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Abstract: How to consider the a priori risks in experience-rating models has been questioned in the
actuarial community for a long time. Classic past-claim-rating models, such as the Buhlmann–Straub
credibility model, normalize the past experience of each insured before applying claim penalties.
On the other hand, classic Bonus–Malus Scales (BMS) models generate the same surcharges and the
same discounts for all insureds because the transition rules within the class system do not depend on
the a priori risk. Despite the quality of prediction of the BMS models, this experience-rating model
could appear unfair to many insureds and regulators because it does not recognize the initial risk
of the insured. In this paper, we propose the creation of different BMSs for each type of insured
using recursive partitioning methods. We apply this approach to real data for the farm insurance
product of a major Canadian insurance company with widely varying sizes of insureds. Because the
a priori risk can change over time, a study of the possible transitions between different BMS models is
also performed.
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1. Introduction

An experience ratemaking model uses past claims experience to update the basic
premium computed with the risk characteristics of the insureds. To avoid penalizing the
risky insureds twice, insurers must find a way to consider the a priori risks in experience-
rating models. Indeed, because risky policyholders already have higher basic premiums
than less risky policyholders, they are expected to also claim more often than less risky
policyholders. Consequently, they should also be expected to be penalized less for a claim
than less risky policyholders. Similarly, risky insureds should be rewarded much more
than lower-risk insureds if they do not claim.

This problem of treating insureds differently in experience-rating models has long been
known in the actuarial community. Indeed, even classic past-claim-rating models normalize
the past experience of each insured i before applying claim penalties. For example, by
designating λi,t a measure of the a priori risk, for contract t of insured i, a normalized past
experience ∑t ni,t

∑t λi,t
is used in the Buhlmann–Straub credibility model instead of ni,• = ∑t ni,t,

which is used in the Bühlmann (1967) credibility model.
Instead on focusing on credibility premiums, other approaches developed joint dis-

tributions of all contracts of the same insured to find predictive premiums for claims
frequency. For example:

• Models allowing a dynamic time dependence between contracts of the same insured:
models based on series of correlated random effects (Bolancé et al. 2007; Abdallah
et al. 2016), jitter models (Shi and Valdez 2014), time series for count data (Gourieroux
and Jasiak 2004; Bermúdez et al. 2018; Bermúdez and Karlis 2021 or Pinquet 2020).

• Longitudinal models allowing for dependence structures between many type of claims
(Abdallah et al. 2016; Pechon et al. 2019, 2021; Gómez-Déniz and Calderín-Ojeda 2018).
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• Longitudinal models allowing dependence between claim frequency and claim sever-
ity (Shi et al. 2016; Oh et al. 2020; Jeong and Valdez 2020).

On the other hand, a Bonus–Malus Scales (BMS) model is an experience-rating model
that has been used in practice for a long time (see Lemaire 2012 or Denuit et al. 2007 for
classic textbooks, or Frangos and Vrontos 2001; Mehmet and Saykan 2005 or Ágoston and
Gyetvai 2020 for research papers on BMS scales). The BMS model is a class system with
a finite number of levels, where a relativity is assigned to each level. Depending on the
transition rules of the BMS, insureds usually move down by a level if they do not claim
during their contract, and move up a specific number of levels for each claim they make.
The insured’s new level at the end of the year is then used to compute the next annual
premium. To account for the differences in a priori risk in automobile insurance, Denuit et al.
(2007) uses one BMS model for young drivers and another BMS model for older drivers.
However, this approach does not take advantage of the data structure that is now available
from insurers. Indeed, to find the relativity of each BMS level, Denuit et al. (2007) uses the
classic BMS theory, which is based on aggregate data.

Recently, Boucher and Inoussa (2014) explained how classic BMS theory could be gen-
eralized for granular data, where each insured is observed for many contracts. Verschuren
(2021) generalizes the BMS approach for multiproducts and adds more flexible estima-
tion methods by using the generalized additive model (GAM) theory. Finally, Boucher
(2022) shows how BMS models are linked with simple GLM models that have covariates
associated with the past claims experience.

Those recent BMS models generate the same surcharges and the same discounts for
all insureds because the transition rules within the class system do not depend on the a
priori risk. Despite the quality of prediction of the BMS models, this experience-rating
model could appear unfair to many insureds and regulators because it does not recognize
the initial risk of the insured. In this paper, based on the new BMS theory, we show how
insurers can create different BMSs to account for the differences in a priori risk.

