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Abstract: The present paper is focused on the solution of optimal control problems such as optimal
acquisition, optimal liquidation, and market making in relation to the high-frequency trading market.
We have modeled optimal control problems with the price approximated by the diffusion process
for the general compound Hawkes process (GCHP), using results from the work of Swishchuk
and Huffman. These problems have been solvedusing a price process incorporating the unique
characteristics of the GCHP. The GCHP was designed to reflect important characteristics of the
behaviour of real-world price processes such as the dependence on the previous process and jumping
features. In these models, the agent maximizes their own utility or value function by solving the
Hamilton–Jacobi–Bellman (HJB) equation and designing a strategy for asset trading. The optimal
solutions are expressed in terms of parameters describing the arrival rates and the midprice process
from the price process, modeled as a GCHP, allowing such characteristics to influence the optimization
process, aiming towards the attainment of a more general solution. Implementations of the obtained
results were carried out using real LOBster data.

Keywords: Hawkes processes; general compound Hawkes processes; limit order books; optimal
acquisition; optimal liquidation; market making optimization; high frequency trading; algorithmic
trading; diffusion approximation of GCHP; LOBster data

1. Introduction

High-frequency trading was developed in the 1990s in response to advances in com-
puter technology and the adoption of this new technology by exchanges. From the orig-
inal rudimentary order processing approach to the current state-of-the-art all-inclusive
trading systems, high-frequency trading (HFT) has evolved into a billion-dollar industry
(Aldridge 2009). HFT is not merely electronic trading; it especially involves programming
an algorithm that optimizes the timing and routing of the order in the limit order book
(LOB).

High-frequency trading models have developed along with the technology surround-
ing those markets, especially the stochastic process models that have been used to represent
those variables, given their malleability in approaching the dynamics of the assets in the
best way possible. This analysis has been mostly framed in a continuous time with the aim
of ensuringthe speed of the transactions in those markets (which is generally measured in
nanoseconds).

Among the issues involved in HFT, optimal control problems such as optimal acqui-
sition, optimal liquidation, and market making are among the most important. These
problems have been addressed previously by many authors and in this section of this
working paper, we present a review of the relevant literature on the construction of models
in relation to limit order markets.

In the following, we present a brief description of the mechanism of LOB, as detailed
in Cartea et al. (2015). First of all, there are orders to buy and sell assets that arrive at an
exchange. There are three types of orders:
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1. Market buy/sell order—specifies the number of shares to be bought/sold at the best
available price, immediately.

2. Limit buy/sell order—specifies a price and a number of shares to be bought/sold at
that price, when possible.

3. Order cancellation—agents who have submitted a limit order may cancel the order
before it is executed.

Regarding these types of orders, there are:

• Market orders that are executed immediately.
• Limit orders that are queued for later execution, but which may be canceled.
• Thus, the limit-order book is the collection of queued limit orders awaiting execution

or cancellation.

The bid price Sb
t is the highest limit buy order price in the book. It is the best available

price for a market sell. The ask price Sa
t is the lowest limit sell order price in the book. It is

the best available price for a market buy. In general, we are interested in the midprice:

St := (Sb
t + Sa

t )/2.

It is worth noting that the tick size (δ) of an LOB is the smallest permissible price
interval between different orders within it. All orders must arrive with a price that is
specified to the accuracy of δ.

According to the arrival of the market orders, the modeling of the midprice has
to reflect sudden movements such jumps in stock prices inside the limit order markets.
The Markov process has been used to simulate the behavior of the price in a limit order
book (LOB, the place where every transaction is negotiated). Lèvy processes, such as the
compound Poisson process, have been implemented in modeling stock dynamics, such as
in a study by Merton (1976). The Poisson process has the following strong characteristics:
the arrival of an event is independent of the previous event (the waiting time between
events is memoryless), the average rate is constant, and two events cannot be simultaneous.
In reality, many phenomena modeled as Poisson processes do not meet these attributes
exactly. Thus, numerous analysts have examined sudden price jumps and amplified them
to make them follow more general Markov processes.

