For a stress on VaR (constraint (a)) for example, a solution exists if and
only if the constraint satisfies q ≤ VaRα(F); a decrease in the VaRα from the baseline to the
stressed model. The reason for the non-existence of a solution when stressing VaR upwards
is that the unique increasing function that minimises the Wasserstein distance and satisfies
the constraint is not left-continuous and thus not a quantile function.

Alternatively to stressing VaR or VaR+, and in particularly in the case when a desired
stressed solution does not exist, one may stress instead the distortion risk measure Range-
Value-at-Risk (RVaR) Cont et al. (2010). The RVaR at levels 0 ≤ α < β ≤ 1 is defined by

RVaRα,β(G) =
1

β− α

∫ β

α
Ğ(u) du , for G ∈ M ,

and belongs to the class of distortion risk measures. The RVaR attains as limiting cases the
VaR and VaR+. Indeed, for any G ∈ M it holds

VaRα(G) = lim
α′↗α

RVaRα′ ,α(G) and VaR+
α (G) = lim

β↘α
RVaRα,β(G) .

The solution to stressing RVaR is provided in Theorem 1.

3.4. Expected Utility Constraint

This section considers the change from the baseline to the stressed distribution under
an increase of an expected utility constraint. In the context of utility maximisation, the next
theorem provides a way to construct stressed models with a larger utility compared to
the baseline.

Theorem 4 (Expected Utility and Risk Measures). Let u : R→ R be a differentiable concave
utility function, rk ∈ R, and ργk be distortion risk measures, for k = 1, . . . , d. Assume there exists
a distribution function G̃ satisfying

∫
R u(x) dG̃(x) ≥ c and ργk

(
G̃
)
= rk for all k = 1, . . . , d.

Then the optimisation problem

arg min
G∈M

W2(G, F) subject to
∫
R

u(x) dG(x) ≥ c & ργk (G) = rk, k = 1, . . . , d

has a unique solution given by

Ğ∗(u) = ν̆λ1

(F̆(u) +
d

∑
k=1

λk+1γk(v)

)↑ , (5)

where ν̆λ1 is the left-inverse of νλ1(x) = x− λ1 u′(x), and λ1 ≥ 0, (λ2, . . . , λd+1) ∈ Rd are such
that the constraints are fulfilled.

The utility function in Theorem 4 need not be monotone, indeed the theorem applies to
any differentiable concave function, without the need of an utility interpretation. Moreover,
Theorem 4 also applies to differentiable convex (disutility) functions ũ and constraint∫
R ũ(x) dG(x) ≤ c; a situation of interest in insurance premium calculations. In this case,

the solution is given by (5) with u(x) = −ũ(x).
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Example 3 (HARA Utility & ES). The Hyperbolic absolute risk aversion (HARA) utility function
is defined by

u(x) =
1− η

η

(
ax

1− η
+ b
)η

,

with parameters a > 0, ax
1−η + b > 0, and where η ≤ 1 guarantees concavity.

We again choose the baseline distribution FY of Y to be Lognormal(µ, σ2) with µ = 7
8 and

σ = 0.5 and consider utility parameters a = 1, b = 5, and η = 0.5. Figure 3 displays the baseline
and the stressed quantile functions F̆Y and Ğ∗Y, respectively, for a combined stress on the HARA
utility and on ES at levels 0.8 and 0.95. Specifically, for all three stresses we decreasing ES0.8 by
10% and increasing ES0.95 by 10% compared to their values under the baseline model. Moreover,
the HARA utility is increased by 0%, 1%, and 3%, respectively, corresponding to the panels from
the left to the right. The flat part in the stressed quantile function Ğ∗(u) around u = 0.8, visible in
all top panels of Figure 3, is induced by the decrease in ES0.8 while the jump at u = 0.95 is due to
the increase in ES0.95. From the left to the right panel in Figure 3, we observe that the larger the
stress on the HARA utility, the more the stressed quantile function shifts away from the baseline
quantile function F̆Y.

0.0 0.2 0.4 0.6 0.8 1.0

100

101 G *
Y

FY

0.0 0.2 0.4 0.6 0.8 1.0

100

101 G *
Y

FY

0.0 0.2 0.4 0.6 0.8 1.0

100

101 G *
Y

FY

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

g *
Y

fY

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

g *
Y

fY

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

g *
Y

fY

Figure 3. Top panels: Baseline quantile function F̆Y compared to the stressed quantile function Ğ∗Y , for
a 10% decrease in ES0.8, and a 10% increase in ES0.95, and, from left to right, a 0%, 1%, and 3% increase
in the HARA utility, respectively. The function `(·) (solid green) is the function whose isotonic
projection equals Ğ∗(·). Bottom panels: Corresponding baseline fY and stressed g∗Y densities.