The paper has the following structure. In Section 2, we carefully explain the recent
BMS theory that uses granular data. As an illustration, the BMS model is applied to a farm
insurance product. The results are discussed, and the problem related to the a priori risk is
highlighted. We show that when a single BMS is used on the entire insurance portfolio,
higher BMS levels are filled with bigger farms, and similarly, we show that bigger farms
have a higher average BMS level than smaller farms. In Section 3, we show how to group
farms of similar size to create distinct and independent BMS models. This more equitably
rates the farms, and better rewards and penalizes them, because their size is directly taken
into account for past claims rating. To find the best groups to form among the farms, similar
to what is conducted with classification trees, we use a recursive partitioning algorithm (see
Diao and Weng 2019 for a recent use of classification trees in a credibility theory situation).
Because the size of the farm, which is defined by the number of insured items, can change
at any time, a study of the transitions between different BMS models is also performed.
The last section concludes.

2. Review of the BMS Model
2.1. Summary of the Past-Claims-Rating Model

Boucher (2022) defines two kinds of variables to use in experience rating:

1. The variable to model, named the target variable;
2. The information used to define what we consider the past claim experience, named

the scope variable.

For this paper, we model the number of claims (i.e., the target variable) based only
on the number of past claims (i.e., the scope variable). In other words, the idea of the
experience-rating model of this paper is to predict the number of claims of insured i, for
contract of period T, by taking into account all the past number of claims, from contract
t = 1 to contract T− 1. A new insured with T = 1 is someone without any past insurance
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experience. Formally, we are looking to compute the conditional expected value of Ni,T ,
which is the number of claims of insured i for contract of period T, defined as :

E[Ni,T |ni,(1:T−1), X i,T ] (1)

where ni,(1:T−1) is a vector of all number of claims of each contract between time 1 and
time T − 1 for insured i, and X i,T is a vector containing covariates used in the ratemaking
for contract T. This usually corresponds to information about the age of the insured, the
marital status of the insured, etc.

2.2. The Bonus–Malus Scale Models

To model the number of claims of insured i, for contract T, the Poisson distribution
of mean λi,T is usually the starting point, but other count distributions can easily be used
(see Denuit et al. 2007 for a review of using count distributions to model the number of
claims, or Cameron and Trivedi 2013 for an exhaustive review of count distributions). For
this paper, for the sake of simplify, we only use the Poisson distribution.

For experience rating, to differentiate between new insureds and insureds with ex-
perience, past-claims-rating models use both the number of past claims and the number
of contracts without claims, defined as κi,t = I(ni,t = 0). In such situations, the mean
parameter of the Poisson distribution can be expressed as:

λi,T = exp(X ′i,T β + γ0(100− κi,•) + γ1ni,•) (2)

where, for insured i, ni,• = ∑T−1
t=1 ni,t corresponds to the insured’s total number of past

claims, and κi,• = ∑T−1
t=1 κi,t is the sum of policy periods without a claim. The same mean

parameter can be expressed as:

λi,T = exp(X ′i,T β + γ0(100− κi,• +
γ1

γ0
ni,•) = exp(X ′i,T β + γ0`i,T), (3)

with:

`i,T = 100− κi,• +
γ1

γ0
ni,•

where γ0 is the Relativity parameter, and Ψ = γ1
γ0

is the Jump parameter. The new variable
`i,T , based on κi,• and ni,•, summarizes all past claim experience and is called a claim score.
This approach is called the Kappa-N model (Boucher 2022), and because it is defined by the
mean parameter, it can easily be used with many count distributions. The Kappa-N model
can be interpreted as follows:

• For an insured i without insurance experience, we have ni,• = 0 and κi,• = 0, which
means that a new insured without experience has a claim score of 100, i.e., an entry
level of 100.

• Each year without a claim decreases the claim score by 1;
• Each claim increases the claim score by Ψ.
• The impact of a single claim on the premium is equal to Ψ years without claims.
• The penalty for a claim is (exp(Ψγ0)− 1)%.
• Each year without a claim decreases the premium by (1− exp(−γ0))%.

Boucher (2022) showed that the prediction quality of the Kappa-N model is signifi-
cantly better than standard count models that do not use any covariates linked to experience
rating. However, the Kappa-N model has some major flaws. The model does not limit the
claim score to minimum or maximum values. In some situations, it can also lead to extreme
surcharges for insureds who claimed frequently. Moreover, because it is based on κi,• and
ni,•, the Kappa-N model does not allow for any forgiveness and the model does not weight
past claims by their age (Bolancé et al. 2007).
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Numerical Example

Suppose that we have the insureds from Table 1, where the insurance experience
is shown for three insureds. Suppose a Kappa-N model was fitted, resulting in a rating
structure that implies a decrease of one level for each year without a claim. The estimated
jump-parameter Ψ is 4, meaning that each claim penalizes the insured with an increase of
4 to the claim score. If we start at level 100 in 2011, because of the values of κi,• and ni,•
(also shown in Table 1), insureds would, respectively, be at levels 90, 118 and 121 in 2021.
The graph on the left of Figure 1 shows another way to see how the level `i,2021, for insured
i = 1, 2, 3, are computed.

