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Abstract: We discuss several known formulas that use the Macaulay duration and convexity of
commonly used cash flow streams to approximate their net present value, and compare them with
a new approximation formula that involves hyperbolic functions. Our objective is to assess the
reliability of each approximation formula under different scenarios. The results in this note should
be of interest to actuarial candidates and educators as well as analysts working in all areas of
actuarial practice.
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1. Introduction

Actuaries and actuarial science students at universities all over the world are familiar
with approximation formulas for the present value of cash flow streams using some notion
of cash flow duration or convexity. For example, the syllabus of Exam FM of the US-based
Society of Actuaries includes the topic of approximations using the Macaulay and modified
duration and convexity, while the UK-based Institute and Faculty of Actuaries in its material
for exam CM1 mentions approximations derived from a Taylor series expansion.

Beside the academic and pedagogical interest in such approximation formulas, one
may also consider the practical value in the management of interest rate risk. Although
abundant computing power has enabled firms to implement elaborate immunization
strategies that incorporate multi-factor stochastic interest rate models, non-parallel yield
curve shifts, and complicated asset and liability characteristics, the restrictions posed by a
simplistic valuation model are not unreasonable if rates remain historically low, yield curves
stay relatively flat, and we can control the potential errors. Indeed, it may be helpful to
know which approximation formula proves to be the most reliable, and to use it as a quick
validation tool when time constraints preclude the use of a more sophisticated approach.

Alps (2017) describes a realistic scenario involving an investment actuary and her
CEO, where the use of an approximation formula would be warranted or even necessitated.
This is especially true in today’s world of fast-changing rates, when companies have to
react almost instantly to benchmark fund rates and quantitative tightening decisions by the
Federal Reserve or other central banks.

In this note, we discuss several known formulas that use the Macaulay duration and
convexity of commonly used cash flow streams to approximate their net present value, and
compare them with a new approximation formula that involves hyperbolic functions. In
addition to annuities, dividend stocks, and bonds, we also consider the cases of negative
payments and embedded options to perform a deeper assessment. The notions of effective
duration and convexity are defined in the next section and used to price the embedded
options. Our objective is to measure the reliability of each approximation formula under
different scenarios. As alluded to earlier, we only consider parallel interest rate shocks to
flat yield curves.
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1.1. Literature Review

The idea of using a bond’s duration to approximate changes to its price goes back
to Macaulay (1938). Some authors credit Fischer and Weil (1971) with the publication
of the first duration–convexity approximation formula. Enhancements of that formula
by controlling the missing higher-order terms and incorporating passage of time were
announced in Jarjir and Rakotondratsimba (2008, 2012), though the resulting formulas
contain parameters that are unintuitive and hard to calibrate. A conceptually simpler
formula was given in Barber (1995), and independently in Livingston and Zhou (2005)
for the modified duration, which was subsequently generalized to a duration–convexity
model in Tchuindjo (2008). Further work in Barber and Dandapani (2017) considered
negative-yielding bonds, and Johansson (2012) added passage of time. A separate duration–
convexity formula appears in Alps (2017) and is applied to an empirical study of basic
immunization strategies in Nie et al. (2021), while a very recent paper by Barber (2022)
further generalizes a duration–convexity approximation by introducing an additional
‘compounding’ parameter. Finally, traditional approximations have been implemented in
statistical analysis packages; see Lee (2021) for R code.

1.2. Notation

We denote the net present value of a cash flow stream by P. The interest rate r is
annualized and continuously compounded (i.e., force of interest). ∆r is the change in
interest rates from the initial value r0 to r. Finally, the annual discount factor v is by
definition equal to e−r.

Throughout the remainder of this paper and for convenience, assume r0 = 1.6%,
which is approximately the yield on the 10-year T-bond at the beginning of this year.

2. Materials and Methods

Recall that the Macaulay duration of a stream of cash flows {CFtj}n
j=1 being paid at

future times {tj}n
j=1 is defined by

d =
∑n

j=1 CFtj vtj tj

∑n
j=1 CFtj vtj

= −dP/dr
P

,

while its Macaulay convexity is given by

c =
∑n

j=1 CFtj vtj t2
j

∑n
j=1 CFtj vtj

=
d2P/dr2

P
.