In a study by Cont and Larrard (2013), the arrival orders in an LOB were described in
terms of Markovian processes. The authors proposed a Markovian model of a limit order
market, which captured the autocorrelation of price changes. Their model linked price
changes and the duration until the next price change.The authors computed the conditional
distributions of durations and price changes, and presented analytical results supporting
their theory in which these two factors are not independent, as they are assumed to be in
the compound Poisson process.Finally, they remarked that high-frequency increments of
the price were negatively correlated, meaning that an increase in price would probably be
followed by a decrease in price.

Subsequently, Swishchuk and Vadori (2017) used the Markov renewal process to
model an LOB. The authors performed an extension of the model presented in the work of
Cont and Larrard (2013), changing two main aspects: first, the interarrival times of book
events were allowed to have an arbitrary distribution (previously these were assumed to
be exponential, as in the Poisson process, but evidence shown in the numerical results
discussed in this paper showed these to be non-exponential), and second, the interarrival
times of new book events could depend on the nature of previous events (these were
formerly assumed to be independent), which was reflected in the numerical results seen in
LOBster data (LOBster 2012) (see Section 6.2). This change in assumptions was possible
given the nature of the Markov renewal process. Furthermore, in a study by Swishchuk et
al. (2017), the authors applied the use of general semi-Markov models to an LOB in order
to make LOB models more flexible. They incorporated price changes that were not fixed
to one tick, in contrast to the Poisson assumption that two events cannot be simultaneous.
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This implementation was also justified with numerical results obtained from different limit
order book data, including LOBster data (LOBster 2012).

In the search for models that can accurately reflect the behaviour of high-frequency
financial data, Hawkes processes have been applied to address many different problems in
high-frequency finance, as discussed in the work of Bacry et al. (2015). Hawkes processes
are a particular class of multivariate point processes with specific characteristics: they
are self-exciting, with clustering effects and long-run memory. Hawkes processes with
a certain structure have Markovian properties (Bacry et al. 2015), and a Poisson process
can be expressed as a particular Hawkes process. Hawkes process characteristics have
been provento exist in financial data. As mentioned previously, the Poisson process
assumed independence in the arrival of events, in contrast with the Hawkes process with
its dependence on history. This is also what was removed from the price process models
in previous Markov and semi-Markov models. Boswijk et al. (2018) extended the notion
of self-excitation in jumps and detected its presence in a discretely observed sample path
at high frequency. Lu and Abergel (2017, 2018) modeled an LOB with a high-dimensional
Hawkes process and found good agreement between the statistical properties of the LOB
data and the model. Subsequently, Liu et al. (2021) studied the optimization problem of a
household under the influence of a contagious financial market, using the clustering effect
property of the Hawkes process.

Swishchuk and Huffman (2020) studied general compound Hawkes processes to
model the price process in LOBs. The authors proved a law of large numbers (LLN) and
a functional central limit theorem (FCLT) for some cases of these processes. Specifically,
they proved those theorems for an asymptotic analysis of the general compound Hawkes
process with two state-dependent orders.To obtain empirical results, they used LOBster
data (LOBster 2012) to calibrate the parameters of these asymptotic models. The interarrival
times and clustering effect were analyzed to prove that the prices in the LOBster dataset
were not following the Poisson process, so this approach was consistent with Hawkes
modeling. The relevance of the multivariate general compound Hawkes process (MGCHP)
in LOBs was analyzed by Guo and Swishchuk (2020) and Guo et al. (2020), who provided
awareness about price volatilities in LOBs for several assets using real-world data.

Therefore, these papers provided us with a basis for adopting the general compound
Hawkes process and its unique properties for modeling the midprice, St, in the stochastic
optimal control problems, given that it provides a better description of real-life data in
high-frequency trading.

The authors of another study (Fodra and Pham 2015) built a bridge between the two
main streams of literature in high-frequency trading models of intra-day asset prices and
high-frequency trading problems. The authors described the stock price through a pure
jump process. The process Pt was embedded into the Markov system with three observable
state variables: (Pt, It, St), a Markov renewal process with a known infinitesimal generator,
obtained from the infinitesimal generator of (P, I, S), and the dynamics of the controlled
process of wealth and inventory.They were able to solve the Hamilton–Jacobi–Bellman
(HJB) equation through dynamic programming, associated with the control problem of
maximization of utility.After obtaining this equation, the authors were able to provide
an interesting financial interpretation of their results, decomposing the results into the
trading portion (small orders with no impact on price) and the jump portion (large orders
producing a jump in the price level).