Table 1. Insureds with claims experience.

Insured Years
i 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 −κi,• ni,•

1 0 0 0 0 0 0 0 0 0 0 −10 0
2 2 0 1 0 0 0 2 0 1 0 −6 6
3 4 1 2 0 0 0 0 0 0 0 −7 7

If we want to weight claims by their age and introduce some form of forgiveness to
the rating model, a solution is to limit the value of all claim scores, for all past insurance
contracts. For illustration, we suppose that 115 is the maximum value of the claim score,
i.e., `max = 115, and the minimum value is 95, i.e., `min = 95. To compute premiums in
2021, we apply these two limits to all past claim scores. Figure 1 shows how the limits
applied to past contracts impact the claim score in 2021 for all three insureds. With this
approach, we see that many of the problems mentioned earlier are at least partially solved:
past claims can ultimately be forgiven, and the model introduces a form of time weighting
for past claims.
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Figure 1. Insureds with claim experience, with and without limits `min, `max.

By adding maximum and minimum claim-score values for past contracts, the Kappa-N
approach developed so far has been transformed into what is usually called a Bonus–Malus
Scale system (BMS), where the claim score can be seen as a BMS level, or simply a BMS
score. More formally, the BMS is a class system with a finite number of levels (when Ψ is
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an integer), where a relativity is assigned to each level. For this BMS model, the transition
rule is simple: an insured moves down by one level if there is no claim over the course of
the contract and moves up by Ψ levels for each claim.

BMS models can be defined using four structural parameters: the entry level `0, the
jump parameter Ψ, the maximum level of the system `max and the minimum level of the
system `min. For a specific insured, the BMS level is defined as:

`i,t+1 = `i,t − κi,t + Ψ× ni,t, with `min ≤ `i,t ≤ `max,

where the level `i,t is always between `min and `max for all t = 1, . . . , T.
For the Kappa-N model, estimating the parameters by maximum likelihood is simple.

However, for BMS models, because the model needs to recompute the claim-score path of
each insured from their first contract, finding the best values for structural parameters Ψ,
`min and `max is not that easy. To estimate the structural parameters, a grid search for all
structural parameters can be performed. That means that all values are tried, and we select
the BMS model with the biggest log-likelihood. By limiting the possible values of Ψ, `min
and `max, this approach is not difficult, nor is it too time consuming.

2.3. Summary of the Numerical Illustration
2.3.1. Data Used

We used a sample of the farm insurance data from a major insurance company in
Canada, using contracts between 2010 and 2020. The general form of the data used is shown
in Table 2, where each line in the database corresponds to a specific coverage in an annual
contract. For each observation, we have information about the insured, the contract and
the items covered, but we also see the date of the first insurance contract with the insurer.
Information about claims that happened during that period of time is also available.

Table 2. Fictive Data Sample-Contract Level.

Policy Number Effective First Number of Costs of
Number of Items Date Insurance Coverage . . . Province Claims Claims

. . . . . . . . . . . . . . . . . . . . . . . . . . .

125721 2 15 January
2017

15 January
1995 MACHINERY . . . Ontario 2 186,592

125722 15 22 March
2017

22 March
2013 MACHINERY . . . Quebec 0 0

125723 1 11 January
2016

5
November

1993
MACHINERY . . . Manitoba 1 18,889

125724 27 17 February
2018

17 February
2018 MACHINERY . . . Nova

Scotia 1 7444

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Unlike with automobile insurance in Canada, where insureds frequently move from
one insurer to another, farm insurance has relatively stable insureds. In our dataset, the
average number of years with the insurer is 18.4, and the maximum observed years is close
to 601. The maximum available years of past claims experience for all insureds is 15 years,
and only insurance experience with the insurer is available. We considered the first year of
insurance of any insured to be the first year with the insurer. In other words, if a farm is
first seen in the database in 2003, this farm is considered a new insured without any prior
experience in 2003.

For the farm insurance product, an item corresponds to a specific tractor or combine
for which specific information is available. With a total of approximately 700,000 insured
items insured for more than 120,000 contracts, the average number of items insured per
contract is around 6. The distribution of the number of items insured per contract can be
seen in Figure 2. Almost 50% of all farms only have one insured items, while approximately
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10% of farms have more than 20 insured items. More precisely, 40 farms have more than
100 insured items, with a maximum of more than 200 insured items for a single contract.
As we see in the next sections, the difference between small farms and larger farms is
important for BMS models.

Number of Items by Contract
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ty
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0
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1
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5

Figure 2. Distribution of the number of items by contract.