3.5. Smoothing of the Stressed Distribution

We observe that the stressed quantile functions derived in Section 3 generally contain
jumps and/or flat parts even if the baseline distribution is absolutely continuous. In
situation where this is not desirable, one may consider a smoothed version of the stressed
distributions. For this, we recall that the isotonic regression, the discrete counterpart of the
weighted isotonic projection, of a function ` evaluated at u1, . . . , un with positive weights
w1, . . . , wn, is the solution to

min
u1,...,un

n

∑
i=1

(ui − `(ui))
2wi , subject to ui ≤ uj , i ≤ j . (6)

There are numerous efficient algorithms that solve (6) most notably the pool-adjacent-
violators (PAV) algorithm Barlow et al. (1972). It is well-known that the solution to the
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isotonic regression contains flat parts and jumps. A smoothed isotonic regression algorithm,
termed smooth pool-adjacent-violators (SPAV) algorithm, using an L2 regularisation was
recently proposed by Sysoev and Burdakov (2019). Specifically, they consider

min
u1,...,un

n

∑
i=1

(ui − `(ui))
2wi +

n

∑
i=1

ζi(ui+1 − ui)
2 , subject to ui ≤ uj , i ≤ j ,

where ζi ≥ 0, i = 0, . . . , n− 1, are prespecified smoothing parameters. Using a probabilitis-
tic reasoning, Sysoev and Burdakov (2019) argue that ζi may be chosen proportional to a
(e.g., quadratic) kernel evaluated at ui and ui+1, that is

ζi = ζ K(ui, ui+1) with K(ui, ui+1) =
1

|ui − ui+1|2
and ζ ≥ 0 .

The choice of smoothing parameter ζ = 0 correspond to the original isotonic regression
larger values of ζ correspond to a greater degree of smoothness of the solution. ζ can either
be prespecified or estimated using cross-validation, see e.g., Sysoev and Burdakov (2019).

To guarantee that the smoothed quantile function still fulfils the constraint, one may
replace in every step of the optimisation for finding the Lagrange parameter the PAV
with the SPAV algorithm. Thus, the Lagrange parameter are indeed found such that the
constraints are fulfilled.

Remark 1. There are numerous works proposing smooth versions of isotonic regressions. Ap-
proaches include kernel smoothers, e.g., Hall and Huang (2001), and spline techniques, e.g., Meyer
(2008). These algorithms, however, are computationally heavy in that their computational cost is
O(n2), where n is the number of data points. Furthermore, these algorithm require a careful choice
of the kernel or the spline basis which is in contrast to the SPAV. We refer the reader to Sysoev and
Burdakov (2019) for a detailed discussion and references to smooth isotonic regression algorithms.

4. Analysing the Stressed Model

Recall that a modeller is equipped with a baseline model, the 3-tuple (X, g,P), con-
sisting of a set of input factors X = (X1, . . . , Xn), a univariate output random variable
of interest, Y = g(X), and a probability measure P. For a stress on the output’s baseline
distribution FY, we derived in Section 3 the corresponding unique stressed distribution
function, denoted here by G∗Y. Thus, to fully specify the stressed model we next define a
stressed probability measure Q∗ that is induced by G∗Y.

4.1. The Stressed Probability Measures

A stressed distribution G∗Y induces a canonical change of measure that allows the
modeller to understand how the baseline model including the distributions of the inputs
changes under the stress. The Radon–Nikodym (RN) derivative of the baseline to the
stressed model is

dQ∗
dP =

g∗Y(Y)
fY(Y)

,

where fY and g∗Y denote the densities of the baseline and stressed output distribution,
respectively. The RN derivative is well-defined since fY(Y) > 0, P-a.s. The distribution
functions of input factors under the stressed model – the stressed distributions – are then
given, e.g., for input Xi, i ∈ {1, . . . , n}, by

Q∗(Xi ≤ xi) = E
[
1{Xi≤xi}

dQ∗
dP

]
= E

[
1{Xi≤xi}

g∗Y(Y)
fY(Y)

]
, xi ∈ R ,



Risks 2022, 10, 141 12 of 23

and for multivariate inputs X by

Q∗(X ≤ x) = E
[
1{X≤x}

g∗Y(Y)
fY(Y)

]
, x ∈ Rn ,

where E[·] denotes the expectation under P. Note that under the stressed probability
measure Q∗, the input factors’ marginal and joint distributions may be altered.

Example 4 (HARA Utility & ES continued). We continue Example 3 and illustrate the RN-
densities dQ∗

dP for the following three stresses (from the left to the right panel): a 10% decrease in
ES0.8 and a 10% increasing ES0.95 for all three stresses, and a 0%, 1%, and 3% increase in the
HARA utility, respectively.

We observe in Figure 4, that for all three stresses large realisations of Y obtain a larger weight
under the stressed probability measures Q∗ compared to the baseline probability P. Indeed, for all
three stresses it holds that dQ∗

dP (ω) > 1 whenever Y(ω) > 6 and ω ∈ Ω. This is in contrast to
small realisations of Y which obtain a weight smaller than 1. The impact of the different levels of
stresses of the HARA utility (0%, 1%, and 3%, from the left to the right panel) can be observed in
the left tail of dQ∗

dP ; a larger stress on the utility induces larger weights. The length of the trough of
dQ∗
dP is increasing from the left panel (approx. (4.53, 6.15)) to the right panel (approx. (4.43, 6.18)),

and corresponds in all cases to the constant part in G∗Y (see Figure 3, top panels) which is induced
by the decrease in ES0.8 under the stressed model.
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Figure 4. RN-densities for following stresses: a 10% decrease in both ES0.8 and ES0.95, and an increase
in the HARA utility. The change in HARA utility is 0%, 1%, and 3%, respectively, from left to right.