Following Fodra and Pham (2015), we can obtain diffusion results: the stock price
process St, modeled using the GCHP, can be approached with a stochastic differential
equation (SDE) of the price, as well as the infinitesimal generator. In this paper, the price is
approximated by means of diffusion models, using the law of large numbers (LLN) and
the functional central limit theorem (FCLT) for the general compound Hawkes process
(GCHP), incorporating results from Swishchuk and Huffman (2020).

Subsequently, we solve optimal control problems, such as optimal acquisition, optimal
liquidation, and market making, related to the high-frequency trading market. Previous
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researchers (Cartea et al. 2015) have developed mathematical tools for the analysis of
trading algorithms used on stochastic optimal control problems in a very general way,
which we apply to solving the optimization problem in the present work. Furthermore,
the authors in Cartea et al. (2015) attempted the modeling of diverse algorithmic trading
strategies. Liquidate and acquire modelswere constructed to execute a large position using
market orders, using a price model of the general stationary Gauss–Markov process. In
Becherer et al. (2018), the authors explicitly determined the optimal liquidation of an asset
position using a price model of a controlled Ornstein–Uhlenbeck process in a financial
market with multiplicative and transient price impacts. Market-making models presented
in in Cartea et al. (2015) were used to maximize the market maker’s profit by choosing
the depth at which to place the limit orders. In Fruth et al. (2019) the authors modeled a
limit order book with stochastic liquidity to explain random variations in the depth of the
order book and evaluate their influence on optimal trade execution strategies, using the
price model of the Cox–Ingersoll–Ross model. The innovative solutions discussed in this
research work come from assuming that the midprice can be approximated by the diffusion
process of the GCHP, which has the property of being more flexible and therefore more
able to fit with real-life prices.

The models used in this study describe the controlled inventory process Qt of the
agent, the midprice with the corresponding SDE, the cash process Xt of the agent, in order
to evaluate the agent’s value function H(t, x, S, q). To solve this optimal control problem,
the dynamic programming equation (DPE) was developed. This is also known in this
context as the Hamilton–Jacobi–Bellman equation, which is satisfied by the value function
H that can be obtained by observing at the dynamic programming principle (DPP). The final
results are the optimal inventory Q∗t , the optimal speed of trading ν∗t , and the optimal depth
δ∗,±(t, q). The optimal solutions are expressed in terms of parameters describing the arrival
rates and the midprice, modeled as a GCHP. By allowing these characteristics influence the
optimization process, we have developed a more general solution that describes in a more
authentic manner the observed price process in HFT markets.

The present paper is organized as follows. Section 2 provides a brief introduction to
Hawkes processes. Sections 3–5 describe the optimal liquidation processes for liquidation,
acquisition, and market making, respectively, as well as presentingthe models proposed for
the price process, main characteristics, the SDE equation, the structure of their infinitesimal
generator, the approach used to solve the HJB equations for the optimal control problems,
a characterization of the pathway to solving these problems, and a closed solution for these
problems. Section 6 shows the manner in which these solutions work when applied to real
life data. Section 7 presents our conclusions regarding the study’s results, and in Section 8
we discuss these results, as well as future research directions.

2. A Brief Introduction to Hawkes Processes

The Hawkes process (HP) is named after its creator, Alan Hawkes (1971). We can
describe the HP process N(t) as a counting process that has a self-exciting property, a
clustering effect, and long-runmemory properties, which are consistent with what it has
been observed in the empirical data on limit order books (Swishchuk and Huffman 2020).

Definition 1 (One-dimensional Hawkes Process (Hawkes and Oakes 1974)). The one-
dimensional Hawkes process is a point process N(t) which is characterized by its intensity λ(t)
with respect to its natural filtration:

λ(t) = λ +
∫ t

0
µ(t− s)dN(s) (1)

where λ > 0, and the response function µ(t) is a positive function that satisfies
∫ ∞

0 µ(s)ds < 1.

The constant λ is called the background intensity and the function µ(t) is called the
excitation function.
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Definition 2 ((General Compound Hawkes Process with Two-State Dependent Orders)
GCHP2SDO (Swishchuk and Huffman 2020)). Suppose that Xk is an ergodic continuous time
Markov chain, independent of N(t), with state space 1, 2. Then, the general compound hawkes
process with two states is defined by the following process

St = S0 +
N(t)

∑
k=1

a(Xk) (2)

where a(Xk) takes only the values a(1) and a(2), a(x) is a continuous and bounded function of
X = 1, 2, and N(t) is the number of price changes up to moment t, described by a one-dimensional
Hawkes process defined in Definition 1.