2.3.2. Estimated Parameters of the BMS Model

The estimated parameters of the Poisson BMS model are shown in Table 3. The
log-likelihood value is shown. For the test dataset, the logarithmic score defined as
∑n

i=1− log(Pr(ni; λ̂i)) was used (see Roel et al. 2018 for details or descriptions of other
scores) to define the prediction quality. To better understand the results obtained for the
Poisson BMS model, we can compute the discounts and surcharges of the model based on
the number of past claims. More concretely, we then have:

• The jump parameter Ψ is equal to 6, meaning that each claim increases the BMS level
by 6. After a claim, an insured would need 6 years without a claim to return to the
original premium (before the claim);

• The value of γ0 is 0.0312. That means that the penalty for a claim is equal to
exp(0.0312× 6)− 1 = 20.6%, and each year without claim decreases the premium by
1− exp(−0.0312) = 3.07%;

• The maximum BMS level is `max = 116, meaning that the maximum surcharge,
compared with level 100, is exp(0.0312× 16)− 1 = 64.7%;

• The minimum BMS level is `min = 85, meaning that the minimum surcharge, com-
pared with level 100, is 1− exp(−0.0312× 15) = 37.3%.

As we can see, these basic results are found and computed easily. This method of
computing the surcharges and discounts would clearly be useful to any insureds, brokers
or administrators. It is simple to explain to insureds how large their penalties for a claim
will be and how long they will be penalized for that claim. Another interesting result of the
BMS model is that all insureds have a premium located between 0.627 and 1.647 times the
basic premium for a new insured at level 100. This narrowly limits the range of premiums.

Table 3. Results of the Poisson BMS model.

BMS Parameters Log-Likelihood Log. Score
Distributions `max `min Ψ̂ γ̂0 (Train) (Test)

Poisson 116 85 6 0.0312 −8490.026 2857.029

2.3.3. Problems with the Size of Farms

By comparing the predicted and the observed claims frequency on the training and
test datasets, Boucher (2022) showed that the BMS model seems to fit the data well. We
see that classifying insureds by their claim score (or BMS level) works well as the insureds
with higher levels has worse claims experience than insureds with lower levels.
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However, the size of each farm in the insurance portfolio is different, and size has a
direct impact of the past rating model. Figure 2 showed the distribution of the number
of insured machinery (called items) per farm. The BMS model used here generates the
same surcharges and the same discounts for all insureds. However, because large farms
are expected to have more claim than smaller ones, they should normally also be expected
to be penalized less for a claim. Similarly, a large farm should be rewarded much more
for a year without claim. An experience-rating system that does not recognize this type of
situations may appear to penalize larger farms twice.

That means that the connection between BMS levels and the size of the farm is note-
worthy. To more clearly see the impact of the number of insured items on each farm, using
the BMS model from Table 3, we compute the BMS level of each contract in the database.
For each BMS level, we compute the average number of insured items on each farm for that
level. Similarly, we computed the average BMS level based on the number of insured items.
Figure 3 illustrates the result. As we expect, the higher BMS levels are filled with bigger
farms, and bigger farms have an average BMS level much higher than smaller farms.
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Figure 3. Average number of insured items by BMS level (left) and average BMS level by number of
insured items (right).

Despite the prediction quality of the BMS model, the BMS model could seem unfair to
many insureds and regulators because it does not recognize the initial risk of the insured.
To correct this situation and promote the use of the BMS in practice, the BMS model should
be generalized to include the a priori risks in the rating structure.

3. Partitioning the Portfolio

As proposed by Denuit et al. (2007) for young drivers in Belgium, a way to deal with
farms of different sizes would be to divide the portfolio into groups. Indeed, groups of
farms of similar sizes could be created, and each group would have their own experience-
rating model, with its own a priori rating parameters and its own structural BMS parameters.
Farms could then be more equitably rated, and more correctly rewarded and penalized, as
their size would be directly taken into account when performing past claims rating.

To find the best groups to form among the farms, similar to what is carried out with
classification trees, we perform a recursive partitioning of the portfolio (see Diao and Weng
2019 for more details but also for an application to compute more accurate credibility
premiums). Because we expect the risk to be proportional to the number of insured items
in each contract, we need to find a division point based on the number of items from which
we create two groups: insureds with a smaller (or equal) number of items than the point
division and another group with more items than the division point.

We use an algorithm to test each possible subgroup of our insurance portfolio by
cross-validation. We split the training dataset into five folds, from which four of the five
are used to estimate the parameters of a Poisson BMS model, and the remaining fold is
used to compute predictive statistics. To evaluate the prediction quality on the test fold,
because we are working with count data, the logarithmic score defined earlier was used.
For each item value from 1 to 212 (the maximum number of items observed in a single
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contract), we are looking for the value where the sum of the logarithmic score of the two
groups is maximized. Then, for each of the two subgroups created, we create two more
new groups that generate a better total logarithmic score. We repeat this until the sum of
all scores cannot be improved, or when a group is composed only of farms with the same
number of insured items.