4.2. Reverse Sensitivity Measures

Comparison of the baseline and a stressed model can be conducted via different ap-
proaches depending on the modeller’s interest. While probabilistic sensitivity measures
underlie the assumption of a fixed probability measure and quantify the divergence be-
tween the conditional (on a model input) and the unconditional output density Saltelli et al.
(2008), the proposed framework compares a baseline and a stressed model, i.e., distribu-
tions under different probability measures. Therefore, to quantify the distributional change
in input factor Xi from the baseline P to the stressed Q∗ probability, a sensitivity measure
introduced by Pesenti et al. (2019) may be suitable which quantifies the variability of an
input factor’s distribution from the baseline to the stressed model. A generalisation of the
reverse sensitivity measure is stated here.
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Definition 4 (Marginal Reverse Sensitivity Measure Pesenti et al. (2019)). For a function
s : R→ R, the reverse sensitivity measure to input Xi with respect to a stressed probability measure
Q∗ is defined by

SQ
∗

i =



EQ∗ [s(Xi)]−E[s(Xi)]

max
Q∈Q

EQ[s(Xi)]−E[s(Xi)]
EQ∗ [s(Xi)] ≥ E[s(Xi)] ,

−
EQ∗ [s(Xi)]−E[s(Xi)]

min
Q∈Q

EQ[s(Xi)]−E[s(Xi)]
otherwise,

where Q = {Q | Q probability measure with dQ
dP

P
= dQ∗

dP } is the set of all probability measures
whose RN-derivative have the same distribution as dQ∗

dP under P. We adopted the convention that
±∞

∞ = ±1 and 0
0 = 0.

The sensitivity measure is called “reverse”, as the stress is applied to the output
random variable Y and the sensitivity monitors the change in input Xi. The definition
of 4 applies, however, also to stresses on input factors, in which case the RN-density
dQ∗
dP is a function of the stressed input factor and we refer to Pesenti et al. (2019) for a

discussion. Note, that the reverse sensitivity measure can be viewed as a normalised
covariance measure between the input s(Xi) and the Radon Nikodym derivative dQ∗

dP .
The next proposition provides a collection of properties that the reverse sensitivity

measure possesses, we also refer to Pesenti et al. (2019) for a detailed discussion of these
properties. For this, we first recall the definition of comonotonic and counter-monotonic
random variables.

Definition 5. Two random variables Y1 and Y2 are comonotonic under P, if and only if, there
exists a random variable W and non-decreasing functions h1, h2 : R→ R, such that the following
equalities hold in distribution under P

Y1 = h1(W) and Y2 = h2(W). (7)

The random variables Y1 and Y2 are counter-monotonic under P, if and only if, (7) holds with one of
the functions h1(·), h2(·) being non-increasing, and the other non-decreasing.

If two random variables are (counter) comonotonic under one probability measure,
then they are also (counter) comonotonic under any other absolutely continuous probability
measure, see, e.g., Proposition 2.1 of Cuestaalbertos et al. (1993). Thus, we omit the
specification of the probability measure when discussing counter- and comonotonicity.

Proposition 3 (Properties of Reverse Sensitivity Measure). The reverse sensitivity measure
possesses the following properties:

(i) SQ
∗

i ∈ [−1, 1];
(ii) SQ

∗

i = 0 if (s(Xi),
dQ∗
dP ) are independent under P;

(iiii) SQ
∗

i = 1 if and only if (s(Xi),
dQ∗
dP ) are comonotonic;

(iv) SQ
∗

i = −1 if and only if (s(Xi),
dQ∗
dP ) are counter-comonotonic.

The function s(·) provides the flexibility to create sensitivity measures that quantify
changes in moments, e.g., via s(x) = xk, k ∈ N, or in the tail of distributions, e.g., via
s(x) = 1{x>VaRα(Xi)}, for α ∈ (0, 1).

Next, we generalise Definition 4 to a sensitivity measure that accounts for multiple
input factors. While SQ

∗

i measures the change of the distribution of Xi from the base-
line to the stressed model the sensitivity SQ

∗

i,j introduced below, quantifies how the joint
distribution of (Xi, Xj) changes when moving from P to Q∗.
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Definition 6 (Bivariate Reverse Sensitivity Measure). For a function s : R2 → R, the re-
verse sensitivity measure to inputs (Xi, Xj) with respect to a stressed probability measure Q∗ is
defined by

SQ
∗

i,j =



EQ∗ [s(Xi, Xj)]−E[s(Xi, Xj)]

max
Q∈Q

EQ[s(Xi, Xj)]−E[s(Xi, Xj)]
EQ∗ [s(Xi, Xj)] ≥ E[s(Xi, Xj)] ,

−
EQ∗ [s(Xi, Xj)]−E[s(Xi, Xj)]

min
Q∈Q

EQ[s(Xi, Xj)]−E[s(Xi, Xj)]
otherwise ,

where Q is given in Definition 4.