This general model is rich enough to:

• Incorporate a non-exponential distribution of interarrival times of orders in HFT or
claims in insurance (hidden in N(t));

• Incorporate the dependence of orders or claims (via MC Xi);
• Incorporate the clustering of orders in HFT or claims (properties of N(t)); and
• Incorporate order or claim price changes that are different from one single number (in

a(Xi)).

This model is also sufficiently general to include:

• Compound Poisson processes: St = S0 + ∑
N(t)
k=1 Xk, where N(t) is a Poisson process

and a(Xk) = Xk are i.i.d.r.v.;
• Compound Hawkes processes (Swishchuk et al. 2019): St = S0 + ∑

N(t)
k=1 Xk, where

N(t) is a Hawkes process and a(Xk) = Xk are i.i.d.r.v.; and
• Compound Markov renewal processes: St = S0 +∑

N(t)
k=1 a(Xk), where N(t) is a renewal

process and Xk is a Markov chain.

Lemma 1 ( (LLN for GCHP) (Swishchuk and Huffman 2020)). Let µ̂ :=
∫ +∞

0 µ(s)ds < 1,
and assume that the Markov chain Xi is ergodic with stationary probabilities π∗i . Then, the GCHP
Snt satisfies the following weak convergence in the Skorokhod topology:

S(nt)
n
→n→+∞ a∗ · λ

1− µ̂
t,

or
S(t)

t
→t→+∞ a∗ · λ

1− µ̂
.

Here, a∗ is defined as a∗ := ∑i∈X π∗i a(i), where πi are ergodic probabilities for Markov chain Xi.

Theorem 1 ((FCLT (or Jump-Diffusion Limit) for GCHP) (Swishchuk and Huffman 2020)).
Let Xk be an ergodic Markov chain and with ergodic probabilities (π∗1 , π∗2 , ..., π∗n). Let St be LGCHP,
and 0 < µ̂ :=

∫ +∞
0 µ(s)ds < 1 and

∫ +∞
0 µ(s)sds < +∞. Then

S(nt)− N(nt) · a∗√
n

→n→+∞ σ
√

λ/(1− µ̂)W(t),

in a weak sense for the Skorokhod topology, where W(t) is a standard Wiener process, σ is defined as:
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(σ)2 := ∑i∈X π∗i v(i)

v(i) = b(i)2 + ∑j∈X(g(j)− g(i))2P(i, j)
− 2b(i)∑j∈X(g(j)− g(i))P(i, j),

b = (b(1), b(2), ..., b(n))′,
b(i) : = a(i)− a∗,

g : = (P + Π∗ − I)−1b,

P is a transition probability matrix for Xk, i.e., P(i, j) = P(Xk+1 = j|Xk = i), Π∗ denotes the
matrix of stationary distributions of P, and g(j) is the jth entry of g. The expressions above are valid
for both finite and infinite-state Markov chains; that is why we have used the notation ∑j∈X , where
X is the state space of an MC Xi.

Remark 1. The formulas for a∗ and σ look much simpler in the case of a two-state Markov chain
Xi = {−δ,+δ} :

a∗ := δ(2π∗ − 1) and (σ∗)2 := 4δ2
(1− p′ + π∗(p′ − p)

(p + p′ − 2)2 − π∗(1− π∗)
)

,

(p, p′) are transition probabilities of the Markov chain Xk, and π∗1 = π∗, π∗2 = 1− π∗.

From CLT for HP, (see (Swishchuk et al. 2019)) and from Theorem 1 presented above,
the following FCLT can be observed for GCHP (pure jump diffusion limit).

Theorem 2 (FCLT (or Pure Diffusion Limit) for GCHP (Swishchuk and Huffman 2020)). Let
Xk be an ergodic Markov chain and with ergodic probabilities (π∗1 , π∗2 , ..., π∗n). Let St be LGCHP,
and 0 < µ̂ :=

∫ +∞
0 µ(s)ds < 1 and

∫ +∞
0 µ(s)sds < +∞. Then

S(t)− a∗ λ
1−µ̂ t

√
t

→t→+∞ σ̄N(0, 1),

in weak sense for the Skorokhod topology, where N(0, 1) is the standard normal c.d.f., and σ̄ is
defined as:

σ̄ =

√√√√(σ∗)2 +
(

a∗
√

λ

(1− µ̂)3

)2
,

where σ∗ = σ
√

λ/(1− µ̂), σ and a∗ are defined in Theorem 1 and the Lemma 1, respectively.