The resulting classification tree of the number of items is shown in Figure 4, where the
percentage shown corresponds to the proportion of contracts that belong to that interval of
the training dataset. We can see from the algorithm that:

1. The first iteration divides the insureds into two groups: insured with four or fewer
than four insured items, which represents 62.3% of all insureds, and insureds with
more than four items, which represents 37.7% of the insureds.

2. The first group of insureds is then divided again into two groups: farms with one
insured item (26.9%) and farms with between two and four insured items (35.4%). The
second group is also divided into two more groups: between 5 and 12 items (31.0%)
and insureds with more than 12 items (6.7%).

3. Finally, only the group with between 5 and 12 items can be divided again: groups
with between 5 and 8, and between 9 and 12 items, are created.

[1, 212]

100.0%

[1, 4]

62.3%

{1}

26.9%

[2, 4]

35.4%

[5, 212]

37.7%

[5, 12]

25.5%

[5, 8]

17.1%

[8, 12]

8.3%

[13, 212]

12.2%

Figure 4. Recursive partitioning by the number of insured items.

3.1. Analyzing Each Group of Farms

To better understand the division of the portfolio into groups, Table 4 shows a descrip-
tive summary of each group of farms from division step 0, 1, 2 and 3. For each division,
we observe major differences between each group of farms. For example, the average
claims frequency of the portfolio is 2.36%, but it is 0.36% for insureds with only one insured
item and is slightly under 10% for farms with more than 13 insured items. Past claims
experience, summarized by variables κ• and n•, also shows the difference between groups:
on average, small farms have fewer reported claims (0.49) than the larger farms (1.68). The
number of years without a claim, expressed by κ•, is much closer for each group, except for
the smaller farms with only one insured item. It is also interesting to see that larger farms
have more insurance experience, noted τ, than small ones. Generally, the larger the farm is,
the longer it stays with the insurer.
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Table 4. Descriptive summary of each group of farms.

Division Number of Proportion Average Claims Past Claims History
Depth Group Items of Contracts Nb. of Items Frequency n• κ• τ

0 0A [1, 212] 100.0% 5.85 2.36% 0.83 10.30 11.08

1 1A [1, 4] 62.3% 2.00 0.71% 0.58 9.95 10.50
1B [5, 212] 37.7% 12.22 5.08% 1.24 10.88 12.03

2 2A {1} 26.9% 1.00 0.36% 0.49 9.53 10.00
2B [2, 4] 35.4% 2.75 0.98% 0.64 10.26 10.87
2C [5, 12] 25.5% 7.57 3.25% 1.04 10.99 11.96
2D [13, 212] 12.2% 21.94 8.91% 1.68 10.64 12.17

3 3A {1} 26.9% 1.00 0.36% 0.49 9.53 10.00
3B [2, 4] 35.4% 2.75 0.98% 0.64 10.26 10.87
3C [5, 8] 17.1% 6.24 2.63% 0.94 10.94 11.83
3D [9, 12] 8.4% 10.29 4.52% 1.23 11.09 12.24
3E [13, 212] 12.2% 21.94 8.91% 1.68 10.64 12.17

Covariates based on the characteristics of the farm were used in the claim count model.
More specifically, by referring to Equation (2), X i,T is a 7× 1 vector, with six covariates
and an intercept. For privacy reasons, but also because this is not the focus on the paper,
covariates are simply labeled as X1 − X6 and their meaning is not explained. Figure 5
shows the mean of each covariate used in all count models for all five groups, with the
dashed line representing the average for the whole portfolio. Major differences between
groups can be observed for covariates X1 and X2. This is not surprising because those
covariates are directly linked to the number of insured items per farm. Covariates X3, X4,
X5 and X6, on the other hand, do not vary depending on the group.

Figure 6 shows the distribution of each group of farms of division 3 across all BMS
levels for the original BMS models summarized in Table 3. The conclusion of that figure is
similar to what we saw with Figure 3: the proportion of larger farms in the highest levels of
the BMS is greater than the proportion seen in the lower BMS levels. We see, for example,
that the proportion of contracts from groups 3A and 3B is smaller in level 115 than in
level 85. The opposite is observed for group 3E. However, the proportion of insureds from
groups 3C and 3D seems to be stable across all BMS levels.