The bivariate sensitivity measure satisfies all the properties in Proposition 3 when
s(Xi) is replaced by s(Xi, Xj). The bivariate sensitivity SQ

∗

i,j can also be generalised to k

input factors by choosing a function s : Rk → R.

Remark 2. Probabilistic sensitivity measures are typically used for importance measurement and
take values in [0, 1]; with 1 being the most important input factor and 0 being (desirably) independent
from the output Borgonovo et al. (2021). This is in contrast to our framework where SQ

∗

i lives in
[−1, 1] and e.g., a negative dependence, such as negative quadrant dependence between s(Xi) and
dQ∗
dP implies that SQ

∗

i < 0, see Pesenti et al. (2019) [Proposition 4.3]. Thus, the proposed sensitivity
measure is different in that it allows for negative sensitivities where the sign of SQ

∗

i indicates the
direction of the distributional change.

5. Application to a Spatial Model

We consider a spatial model for modelling insurance portfolio losses where each
individual loss occurs at different locations and the dependence between individual losses
is a function of the distance between the locations of the losses. Mathematically, denote
the locations of the insurance losses by z1, . . . , z10, where zm = (z1

m, z2
m) are the coordinates

of location zm, m = 1, . . . , 10. The insurance loss at location m, denoted by Lm, follows
a Gamma(5, 0.2

m ) distribution with location parameter 25. Thus, the minimum loss at
each location is 25 and locations with larger mean also exhibit larger standard deviations.
The losses L1, . . . , Lm have, conditionally on Θ = θ, a Gaussian copula with correlation
matrix given by ρi,j = Cor(Li, Lj) = e−θ||zi−zj ||, where || · || denotes the Euclidean distance.
Thus, the further apart the locations zi and zj are the smaller the correlation between Li
and Lj. The parameter Θ takes values (0, 0.4, 5) with probabilities (0.05, 0.6, 0.35) that
represent different regimes. Indeed, Θ = 0 corresponds to a correlation of 1 between all
losses, independently of their location. Larger values of Θ correspond to smaller albeit
still positive correlation. Thus, regime with Θ = 0 can be viewed as, e.g., circumstances
suitable for natural disasters. We further define the total loss of the insurance company by
Y = ∑10

m=1 Lm.
We perform two different stresses on the total loss Y detailed in Table 1. Specifically,

we consider as a first stress a 0% change in HARA utility, a 0% change in ES0.8(Y), and
a 1% increase in ES0.95(Y) from the baseline to the stressed model. The second stress is
composed of a 1% increase in HARA utility, a 1% increase in ES0.8(Y), and a 3% increase in
ES0.95(Y) compared to the baseline model. As the second stress increases all three metrics
it may be viewed as a more severe distortion of the baseline model.
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Table 1. Summary of the stresses applied to the portfolio loss Y represented in relative increases of
the stressed model from the baseline model.

HARA Utility ES0.8(Y) ES0.95(Y)

Stress 1: Q∗1 0% 0% 1%
Stress 2: Q∗2 1% 1% 3%

Next, we calculate reverse sensitivity measures for the losses L1, . . . , L10 for both
stresses Q∗1 and Q∗2 . Figure 5 displays the reverse sensitivity measures for functions
s(x) = x, s(x) = 1{x>F̆i(0.8)}, and s(x) = 1{x>F̆i(0.95)}, from the left to the right panel,
and where F̆i, denotes the P-quantile function of Li, i = 1, . . . , 10.
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Figure 5. Reverse sensitivity measures with s(x) = x, s(x) = 1{x>F̆i(0.8)}, and s(x) = 1{x>F̆i(0.95)}
(left to right), for two different stresses on the output Y. First stress (salmon) is keeping the HARA
utility and ES(Y)0.8 fixed and increasing the ES(Y)0.85 by 1%. Second stress (violet) is an increase of
1% in HARA utility, 1% ES(Y)0.8, and 3% in ES(Y)0.85.

We observe that for stress 2, the reverse sensitivities to all losses Li and all choices of
function s(·) are positive. This contrasts the reverse sensitivities for stress 1. Indeed, for
stress 1 the reverse sensitivities with both s(x) = x and s(x) = 1{x>F̆i(0.8)} are negative,
with the former values being smaller indicating a smaller change in the distributions of the
Li’s. By definition of the reverse sensitivity, the left panel corresponds to the (normalised)
difference between the expectation under the stressed and baseline model. The middle
and right panels correspond to the (normalised) change in the probability of exceeding
F̆i(0.8) and F̆i(0.95), respectively. Thus, as seen in the plots, while the expectations and
probabilities of exceeding the 80% P-quantile are smaller under the stressed model, the
probabilities of exceeding the 95% P-quantile are increased substantially. The first stress
increases the ES at level 0.95 while simultaneously fixes the utility and ES at level 0.8 to
its values under the baseline model. This induces under the stressed probability measure
a reduction of the mean and of the probability of exceeding the 80% P-quantile while
the probability of exceeding the 95% P-quantile increases. Thus, the reverse sensitivity
measures provide a spectrum of measures to analyse the distributional change of the losses
Li from the baseline to the stressed model.