We do not consider the modified duration here because the Macaulay duration has a
more intuitive interpretation (being the ‘average’ timing of the cash flows) and tends to
result in tighter approximations for non-negative rates.

In the case of bonds with embedded options, it will be necessary to price the value of
the option using a simple Black model. Recall that the pricing formula for, say, a European
call option with expiration at time t and strike K is

V = vt(PΦ(d1)− KΦ(d2))

where Φ represents the standard normal c.d.f. and the quantities d1,2 are given by

d1,2 =
ln(P/K)

σ
√

t
± σ
√

t
2

with σ the bond price volatility. We also need more flexible measures of bond duration and
convexity. To that end, define the effective duration by means of
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de = −
P(r0 + ∆r)− P(r0 − ∆r)

2P0 ∆r

and the effective convexity as

ce =
P(r0 + ∆r)− 2P0 + P(r0 − ∆r)

P0 (∆r)2 .

2.1. Fischer–Weil’s Approximation

This follows immediately from Calculus and the definitions above.

∆P
P0
≈ −d0 ∆r +

c0

2
(∆r)2. (1)

It is assumed that the Macaulay duration and convexity are computed at rate r0, hence
the subscripts.

2.2. Barber’ 1995 Approximation

Instead of the second-order Taylor polynomial of P, we consider the first-order Taylor
polynomial of ln P, thus obtaining

ln P ≈ ln P0 − d0 ∆r,

thus
P ≈ P0 e−d0 ∆r. (2)

Unlike the first-order Taylor polynomial in P that has no convexity, the functional form
of Barber’s approximation bequeaths it with a certain degree of positive curvature. This
leads to good approximation results whenever c0 ≈ d2

0 and poor performance for c0 < 0.

2.3. Tchuindjo’ Approximation

Similar to Barber’s approximation, but involving the second-order Taylor polynomial
of ln P

ln P ≈ ln P0 − d0 ∆r +
c0 − d2

0
2

(∆r)2, (3)

from which one solves for P. The added quadratic term gives better results in cases where
c0 − d2

0 is non-trivial, but may still introduce large errors whenever c0 < 0.

2.4. Alps’ Approximation

The approximation formula and its derivation can be found in Alps (2017). The central
idea in the derivation of this approximation is to compute a Taylor polynomial for the
current value of the cash flow stream at time t = d0. This choice results in high accuracy in
situations where d0 > 0, and less so for d0 < 0.

We have rewritten it below in terms of continuously compounded interest rates.

P ≈ P0 e−d0 ∆r

(
1 +

c0 − d2
0

2

(
e∆r − 1

)2
)

. (4)

2.5. Hyperbolic Approximation

We have not encountered this approximation formula in the literature and we assume
its derivation is presented here for the first time. Consider the homogeneous differential
equation P′′ − c0P = 0 that mimics the definition of Macauley convexity given earlier in
this note. Its general solution takes the form

P = a e
√

c0 r + b e−
√

c0 r
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(do not worry for the time being about the case c0 < 0.) Setting P(r0) = P0 and
P′(r0) = −d0 P0, which is a reformulation of the definition of Macauley duration, one
obtains the approximation

P ≈ P0

(
1
2

(
1− d0√

c0

)
e
√

c0 ∆r +
1
2

(
1 +

d0√
c0

)
e−
√

c0 ∆r
)

which can be rewritten as

P ≈ P0

(
cosh(

√
c0 ∆r)− d0√

c0
sinh(

√
c0 ∆r)

)
. (5)

The well-known trig identities

cosh(iθ) =
eiθ + e−iθ

2
= cos θ , sinh(iθ) =

eiθ − e−iθ

2
= i sin θ

can be used in the case c0 < 0 to obtain

P ≈ P0

(
cos
(√
|c0| ∆r

)
− d0√

|c0|
sin
(√
|c0| ∆r

))
,

which is useful whenever there is a computational issue with imaginary numbers.
In the next section, we demonstrate that the hyperbolic approximation is less prone

to errors than other well-known approximations in situations where the duration and/or
convexity are negative. Recall that negative convexity cash flow streams can be easily
constructed with the addition of negative cash flows to a stream of positive payments, when
considering callable bonds, or with mortgage-backed securities due to the prepayment
option in conventional residential mortgages.