3.2. Different BMS Models versus the Original BMS Model

By dividing the portfolio into groups based on the number of insured items, we also
obtained five different BMS models for each group of farms. Results of the estimation of
each BMS model are shown in Table 5. A comparison with the original BMS, which has
been fitted to the whole portfolio, is also shown, where the log-likelihood statistics and
logarithmic scores of the original BMS model are divided by group.

Because it generalizes the original BMS model, a specific BMS model for each group
obviously improves the log-likelihood of each group and the total log-likelihood (−8490.03
vs. −8410.47, almost 80 points for 33 additional parameters). Improving the log-likelihood
that much could be a sign of overfitting. However, this is not the case because, interestingly,
the total logarithmic score used on the test dataset also improved (2857.03 vs. 2843.08), and
we can see that the logarithmic score of each group improved, except for group 3B. This is
an indication that an experience-rating model that uses the size of the insured should be
considered in farm insurance.
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Figure 5. Mean of all covariates used by groups (dashed line for the mean of the whole portfolio).
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Figure 6. Proportion of each group within BMS levels for the BMS model.

We can also see that the estimators of the structural parameters `max, `min and Ψ are
very different from one group to another. This can be interpreted in many ways. Using the
estimated value of Ψ, we can see how many years it takes to forgive one claim for each group.
Another place we can see the impact of the BMS parameters is on the spectrum of possible
premiums, which is very different for each group. For example, the maximum/minimum
BMS levels for group 3A are 156/99 (57 levels), while the maximum/minimum BMS levels
for group 3E are 107/85 (22 levels).
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Table 5. Comparison of the original BMS and the BMS by group model.

Original BMS BMS by Group
Group ˆ̀max ˆ̀min Ψ̂ γ̂0 Loglik. Log.Score ˆ̀max ˆ̀min Ψ̂ γ̂0 Loglik. Log.Score

3A 116 85 6 0.0312 −554.37 114.57 156 99 7 0.0713 −539.06 107.70
3B 116 85 6 0.0312 −1655.34 550.50 114 85 11 0.0425 −1633.46 553.19
3C 116 85 6 0.0312 −1778.24 563.72 118 85 6 0.0320 −1768.57 558.16
3D 116 85 6 0.0312 −1336.60 459.63 120 88 6 0.0311 −1320.47 457.57
3E 116 85 6 0.0312 −3165.47 1168.61 107 85 4 0.0431 −3148.91 1166.47

Total 116 85 6 0.0312 −8490.03 2857.03 . . . −8410.47 2843.08

Using the structural parameters of the BMS also allows us to compute various dis-
counts and surcharges, as shown in Table 6. The table shows the impact of a year without
a claim and the surcharge for each claim. There are only two possibilities for the insured:
to claim or not to claim; thus, we have to compare relativities between a scenario where
the insured claims and a scenario where the insured does not claim. This is shown in the
Claim Impact column. Finally, based on the estimated values of `max and `min, the maxi-
mum surcharge and the maximum discount for each BMS model is also shown. Several
observations can be made about these tables:

• Group 3A, which is composed of farms with only one insured item, seems very
different than the other farms. Perhaps these small insureds are family farms, while
the farms in the other groups are more industrial.

• Group 3A generates extreme surcharge values for insureds who claim too much: they
are more than 53 times the basic premium for insureds at the top of the Bonus–Malus
Scale. Even if this BMS model seems to be better than the original BMS model for
group 3A (when looking at the logarithmic score), this is not realistic and cannot be
applied in practice. On the other hand, groups 3B, 3C and 3D have similar maximum
surcharges ranging from 0.780 to 0.920, which can also be seen as an indication that
small farms with one insured item seem very different than the other farms. The
maximum surcharge for larger farms is limited to an increase of 35.2% compared with
the basic level (100).

• The maximum discounts are similar for each group, except group 3A. Compared with
a new insured at level 100, insureds from group 3A can expect a maximum discount of
only around 7%, but other insureds can obtain discounts ranging from 31.1% to 47.1%.

• The surcharge for each claim is very different from one group to another. We see that
for group 3A and 3B the impact of a claim is similar, while the impacts are similar for
groups 3C, 3D and 3E.

To more clearly understand the difference between having five different BMS models,
one for each group, and a single BMS model that is applied directly to the whole portfolio,
the left graph of Figure 7 shows the distribution of the BMS relativities for all groups with
the single BMS model when it is applied to the whole portfolio. As seen in Table 6, the
maximum relativity of the original BMS model is 1.65, and the minimum is 0.625 (1–37.5%),
but the figure also shows how the contracts are spread across all levels for each group.
The graph on the right of the same figure shows the same result but for five different BMS
models. Group 3A includes extreme cases where the BMS relativites are much higher
than 2.5.

Finally, an analysis was also performed of the estimated a priori parameters related the
covariates used in the models. Table 7 shows some similarities between the values of the
parameters but also large differences between groups.
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Table 6. Discounts and surcharges for each group.