Remark 2. Theorem 2 implies that S(t) can be approximated by the pure diffusion process:

S(t) ≈ S(0) + a∗
λ

1− µ̂
t + σ̄W(t),

where W(t) is a standard Wiener process. Remark 2 expresses the ideaof the pure diffusion approxi-
mation of GCHP on a large time interval.

Remark 3. We note that the rate of convergence in Theorem 2 is C(T)/
√

t, 0 ≤ t ≤ T, where
C(T) > 0 is a constant. Thus, the error of approximation for S(t) in Remark 2 is very small for
large t.

3. Optimal Liquidation Problem

One main concern in finance is how an agent can sell or buy a large amount of
shares, while minimizing the adverse price movements of the asset traded. An amount is
considered ‘large’ if the number of shares the agent seeks to execute is significantly larger
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than the average size of a trade. As these orders cannot be executed in one exhibition,
the order will be sliced, and the time the agent takes to space out and execute the smaller
orders is crucial (Cartea et al. 2015).

In this model of optimal liquidation, the agent posts market orders (MOs) to liquidate
N shares. The MOs are executed immediately at the midprice to liquidate the shares. In
this direction, the agent’s orders affect the midprice with two possible impacts, a temporary
and a permanent impact. To develop the optimal liquidation problem, the key stochastic
processes can be described as follows:

• ν = (νt){0≤t≤T} is the trading rate, the speed at which the agent is liquidating or
acquiring shares;

• Qν = (Qν
t ){0≤t≤T} is the agent’s inventory, which is affected by the speed of trading;

• Sν = (Sν
t ){0≤t≤T} is the midprice process, and is also affected in principle by the speed

of trading;
• Ŝν = (Ŝν

t ){0≤t≤T} corresponds to the price process at which the agent can sell or
purchase the asset, the execution price; and

• Xν = (Xν
t ){0≤t≤T} is the agent’s cash process, resulting from the agent’s execution

strategy.

Whether liquidating or acquiring, the agent’s controlled inventory process is given in
terms of a trading rate, as follows in Equation (3):

dQν
t = −νtdt, Qν

0 = q, (3)

As seen in the previous section, the midprice is assumed to satisfy the SDE, driven by a
GCHP, with the approximation achieved using the law of large numbers and the functional
central limit theorem. To this definition, we will add the permanent price impact that the
agent’s trading action has on the midprice, as seen in Equation (4):

dSν
t = −

[
a∗

λ

1− µ
(h(νt))

]
dt + σdWt, Sν

0 = S (4)

where W = (Wt){0≤t≤T} is a standard Brownian motion, h, andR+ → R+ denotes the
permanent price impact. The permanent price impact has a negative impact because the
agent applies pressure to move the price downward.

Immediately,the midprice and the execution price are presented in Equations (5)
and (6):

Sν
t ≈ Sν

0 −
[

a∗
λ

1− µ
(h(νt))

]
t + σWt, (5)

Ŝν
t = Sν

t − f (νt), Ŝν
0 = Ŝ (6)

where f : R+ → R+ denotes the temporary price impact. The temporary price impact has
a negative impact because the agent applies pressure to move the price downward.

To conclude the description of the model, the agent’s cash process Xν
t , which satisfies

the SDE in Equation (7):
dXν

t = Ŝν
t νtdt, Xν

0 = x (7)

and the expected revenue from the sale is as shown in Equation (8):

Rν = E[Xν
T ] = E

[∫ T

0
Ŝtνtdt

]
(8)

The agent’s value function to optimize would involve the terminal cash process Xν
T , the

terminal execution Qν
TSν

T , and would also incorporate two penalties: a running inventory
penalty φ and a terminal liquidation penalty α, as seen in Equation (10).