Next, for a comparison we calculate the delta sensitivity measure of introduced by
Borgonovo (2007). For a probability measure Q the delta measure of Li is defined by

ξQ(Li) =
1
2

∫ ∫ ∣∣∣ fQY (y)− fQY|i(y | z)
∣∣∣ fQi (z) dy dz,

where fQY (·) and fQi (·) are the densities of Y and Li under Q, respectively, and where
fQY|i(·|·) is the conditional density of the total portfolio loss Y given Li under Q.

Table 2 reports the delta measures under the baseline model ξP and the two stresses,
i.e., ξQ

∗
1 and ξQ

∗
2 . We observe that the delta measures are similar for all losses Li and do

not change significantly under the different probability measures. As the delta sensitivity
measure quantifies the importance of input factors under a probability measure, having
similar values for ξP, ξQ

∗
1 , and ξQ

∗
1 , means that the importance ranking of the Li’s under

different stresses does not change. We also report, in the first two columns of Table 2, the
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reverse sensitivity measures with s(x) = 1{x>F̆(0.95)}. The reverse sensitivity measures
provide, in contrast to the delta measure, insight into the change in the distributions of the
Li’s from P and Q∗.

Table 2. Comparison of different sensitivity measures: First two columns correspond to the reverse
sensitivity measures with s(x) = 1{x>F̆(0.95)} and stressed models Q∗1 , and Q∗2 , respectively. The last
three columns are the delta measure under P, Q∗1 , and Q∗2 , respectively.

SQ∗1
i SQ∗2

i ξP ξQ
∗
1 ξQ

∗
2

L1 0.45 0.68 0.38 0.38 0.38
L2 0.47 0.62 0.29 0.29 0.29
L3 0.51 0.57 0.30 0.30 0.29
L4 0.52 0.63 0.30 0.30 0.29
L5 0.34 0.58 0.33 0.34 0.33
L6 0.41 0.62 0.34 0.34 0.32
L7 0.54 0.72 0.40 0.40 0.38
L8 0.60 0.69 0.38 0.39 0.39
L9 0.24 0.66 0.40 0.40 0.38
L10 0.41 0.73 0.39 0.38 0.37

Alternatively to considering the change in the marginal distributions Li from the base-
line to the stressed model, we can study the change in the dependence between the losses
when moving from the baseline to a stressed model. For this, we consider the bivariate
reverse sensitivity measures for the pairs (L5, L10) and (L9, L10) for the second stress Q∗2 ,
that is a 1% increase in HARA utility and ES0.8, and a 3% increase in ES0.95. Specifically,
we look at the function s(Li, Lj) = 1{Li>F̆i(0.95)} 1{Lj>F̆j(0.95)}, where F̆i(·) and F̆j(·) are the
P-quantile functions of Li and Lj respectively. This bivariate sensitivity measures quantifies

the impact a stress has on the probability of joint exceedances with values SQ
∗
2

5,10 = 0.78 and

SQ
∗
2

9,10 = 0.81 indicating that the probabilities of joint exceedances increase more for stress 2.
This can also be seen in Figure 6 which shows the bivariate copulae contours of (L5, L10)
(top panels) and (L9, L10) (bottom panels). The left contour plots correspond to the baseline
model P whereas the right panels display the contours under the stress model Q∗2 (solid
lines) together with the baseline contours (reported using partially transparent lines). The
red dots are the simulated realisations of the losses (L5, L10) and (L9, L10), respectively
(which are the same for the baseline and stressed model). We observe that for both pairs
(L5, L10) and (L9, L10) the copula under the stressed model admits larger probabilities of
joint large events, which is captured by the bivariate reverse sensitivity measure admitting
positive values close to 1.
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Figure 6. Contour plots of the bivariate copulae of (L5, L10) (top panels) and (L9, L10) (bottom panels)
under different models. The left contour plots correspond to the baseline model and the right panels
to the stress Q∗2 (solid lines) with the baseline contours reported using partially transparent lines. Red
points are simulated realisations.

6. Concluding Remarks

We extend the reverse sensitivity analysis proposed by Pesenti et al. (2019) which
proceeds as follows. Equipped with a baseline model which comprises of input and output
random variables and a baseline probability measure, one derives a unique stressed model
such that the output (or input) under the stressed model satisfies a prespecified stress and
is closest to the baseline distribution. While Pesenti et al. (2019) consider the Kullback–
Leibler divergence to measure the difference between the baseline and stressed models we
utilise Wasserstein distance of order two. Compared to Pesenti et al. (2019) the Wasserstein
distance allows for additional and different stresses on the output including the mean and
variance, any distortion risk measure including the Value-at-Risk and Expected-Shortfall,
and expected utility type constraints, thus making the reverse sensitivity analysis frame-
work suitable for models used in financial and insurance risk management. We further
discuss reverse sensitivity measures which quantify the change the inputs’ distribution
when moving from the baseline to a stressed model and illustrate our results on a spatial
insurance portfolio application. The reverse sensitivity analysis framework (including the
results from this work and from Pesenti et al. (2019) are implemented in the R package SWIM
which is available on CRAN.
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Appendix A. Proofs

Proof of Theorem 1. We solve the optimisation on the set of quantile functions M̆ and
define the Lagrangian with Lagrange multipliers λ = (λ1, . . . , λd) ∈ Rd

L(Ğ, λ) =
∫ 1

0

(
Ğ(u)− F̆(u)

)2 − 2
d

∑
k=1

λk
(
Ğ(u)γk(u)− rk

)
du

=
∫ 1

0

(
Ğ(u)−

(
F̆(u) +

d

∑
k=1

λk γk(u)

))2

− 2
d

∑
k=1

λk
(

F̆(u)γk(u)− rk
)
−
(

k

∑
k=1

λkγk(u)

)2

du .