3. Results

Approximation formulas such as Equations (1)–(5) should ideally be intuitive and
behave well in special cases.

(i) The simplest cash flow is cash, which has trivial duration and convexity and is
unaffected by interest rate changes. By substituting d0 = c0 = 0 or taking the
corresponding limit in the case of (5) and using the fact that

lim
θ→0

sinh θ

θ
= lim

θ→0

sin θ

θ
= 1,

we obtain P = P0 as expected.
(ii) Next, take a zero-coupon bond, for which c0 = d2

0: Except for Fischer–Weil’s approx-
imation, the rest reduce to Barber’s approximation, which is perfectly accurate in
this case. On the other hand, the error associated with Fischer-Weil’s approxima-
tion increases with the bond duration and it can be as high as 0.56% for a 30-year
zero-coupon bond after a 100 bp increase in rates.

(iii) For a convexity-hedged (c0 → 0) portfolio, Fischer–Weil’s and the hyperbolic approxi-
mations reduce to the first-order approximation ∆P ≈ −d0 P0 ∆r. The corresponding
results for the other approximation formulas are not as intuitive and their accuracy
relative to the above approximation cannot be determined without additional details
about the cash flow characteristics.

We supplement the theoretical tests above with some concrete examples.

(iv) Consider a 10-year annuity-immediate with annual payments of 10. Recall that our
assumption is r0 = 1.6% and compute the present value P0 = 10a10 = 91.6728.
Another easy calculation gives the Macaulay duration and convexity as d0 = 5.3681
and c0 = 37.0554, respectively.
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In Table 1, the exact value of P is computed using the same formula as for P0 but at
the new continuously compounded rate.

Table 1. PV of 10-year annuity with annual payments of 10.

∆r Exact Fischer-Weil Barber Tchuindjo Alps Hyperbolic

−100 bp 96.7682 96.7637 96.7283 96.7682 96.7669 96.7668
−80 bp 95.7207 95.7184 95.6954 95.7207 95.7199 95.7199
−60 bp 94.6876 94.6866 94.6735 94.6876 94.6871 94.6873
−40 bp 93.6687 93.6684 93.6625 93.6687 93.6685 93.6686
−20 bp 92.6639 92.6638 92.6623 92.6639 92.6638 92.6639

0 bp 91.6728 91.6728 91.6728 91.6728 91.6728 91.6728

20 bp 90.6954 90.6954 90.6939 90.6954 90.6953 90.6954
40 bp 89.7313 89.7316 89.7254 89.7313 89.7311 89.7314
60 bp 88.7804 88.7813 88.7672 88.7804 88.7800 88.7807
80 bp 87.8425 87.8447 87.8193 87.8425 87.8417 87.8432

100 bp 86.9173 86.9216 86.8815 86.9173 86.9162 86.9186

We can observe that Tchuindjo’s approximation outperforms the rest, while Barber’s
lags behind for sizable rate changes. This was to be expected, since Barber’s approximation
lacks a convexity term and will not do well in cases when c0 − d2

0 is non-trivial. On the
other hand, Alps’ and the hyperbolic approximations are roughly equally accurate behind
Tchuindjo’s.

(v) Next, add a negative cash flow at time 20. We have chosen CF20 = −120 in the
example below; the net present value is P0 = 4.5349 and the Macaulay duration and
convexity are d0 = −275.7817 and c0 = −6, 936.8498, respectively.

Looking at Table 2 below, it may come as a surprise that the approximations by
Tchuindjo and Alps blow up completely. However, we can provide a simple mathematical
explanation for the bizarre behavior. Whenever c0 < 0, the quadratic term of these two
approximations that includes the expression c0 − d2

0 has the potential to be extremely
influential. As ∆r increases, said term can overwhelm the baseline value P0 and the linear
term, resulting in large errors. Barber’s approximation exhibits the opposite weakness:
missing a quadratic term implies that the negative convexity is not accounted for at all. In
fact, for suitable CF20, we can obtain d0 = 0, in which case Barber’s approximation fails to
yield any results.