Hν(t, x, S, q) = Et,x,S,q

[
Xν

T + Qν
T(S

ν
T − αQν

T)− φ
∫ T

t
(Qν

u)
2du
]

(9)



Risks 2022, 10, 160 8 of 32

H(t, x, S, q) = sup
ν∈A

Hν(t, x, S, q) (10)

Applying the theorem of the dynamic programming principle for diffusions (Cartea
et al. 2015) to the value function in Equation (10), we obtain the dynamic programming
equation (DPE) or HJB equation presented in Equation (11)

∂tH +
1
2

σ2∂SS H − φq2

+ sup
ν
{−ν∂q H −

(
a∗

λ

1− µ
(h(ν))

)
∂SH + ν(S− f (ν))∂x H} = 0

(11)

where
(

a∗ λ
1−µ (h(ν))

)
∂SH + 1

2 σ2∂SSH is the infinitesimal generator of the process St, as
stated in Equation (12).

A f (s) =
(

a∗
λ

1− µ

)
∂ f
∂s

+

(
σ2

2

)
∂ f 2

∂s2 . (12)

The terminal condition H(T, x, S, q) = x + Sq− αq2 is determined as the inventory
q assets are sold in T and it is also penalized in the proportion α.The structure of the
functions of temporary and permanent impact have not been defined yet. This process can
be simplified by letting them be linear with the trading rate. We can write h(ν) = bν and
f (ν) = kν for k, b ≥ 0 finite constants. Maximizing by ν, we obtain the following equation,
to later solve for ν, and obtain Equation (14).

− ∂q H − a∗
λ

1− µ
b∂SH + (S− 2νk)∂x H = 0 (13)

ν∗t =
1
2k

(
S∂x − a∗ λ

1−µ b∂S − ∂q

∂x H

)
H (14)

where ν∗ is the optimal trading rate, the speed at which the agent is liquidating shares.
Upon substituting back into the HJB Equation (11), the value function H is then used to
solve the non-linear partial differential equation (PDE).

∂tH +
1
2

σ2∂SS H − φq2 +
1
4k

[(
S∂x − a∗ λ

1−µ b∂S − ∂q

)
H
]2

∂x H
= 0 (15)

To propose an ansatz to solve this equation, we can take a look at the terminal condition
and propose a change based on that structure. It is also important to remark that the h
function will not be made to depend on the cash process, but H depends on it linearly. The
ansatz is shown in Equation (16)

H(t, x, S, q) = x + Sq + h(t, S, q) (16)

To match it with the previous terminal condition, our new function h has the terminal
condition h(T, S, q) = −αq2. Furthermore, we can write each partial of H in terms of h:

∂tH = ∂th; ∂S H = q + ∂Sh; ∂SS H = ∂SSh;

∂X H = 1; ∂qH = S + ∂qh.
(17)

Now we rewrite Equation (15) in terms of h in Equation (18)

∂th +
1
2

σ2∂SSh− φq2 +
1
4k

[
a∗

λ

1− µ
b(q + ∂Sh) + ∂qh

]2
= 0 (18)
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As suggested in Cartea et al. (2015), we assume the PDE in Equation (18) to be indepen-
dent of S, because, among other reasons, in the terminal condition h is concerned only with
the terminal liquidation penalty. This means that ∂Sh(t, S, q) = 0, and also ∂SSh(t, S, q) = 0.
With this change, the Equation (18) becomes Equation (19).

∂th(t, q)− φq2 +
1
4k

[
a∗

λ

1− µ
bq + ∂qh(t, q)

]2
= 0 (19)

With these changes, ν∗t becomes the following equation:

ν∗t = − 1
2k

(
a∗

λ

1− µ
bq + ∂qh(t, q)

)
(20)

Based on the terminal condition, where h(T, S, q) = −αq2, we propose a separation
of variables with the following form h(t, q) = h2(t)q2, where h2(t) satisfies the following
partials of h:

∂th(t, q) = ∂th2(t)q2; ∂qh(t, q) = 2h2(t)q. (21)

Now we rewrite the Equation (19) in terms of h2 in Equation (22), with the terminal
condition h2(T) = −α.

0 = ∂th2(t)q2 − φq2 +
1
4k

[
a∗

λ

1− µ
bq + 2h2(t)q

]2

0 = ∂th2 − φ +
1
k

[
h2 +

1
2

a∗
λ

1− µ
b
]2

(22)

This ODE, in Equation (22), is identifiable as a Riccati-type equation to be integrated.
We let h2(t) = − 1

2 a∗ λ
1−µ b + χ(t), where ∂th2(t) = ∂tχ(t), so we can solve for χ(t) to obtain

an answer for h2(t). This will transform Equation (22) into Equation (23).