Thus, the optimisation problem (3) is equivalent to first solving, for fixed λ, the optimisation
problem

arg min
Ğ∈M̆

L(Ğ, λ) (A1)

and then finding λ such that the constraints are fulfilled. For fixed λ, the solution to (A1) is
equal to the solution to

arg min
Ğ∈M̆

∫ 1

0

(
Ğ(u)−

(
F̆(u) +

d

∑
k=1

λk γk(u)

))2

du ,

which is given by the isotonic projection of F̆(u) + ∑d
k=1 λk γk(u) onto the set M̆ and the

Lagrange multipliers are such that the constraints are satisfied. Existence of the Lagrange
multipliers follows since the setM is non-empty. Uniqueness follows by convexity of the
Wasserstein distance, by convexity of the constraints on the set of quantile functions.

Proof of Proposition 1. For coherent distortion risk measures the corresponding weight
function γ is non-decreasing. Moreover the optimal quantile function is given by Theorem 1
and is of the form Ğλ(u) =

(
F̆(u) + λγ(u)

)↑ for some λ such that Ğλ fulfils the constraint.
The choice

λ∗ =
r− ργ(F)∫ 1

0 (γ(u))
2 du

≥ 0

implies that Ğλ∗(u) = F̆(u) + λ∗γ(u) is a quantile function of the form (4) that fulfils the
constraint. By uniqueness of Theorem 1, Ğλ∗ is indeed the unique solution.
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Proof of Theorem 2. Since both constraints are convex in Ğ the Lagrangian with parame-
ters λ = (λ1, . . . , λd) and λ̃ = (λ̃1, . . . , λ̃d̃) ≥ 0 becomes

L(Ğ, λ, λ̃) =
∫ 1

0

(
Ğ(u)− F̆(u)

)2
+ 2

d

∑
k=1

λk
(
hk(u)Ğ(u)− ck

)
du

+
d̃

∑
k=1

λ̃k

(
h̃k(u)

(
Ğ(u)

)2 − c̃k

)
du

=
∫ 1

0
Λ̃(u)

(
Ğ(u)− 1

Λ̃(u)

(
F̆(u)−

d

∑
k=1

λkhk(u)

))2

− 1
Λ̃(u)

(
F̆(u)−

d

∑
k=1

λkhk(u)

)2

+
(

F̆(u)
)2 − 2

d

∑
k=1

λkck −
d̃

∑
k=1

λ̃k c̃k ,

where Λ̃(u) = 1 + ∑d̃
k=1 λ̃k h̃k(u). Since λ̃ ≥ 0 by the KKT-condition, we obtain that

Λ̃(u) ≥ 0 for all u ∈ [0, 1]. Therefore, for fixed λ, λ̃, using an argument similar to the
proof of Theorem 1, the solution (as a function of λ, λ̃) is given by the weighted isotonic
projection of 1

Λ̃(u)

(
F̆(u)−∑d

k=1 λkhk(u)
)

, with weight function Λ̃(·).

Proof of Proposition 2. The mean and variance constraint can be rewritten as

m′ =
∫

x dG(x) =
∫ 1

0
Ğ(u) du and

(
σ′
)2

=
∫ (

x−m′
)2 dG(x) =

∫ 1

0

(
Ğ(u)−m′

)2 du .

Thus, the Lagrangian with Lagrange multipliers λ = (λ1, . . . , λk+2) is, if λ2 6= −1,

L(Ğ, λ) =
∫ 1

0

(
Ğ(u)− F̆(u)

)2 du− 2λ1

(∫ 1

0
Ğ(u) du−m′

)
+ λ2

(∫ 1

0

(
Ğ(u)−m′

)2 du−
(
σ′
)2
)

− 2
d

∑
k=1

λk+2

(∫ 1

0
Ğ(u)γk(u) du− rk

)

= (1 + λ2)
∫ 1

0

(
Ğ(u)− 1

1 + λ2

(
F̆(u) + λ1 + λ2m′ +

d

∑
k=1

λk+2 γk(u)

))2

− 1
1 + λ2

(
F̆(u) + λ1 + λ2m′ +

d

∑
k=1

λk+2γk(u)

)2

+
(

F̆(u)
)2 du

+ 2λ1m′ + λ2

((
m′
)2 −

(
σ′
)2
)
+ 2

d

∑
k=1

λk+2 rk .