Table 2. NPV of 10-year annuity with annual payments of 10 and a payment of −120 at time 20.

∆r Exact Fischer-Weil Barber Tchuindjo Alps Hyperbolic

−100 bp −9.6622 −9.5445 0.2877 0.0045 −0.8684 −8.0590
−80 bp −6.5366 −6.4769 0.4994 0.0351 −0.7850 −5.7162
−60 bp −3.5601 −3.5352 0.8669 0.1946 −0.3873 −3.2151
−40 bp −0.7266 −0.7193 1.5048 0.7747 0.5372 −0.6250
−20 bp 1.9698 1.9707 2.6123 2.2128 2.1924 1.9824

0 bp 4.5349 4.5349 4.5349 4.5349 4.5349 4.5349

20 bp 6.9742 6.9733 7.8725 6.6685 6.6069 6.9619
40 bp 9.2929 9.2859 13.6664 7.0357 4.8785 9.1962
60 bp 11.4960 11.4726 23.7243 5.3262 −10.6004 11.1758
80 bp 13.5885 13.5335 41.1846 2.8930 −64.7471 12.8461

100 bp 15.5748 15.4686 71.4950 1.1275 −215.8388 14.1608
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We conclude this example by mentioning that the top-performing approximation is
Fischer–Weil’s, while the hyperbolic approximation is second-best.

(vi) Let us now consider a dividend stock, whose theoretical price is computed using
Gordon’s dividend discount model

P =
D

r− g

with D representing next year’s dividend and g its constant continuously compounded
growth rate in perpetuity. A quick calculation gives d = (r− g)−1 and c = 2(r− g)−2;
for g = 0.6% we obtain d0 = 100 and c0 = 20, 000. Assume D = 1.

Some of the results in Table 3 may appear counterintuitive at first sight. Gordon’s
model suggests that P has an inverse relationship to r; however, all approximations except
for Alps’ and Barber’s eventually produce a divergent estimate for P as ∆r increases.
However, this is explained by the fact that we are attempting to trace a hyperbola using
quadratic curves. Moreover, all approximations struggle to keep up with P for large
negative values of ∆r.

Table 3. Price of a dividend stock with D = 1 and g = 0.6%.

∆r Exact Fischer-Weil Barber Tchuindjo Alps Hyperbolic

−100 bp n/a 300.0000 271.8282 448.1689 403.4619 354.6482
−80 bp 500.0000 244.0000 222.5541 306.4854 291.5285 269.3175
−60 bp 250.0000 196.0000 182.2119 218.1472 213.9771 205.6762
−40 bp 166.6667 156.0000 149.1825 161.6074 160.7412 158.5990
−20 bp 125.0000 124.0000 122.1403 101.8813 101.8813 101.8813

0 bp 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000

20 bp 83.3333 84.0000 81.8731 83.5270 83.4590 83.7590
40 bp 71.4286 76.0000 67.0320 72.6149 72.2257 74.2635
60 bp 62.5000 76.0000 54.8812 65.7047 64.4487 70.7488
80 bp 55.5556 84.0000 44.9329 61.8783 58.8586 72.9319

100 bp 50.0000 100.0000 36.7879 60.6531 54.6026 80.9885

Overall, Alps’ approximation proves to be the most dependable for moderate changes
in the interest rates.

(vii) Next, consider a 10-year bond with a coupon rate of r0 and face value of 100. A quick
calculation yields d0 = 9.3151 and c0 = 90.6932.

It turns out that the last three approximation formulas clearly outperform the rest,
with Tchuindjo’s having a slight advantage over Alps’ and the hyperbolic approximation,
as evidenced from Table 4. The subpar performance of Fischer–Weil on bonds is one of the
reasons why this approximation is not widely utilized, despite its robustness in cases such
as (v).