Discount by Surcharge Claim Maximum Maximum
Group Year without Claim by Claim Impact Surcharge Discount

0A 3.08% 20.6% 24.5% 65.0% 37.5%

3A 6.88% 64.7% 76.9% 5321% 6.90%
3B 4.16% 59.6% 66.5% 81.3% 47.1%
3C 3.15% 17.4% 21.2% 78.0% 38.2%
3D 3.06% 20.5% 24.3% 92.0% 31.1%
3E 4.22% 18.8% 24.1% 35.2% 47.6%
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Figure 7. Distribution of the BMS relativities for each group (left: original BMS, right: BMS by group).

Table 7. Estimated parameters for BMS models applied to each group.

β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

0A 0.931 −0.173 −0.176 0.091 0.052 0.008

3A 0.976 −0.953 −0.719 0.141 0.157 −0.133
3B 0.888 −0.799 0.170 0.009 0.247 0.350
3C 0.892 −0.864 −0.268 0.026 0.014 −0.031
3D 0.828 −1.099 −0.045 −0.010 0.159 −0.012
3E 0.877 −0.445 −0.252 0.167 −0.022 −0.045

The results obtained by dividing the farm insurance portfolio into subgroups to take
into consideration the size of the farms is an interesting way to deal with the size of the
insureds when conducting experience rating. Indeed, even if the final model is much more
complex, and has many structural parameters that result in a cumbersome approach to
estimating all parameters, the final results improve prediction capacity compared with
the standard BMS model (also known as the original BMS model). Dividing farms by the
number of insured items is an interesting way to evaluate the impact of the size of a farm.
Other variables or covariates can be used instead of the number of insured items to evaluate
the insured’s a priori risk. In automobile insurance, the driver’s age could be used to divide
the insureds into subgroups. For other products, dividing insureds into groups might work
if we can find heterogeneous groups of insureds in the portfolio.

3.3. Limits of the Approach

Longitudinal count models, such as those seen in Abdallah et al. (2016) or Pechon
et al. (2021), can directly use the number of farms as the exposition basis. Consequently,
those models allow for the computation predictive premiums that consider the a priori risk
while using much fewer parameters than the classification tree BMS model proposed here.
However, as mentioned by Boucher (2022), these longitudinal models are often difficult for
insurers to implement, and BMS solutions are often required.
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The classification tree BMS model divides the portfolio and independently estimates
all the BMS parameters of each group. That means that we consider each group to be
fundamentally different, which is not the case. They all have something in common: small
farms might be a little bit different than bigger farms, but ultimately, the same types of
machinery are covered and they face the same kinds of perils (thefts, hail, fire, etc.). A
way to correct this flaw could be to allow the sharing of some β parameters between each
group. This solution reduces the number of parameters of the model, which often leads
to a reduction in overfitting. This could be an idea for future research because it needs
developing another estimating algorithm.

A Study of Transition Rules

Dividing the portfolio into different groups causes a bigger problem. Indeed, nothing is
preventing a farm from buying or selling items (tractors) at any moment in time. That means
that, for example, a farm in group 3B could transition to group 3A simply by removing a
tractor in its insurance contract. Because we do not have access to past risk characteristics
(in other words the number of items insured in the past), the past claims experience of
that farm are then used with a BMS structure with {`max, `min, Ψ} = {156, 99, 7} instead
of {114, 85, 11}. Transitioning to other groups has obviously not been considered in the
modeling, and it leads to illogical results, where, for example, the insured receives a new
surcharge for past claims even if no new claim was reported.

To see the potential impact of such a transition, we used the whole portfolio and
analyzed insureds with a number of items on the boundary of each group 3A, . . ., 3E. Our
objective is to measure the impact of a small variation in the number of insured items on
the premium calculated by the BMS models. Table 8 shows the 8 possibilities studied. Of
course, it would be possible for a farm to add or remove two or more items from its policy
in the same year. In these situations, it would be possible for a farm to transition from
group 3A to 3C (by adding between 4 and 7 items in the same year), from group 3B to 3D
(by adding at least 5 items) and from group 3C to 3E (by adding at least 5 items). Similarly,
a farm of group 3E can transition to group 3C by removing at least 5 items, and so on. We
do not show the impact of those transitions, but they could be analyzed easily following
the same procedure.

Table 8. List of farms analyzed for the transition study.