0 = ∂tχ(t)− φ +
1
k

χ(t)2 (23)

It is important to remark upon the terminal condition of χ(t) is χ(T) = 1
2 a∗ λ

1−µ b− α.
Now we can solve this differential equation for χ, using substitution and partial fractions
to obtain the integral solution in the equation.∫ T

t

∂tχ

kφ− χ2 =
∫ T

t

1
k

1
2
√

kφ

[
log

(√
kφ + χ(T)√
kφ− χ(T)

)
− log

(√
kφ + χ(t)√
kφ− χ(t)

)]
=

1
k
(T − t)

(
√

kφ− χ(t))
(
√

kφ + χ(t))
=

(
√

kφ− χ(T))
(
√

kφ + χ(T))
e2
√

φ
k (T−t)

(24)

From the last equation, we have to solve for χ(t). Recall that every part of the right
side is a constant, including the terminal condition χ(T). Equation (25) expresses an easy
way to solve for x.

a− x
a + x

= c

a− x = ca + cx

x = a
(

1− c
1 + c

) (25)
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To express the final results more easily, we define ζ a constant composed of the
following constants.

ζ =
α− 1

2 a∗ λ
1−µ b +

√
kφ

α− 1
2 a∗ λ

1−µ b−
√

kφ
(26)

χ(t) =
√

kφ

1 + ζe2
√

φ
k (T−t)

1− ζe2
√

φ
k (T−t)

 (27)

Now the solution of the DPE is fully determined. We can go back to the solution of
h2(t) in Equation (28) and of h(t, q) in Equation (29).

h2(t) = −
1
2

a∗
λ

1− µ
b +

√
kφ

1 + ζe2
√

φ
k (T−t)

1− ζe2
√

φ
k (T−t)

 (28)

h(t, q) =

−1
2

a∗
λ

1− µ
b +

√
kφ

1 + ζe2
√

φ
k (T−t)

1− ζe2
√

φ
k (T−t)

q2 (29)

The optimal speed ν∗t can thus be expressed as in Equation (30), and as we can see, the
optimal speed turns out to be proportional to Qν∗t , the investor’s current inventory level.

ν∗t = − 1
2k

a∗
λ

1− µ
bq + 2q

−1
2

a∗
λ

1− µ
b +

√
kφ

1 + ζe2
√

φ
k (T−t)

1− ζe2
√

φ
k (T−t)


ν∗t = −1

k

√
kφ

1 + ζe2
√

φ
k (T−t)

1− ζe2
√

φ
k (T−t)

q

ν∗t =

√
φ

k

 ζe
√

φ
k (T−t) + e−

√
φ
k (T−t)

ζe
√

φ
k (T−t) − e−

√
φ
k (T−t)

Qν∗
t

(30)

To obtain the agent’s optimal inventory, Qν∗
t , recall the following definitions:

dQν
t = −νtdt; dQν

t =
1
k

√
kφ

1 + ζe2
√

φ
k (T−t)

1− ζe2
√

φ
k (T−t)

Qν
t dt

dQν
t =

χ(t)
k

Qν
t dt d(log(Qν

t )) =
χ(t)

k
dt

log(Qν
t ) + C =

∫ t

0

χ(s)
k

ds Qν
t = C2e

∫ t
0

χ(s)
k ds

(31)

This constant C2 can be calibrated with the initial value (t = 0) of the inventory N.
Next, let us solve the integral in Qν

t
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∫ t

0

χ(s)
k

ds =
1
k

∫ t

0

√
kφ

1 + ζe2
√

φ
k (T−s)

1− ζe2
√

φ
k (T−s)

ds

=

√
φ

k

∫ t

0

1

1− ζe2
√

φ
k (T−s)

ds +

√
φ

k

∫ t

0

ζe2
√

φ
k (T−s)

1− ζe2
√

φ
k (T−s)

ds

=
1
2

[
log(e−2

√
φ
k (T−s) − ζ) + log(1− ζe2

√
φ
k (T−s))

]∣∣∣∣t
0

= log

 ζe
√

φ
k (T−t) − e−

√
φ
k (T−t)

ζe
√

φ
k T − e−

√
φ
k T



(32)

Finally, we obtain the optimal agent’s inventory in Equation (33) and the optimal
trading rate in Equation (34) is solved. It is worth mentioning that this solution is very
similar to the results presented in Cartea et al. (2015) but this time the solution includes the
parameters of the arrival rate and the counting process introduced in the Hawkes process.