It has been shown empirically that although investment-grade bonds fall in price when
interest rates rise, that is not necessarily the case with high-yield bonds whose duration can
be negative due to default risk; see Melentyev and Yu (2020). For such bonds, care should
be exercised when using the approximations by Tchuindjo or Alps.
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Table 4. PV of 10-year par bond with coupon rate r0.

∆r Exact Fischer-Weil Barber Tchuindjo Alps Hyperbolic

−100 bp 109.7839 109.7686 109.7628 109.7843 109.7836 109.7830
−80 bp 107.7501 107.7423 107.7368 107.7503 107.7499 107.7497
−60 bp 105.7556 105.7523 105.7482 105.7557 105.7555 105.7554
−40 bp 103.7996 103.7986 103.7963 103.7996 103.7995 103.7995
−20 bp 101.8813 101.8812 101.8805 101.8813 101.8813 101.8813

0 bp 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000

20 bp 98.1550 98.1551 98.1542 98.1550 98.1550 98.1550
40 bp 96.3456 96.3465 96.3425 96.3455 96.3454 96.3456
60 bp 94.5710 94.5742 94.5642 94.5709 94.5707 94.5712
80 bp 92.8306 92.8381 92.8188 92.8304 92.8301 92.8310

100 bp 91.1238 91.1383 91.1056 91.1234 91.1229 91.1246

(viii) Finally, assume the bond is callable, with the European call strike set at K = 101.0000
and bond price volatility σ = 8%. The call is exercised a year ahead of the bond’s
maturity and has price V = 9.9431, which is subtracted from the price of a conventional
bond to arrive at the callable bond price. Using ∆r = 20 bp in the calculation of the
effective duration and convexity, we obtain de = 5.3333 and ce = 50.3993. The positive
convexity may surprise some readers, but note that the convexity turns negative when
the interest rate gets closer to 0 and the bond price approaches the strike.

It is important to observe in Table 5 that none of the approximation formulas can
consistently outperform the rest, if our objective is to estimate the full range of prices for
such a bond. In effect, we are trying to approximate a function with an inflection point
using quadratic curves, and thus significant approximation errors are inevitable.

Table 5. NPV of 10-year par bond with coupon rate r0, callable for 101 at t = 9.

∆r Exact Fischer-Weil Barber Tchuindjo Alps Hyperbolic

−100 bp 95.0594 95.0868 94.9903 95.0946 95.0913 95.0910
−80 bp 94.0367 94.0445 93.9824 94.0485 94.0464 94.0466
−60 bp 93.0197 93.0204 92.9853 93.0220 93.0209 93.0213
−40 bp 92.0148 92.0144 91.9987 92.0149 92.0144 92.0146
−20 bp 91.0265 91.0265 91.0226 91.0266 91.0265 91.0266

0 bp 90.0569 90.0569 90.0569 90.0569 90.0569 90.0569

20 bp 89.1053 89.1053 89.1014 89.1053 89.1052 89.1053
40 bp 88.1692 88.1720 88.1560 88.1715 88.1710 88.1717
60 bp 87.2437 87.2568 87.2207 87.2552 87.2541 87.2559
80 bp 86.3227 86.3597 86.2953 86.3559 86.3540 86.3577

100 bp 85.3991 85.4808 85.3797 85.4735 85.4705 85.4768

The only useful conclusion is that the hyperbolic approximation is never the worst
one, since it tends to be “sandwiched” between other approximations.

4. Discussion

We have established through a number of theoretical considerations and concrete
examples that the accuracy of various Macaulay approximations can vary widely. Ap-
proximations that outperform in one case turn out to be unreliable in another case. The
hyperbolic approximation, introduced in this paper, exhibited modest errors in most cases
and thus the most reliability among the five approximations studied.

We can envision a variety of uses for the results presented here:

• To perform expeditious interest risk calculations by practitioners;



Risks 2022, 10, 153 8 of 8

• As a study note to gain insight into risk management concepts that are tested in the
actuarial examinations in the US and Europe;

• As potential areas of student research or as assigned projects that utilize real financial
data in actuarial science classes taught by academics.

There is also potential to expand the scope of this study by incorporating non-flat
yield curves, key rate durations, passage of time, and more complex financial instruments.
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