For fixed Lagrange multipliers λ with λ2 6= −1, the optimal quantile function is charac-
terised by the isotonic projection and given by (using an analogous argument to the proof
of Theorem 1)
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Ğ∗(u) =

(
1

1 + λ2

(
F̆(u) + λ1 + λ2m′ +

d

∑
k=1

λk+2 γk(u)

))↑
(A2)

=
1

|1 + λ2|

(
sgn(1 + λ2)

(
F̆(u) + λ1 + λ2m′ +

d

∑
k=1

λk+2 γk(u)

))↑
=

1
|1 + λ2|

H̆(u) ,

where we define H̆(u) =
(

sgn(1 + λ2)
(

F̆(u) + λ1 + λ2m′ + ∑d
k=1 λk+2 γk(u)

))↑
∈ M̆,

and sgn(·) denotes the sign function. Next we show that λ2 cannot be in a neighbourhood
of −1. It holds that for λ2 6= −1,∫ 1

0

(
Ğ∗(u)

)2 du =
1

(1 + λ2)2

∫ 1

0

(
H̆(u)

)2 du . (A3)

Since the rhs of (A3) is increasing for | λ2 + 1 | ↘ 0, there exists a ε0 > 0 such that for all
ε < ε0 and λ2 ∈ (−1− ε,−1 + ε), it holds that

1
(1 + λ2)2

∫ 1

0

(
H̆(u)

)2 du >
(
σ′
)2

+
(
m′
)2 ,

which is a contradiction to the optimality of Ğ∗. Thus, λ2 is indeed bounded away from −1
and the unique solution is given in (A2).

Proof of Theorem 3. We split this proof into the two cases (i), that is constraint (a) and
(ii), i.e., constraint (b).

Case (i): For constraint a), i.e., VaRα(G) = q, we first assume that q ≤ VaRα(F)
which implies F̆(αF) = q ≤ F̆(α) and thus αF ≤ α. Therefore, Ğ∗(u) = F̆(u) +

(
q −

F̆(u)
)
1{u∈(αF ,α]} is a quantile function which satisfies the constraint. Next, we show that G∗

has a smaller Wasserstein distance to F than any other distribution function satisfying the
constraint. For this, let H̆ be a quantile function satisfying the constraint and H̆(u) 6= Ğ(u)
on a measurable set of non-zero measure. Then

W2(H, F) =
∫ αF

0

(
H̆(u)− F̆(u)

)2 du +
∫ α

αF

(
H̆(u)− F̆(u)

)2 du +
∫ 1

α

(
H̆(u)− F̆(u)

)2 du

≥
∫ α

αF

(
H̆(u)− F̆(u)

)2 du .

By non-decreasingness of H̆ and F̆ and by the constraint it holds for all u ∈ [αF, α] that
H̆(u) ≤ H̆(α) = q = F̆(αF) ≤ F̆(u). Thus, on the interval [αF, α], we obtain

(
H̆(u) −

F̆(u)
)2 ≥

(
q− F̆(u)

)2 and therefore

W2(H, F) ≥
∫ α

αF

(
H̆(u)− F̆(u)

)2 du ≥
∫ α

αF

(
q− F̆(u)

)2 du = W2(G∗, F) ,

where at least one inequality is strict since H̆(u) 6= Ğ(u) on a measurable set of non-zero
measure. Uniqueness follows by the strict convexity of the Wasserstein distance and since
the constraint is convex on the set of quantile functions.

Second, we assume that q > VaRα(F) and show that there does not exist a solution.
Assume by contradiction that Ğ is an optimal quantile function satisfying the constraint.
By definition of αF, we have that q = F̆(αF) > F̆(α) and thus αF ≥ α. We apply a similar
argument to the first part of the proof using non-decreasingness of Ğ, Ğ(α) = q, and
optimality of Ğ, to obtain that Ğ is constant equal to q on [α, αF] and equal to F̆(u) for
u > αF. Specifically, it holds that
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Ğ(u) = F̆(u) + (q− F̆(u))1{u∈(α,αF ]} , for all u > α .

Moreover, since the optimal quantile function minimises the Wasserstein distance to F, it
holds that, for all ε > 0, Ğ satisfies

Ğ(u) = F̆(u) , for all u ≤ α− ε .

Thus, we can define for all ε ∈ (0, α) the family of quantile functions

H̆ε(u) = F̆(u) + (q− F̆(u))1{u∈(α−ε,αF ]} ,

which satisfies W2(Hε1 , F) < W2(Hε2 , F) for all 0 ≤ ε1 < ε2, and H̆ε(α) = q for all ε > 0.
However, limε↘0 H̆ε(α) = F̆(α) < q and thus the quantile function limε↘0 H̆ε(u) does not
fulfil the constraint. Hence, we obtain a contradiction to the optimality of Ğ.

Case (ii): First, we assume that q ≥ VaR+
α (F) which implies that F̆(αF) = q ≥

F̆+(α) ≥ F̆(α) and thus αF ≥ α. Therefore Ğ∗(u) = F̆(u) +
(
q − F̆(u)

)
1{u∈(α,αF ]} is a

quantile function. Moreover, Ğ∗ satisfies the constraint since by right-continuity of Ğ∗, we
have that

Ğ∗+(α) = lim
ε↘0

Ğ∗+(α + ε) = q .