Nb. of Actual New Group If an Nb. of Actual New Group If an
Items Group Item Is Added Items Group Item Is Removed

1 3A 3B 2 3B 3A
4 3B 3C 5 3C 3B
8 3C 3D 9 3D 3C
12 3D 3E 13 3E 3D

For each possibility, we analyze the impact of the transition from one group to another
one by computing the ratio of BMS relativities. The result is shown for each transition in
Figure 8. Transitioning from group 3A or to group 3A generates extreme situations (the
right graph of the figure is limited because the maximum value is around 27). For other
transitions, even if the impact is not as big, we can see that changing groups could have a
serious impact. Receiving a new past claims surcharge without making a new claim is not
something that could be applied in practice.
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Figure 8. Relativity impact of the transition from one group to another.

Creating distinct BMS models for young and older drivers, as in Denuit et al. (2007),
is more logical and simpler. Firstly, because the BMS model to use depends on the age of
the driver, which the insured does not control. Secondly, because the transition from the
first BMS (for young drivers) to the second BMS only happens once and in one direction.
Consequently, the insurer knows when the transition will happen. However, knowing the
time of the transition has another advantage. Indeed, the insured’s past risk characteristics,
i.e., X i,t for t < T, are usually not used in ratemaking and are often not even available to
the insurer. If the insurer knows the age at which the insured moves from the first BMS
model to the second one, which we can call a, it allows the insurer to know that an insured
of a or a + 1 years old has just made a BMS transition. Without knowing the insured’s past
characteristics, the insurer knows that it should apply transition rules, which could limit
the variation in surcharges or discounts.

If the insurer uses the number of insured items to create distinct BMSs, it is not
automatically possible to know if an insured has moved from one BMS to another. It then
becomes very difficult to propose a method to mitigate the effect of the transitions, such as
the ones seen in Figure 8, unless the insurer collects the history of the number of insured
items or heavily transforms the BMS pricing model.

4. Conclusions

As mentioned in Boucher (2022), using the BMS model instead of complex longitu-
dinal distributions or advanced credibility approaches simplifies the understanding of
the ratemaking structure of an insurer. Indeed, by its simplicity, the BMS system can
be explained to the legislative authorities that regulate pricing, as well as to the various
administrators of insurance companies and policyholders. However, despite the quality of
prediction of the BMS models, the BMS often appears unfair because it does not consider
the initial risk of the insured in the penalty structure.

In order to respond to this criticism of policyholders who might complain about being
penalized twice, first by the a priori ratemaking and then by the predictive ratemaking, we
proposed to modify the BMS approach. Using a recursive division algorithm such as the
one used by Diao and Weng (2019), we created several groups of insureds and applied
a separate BMS model for each group. In our numerical application, we used the farm
insurance product, and the a priori risk was defined as the number of insured items. By
using a recursive partitioning algorithm on the farm portfolio, we show that the fit statistics
and the predictive scores were greatly improved compared with a unique BMS applied on
the whole portfolio. Moreover, we show that partitioning makes it easier to identify groups
of insureds that have different loss experience than other groups. Indeed, the approach
allows us to see that farms with only one insured item had a very different loss experience
than other types of farms.

The approach generates excellent fit statistics and provides very good prediction qual-
ity and could easily be applied to many insurance products such as automobile insurance.
However, when used with the number of insured items, it also has flaws. The main flaw
is related to possible overfitting but also the possibility of a transition from one BMS to
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another. Indeed, because the BMS used for a farm is based on the number of insured items,
a farm could quickly move to another BMS simply by adding or removing an item from
its policy. As we have seen in our numerical application, this leads to situations where
an insured’s premium can rise or fall sharply simply because the applicable structural
parameters {`max, `min, Ψ} change too drastically from one BMS to the next.

A direct way to correct this approach could be to allow the sharing of some struc-
tural parameters (`max, `min and Ψ) or some β between each group. For example, in
Tables 5 and 7, we saw some similarities between parameters. This approach can save
parameters to the model, which often reduces overfitting. This is an interesting idea that
could work. However, creating an algorithm to estimate the parameters of such a model
could be far more complex than what we used here and would need to be developed.

We instead believe that it is the step of dividing the portfolio into clear groups that
should be generalized. By analogy, using a model that necessitates partitioning of the
portfolio is similar to a piecewise regression, where a different regression model is used
for each segment of the variable to model. We think that it makes more sense to develop
a unique BMS model for all farms where, to follow the analogy, a smoothing function
might be used to consider the size, or the a priori risk, of each farm. Indeed, because there
might be some similarities between contracts or policyholders from different groups, a
more holistic approach might be worth considering. This model could then consider the
size of the insured as a characteristic of the risk to be included, for example, in the penalty
structure of the past claims algorithm.

Funding: This research received no external funding. The author gratefully ackowledges The Co-
operators throught the Co-operators Chair in Actuarial Risk Analysis.

Conflicts of Interest: The author declares no conflict of interest.

Note
1 Farms are sometimes passed from generation to generation. Insurance experience would not be reset in such a case.
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