The proof that Ğ∗ has the smallest Wasserstein distance to F compared to any other distri-
bution function satisfying the constraint is analogous to the one in case (i).

For the case when q > VaR+
α (F), the argument of non-existence of the solution follows

using similar arguments as those in case (i).

Proof of Theorem 4. By concavity of the utility function, the constraint is convex and can
be written as −

∫ 1
0 u
(
Ğ(v)

)
dv + c ≤ 0. Thus, we can define the Lagrangian with λ1 ≥ 0

and (λ2, . . . , λd+1) ∈ Rd by

L(Ğ, λ) =
1
2

∫ 1

0

(
Ğ(v)− F̆(v)

)2 − λ1
(
u
(
Ğ(v)

)
− c
)
−

d

∑
k=1

λk+1
(
Ğ(v)γk(v)− rk

)
dv

=
∫ 1

0
T
(
Ğ(v)

)
− Ğ(v)

(
F̆(v) +

d

∑
k=1

λk+1γk(v)

)

+ 1
2
(

F̆(v)
)2

+ λ1 c +
d

∑
k=1

λk+1 rk dv ,

where T(x) = 1
2 x2 − λ1u(x). Therefore, for fixed λ1, . . . , λd+1, we apply Theorem 3.1 by

Barlow and Brunk (1972) and obtain the unique optimal quantile function (as a function of
λ1, . . . , λd+1), that is Ğ∗(v) = ν̆λ1

((
F̆(u) + ∑d

k=1 λk+1γk(v)
)↑), where ν̆λ1 is the left-inverse

of νλ1(x) = x− λ1 u′(x).
Next, we show that if d = 0, the utility constraint is binding, that is λ1 > 0. For

this, assume by contradiction that the λ1 = 0, then the optimal quantile function becomes
Ğ∗(u) = ν̆0

(
F̆(u)

)
. Since ν0(x) = x, we obtain that Ğ∗(u) = F̆(u). F̆, however, does not

fulfil the constraint, which is a contradiction to the optimality of Ğ∗.

Proof of Proposition 3. We prove the properties one-by-one:

(i) We first define for a random variable Z with P-distribution FZ the random variable
UZ := FZ(Z). Then, UZ and Z are comonotonic and UZ has a uniform distribution
under P. Next, recall that for any random variables Y1, Y2 it holds that Rüschendorf
(1983)

E
[
Y1 F−1

Y2

(
1−UY1

)]
≤ E[Y1 Y2] ≤ E

[
Y1 F−1

Y2

(
UY1

)]
. (A4)
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where F−1
Y2

(
UY1

)
is the random variable that is comonotonic to Y1 and has the same

P-distribution as Y2. Similarly, F−1
Y2

(
1−UY1

)
is the random variable that is counter-

monotonic to Y1 and has the same P-distribution as Y2. The left (right) inequality
in (A4) become equality if and only if the random variables Y1 and Y2 are counter-
comonotonic (comonotonic).
Thus, we can rewrite the maximum in the normalising constant of the reverse sensitiv-
ity measure as follows

max
Q∈Q

EQ[s(X)] = max
Z P
= dQ∗

dP

E[s(X) Z] = E
[

s(X) F−1
dQ∗
dP

(
Us(X)

)]

and the minimum in the normalising constant is

min
Q∈Q

EQ[s(X)] = min
Z P
= dQ∗

dP

E[s(X) Z] = E
[

s(X) F−1
dQ∗
dP

(
1−Us(X)

)]
.

The reverse sensitivity for the case EQ∗ [s(Xi)] ≥ E[s(Xi)] then becomes

SQ∗
i =

E[s(Xi)
dQ∗
dP ]−E[s(Xi)]

E
[

s(X) F−1
dQ∗
dP

(
Us(X)

)]
−E[s(Xi)]

,

which satisfies 0 ≤ SQ∗
i ≤ 1 using again (A4). For the case EQ∗ [s(Xi)] ≤ E[s(Xi)], it

holds that

SQ∗
i = −

E[s(Xi)
dQ∗
dP ]−E[s(Xi)]

E
[

s(X) F−1
dQ∗
dP

(
1−Us(X)

)]
−E[s(Xi)]

,

which satisfies −1 ≤ SQ∗
i ≤ 0.

(ii) Assume that s(Xi) and dQ∗
dP are independent under P, then

E[s(Xi)
dQ∗
dP ] = E[s(Xi)]E

[
dQ∗
dP

]
= E[s(Xi)] ,

and the reverse sensitivity measure is indeed zero.
(iii) From property (i) we observe that s(Xi) and dQ∗

dP are comonotonic, if and only if,
SQ∗

i = 1 since in this case the right inequality in Equation (A4) becomes equality.
(iv) From property (i) we observe that s(Xi) and dQ∗

dP are counter-comonotonic, if and only
if, then SQ∗

i = 1 as in this case left inequality in Equation (A4) becomes equality.

The proof that the joint reverse sensitivity SQ∗
i,j also fulfils the above properties follows

using analogous arguments and replacing s(Xi) with s(Xi, Xj).
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