Qν∗
t =

 ζe
√

φ
k (T−t) − e−

√
φ
k (T−t)

ζe
√

φ
k T − e−

√
φ
k T

N (33)

ν∗t =

√
φ

k

 ζe
√

φ
k (T−t) + e−

√
φ
k (T−t)

ζe
√

φ
k T − e−

√
φ
k T

N (34)

ν∗t expresses the optimal strategy for every t. The value of ζ contains, among other
factors, the terminal liquidation inventory α, the compound Hawkes process parameters λ
and µ, and the coefficient of the permanent price impact b. The ratio between the running
inventory penalty φ and the coefficient of the temporal price impact k weights the optimal
strategy.

In Section 6.3 we present numerical results using the observed price data for Apple,
Amazon, and Google on 21 June 2012 (LOBster data LOBster 2012) and the parameter cali-
bration of parameters a∗ and λ

1−µ from Swishchuk and Huffman (2020) for the GCHP2SDO.
We calculated the optimal liquidation strategy for an agent’s trading rate, ν∗, and the
optimal depth δ∗,±. In Section 6.3, the results are drawn to show the behavior of the optimal
strategy throughout the time available. The parameters used for k, b, φ, α, N, T, κ, and λ±

are shown in the tables of each stock, according to the model and the asset drawn.

4. Optimal Acquisition Problem

In this problem, the agent has the target to acquire N shares over a trading horizon of
T. The key stochastic processes are the same as those described in the previous section. The
agent’s inventory starts at Qν

0 = 0. The terminal inventory penalty parameter α includes
the cost of walking the book at time T.

The midprice and the execution price are similar to the price presented in Equations (5)
and (6), with the difference in the signs of the influence of the temporary and permanent
impacts. Because the agent’s buy trade exercises an upward pressure, this is displayed in
Equations (35) and (36):

Sν
t ≈ Sν

0 +

[
a∗

λ

1− µ
(h(νt))

]
t + σWt, (35)

Ŝν
t = Sν

t + f (νt), Ŝν
0 = Ŝ (36)
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The agent’s expected costs from strategy νt are integrated by means of the terminal
cash, the terminal execution, and terminal penalty, described in Equation (37).

ECν = E
[∫ T

t
Ŝν

uνudu + (N−Qν
T)ST + α(N−Qν

T)
2
]

(37)

Let us define a new stochastic process, Yνt, that denotes the remaining shares to be
purchased between t and the end of the period. This is defined in Equation (38), where

Yν = (Yν
t ){0≤t≤T} (38)

is the agent’s remaining shares.

Yν
t = N−Qν

t , so that dYν
t = −νtdt

The agent’s value function to optimize would involve the agent’s expected cost, so we
need to minimize or calculate the infimum of the cash paid to acquire the shares, as shown
in Equation (40).

Hν(t, S, y) = Et,S,y

[∫ T

t
Ŝν

uνudu + Yν
TST + α(Yν

T)
2
]

(39)

H(t, S, y) = inf
ν∈A

Hν(t, S, y) (40)

Applying the theorem dynamic programming principle for diffusions (Cartea et al.
2015) to the value function in Equation (40), we obtain the dynamic programming equation
(DPE) or HJB equation in (41):

∂tH +
1
2

σ2∂SSH

+ inf
ν
{−ν∂yH +

(
a∗

λ

1− µ
(h(ν))

)
∂S H + ν(Ŝν

t )} = 0
(41)

where
(

a∗ λ
1−µ (h(ν))

)
∂S H + 1

2 σ2∂SS H is the infinitesimal generator of the process St as
stated in Equation (12).

The terminal condition H(T, S, y) = yS+ αy2 is determined as the remaining inventory
y assets are purchased in T and also it is penalized in the proportion α. The structure of the
function of temporary and permanent impacts has not been defined yet. As in the previous
section, this will be simplified by allowing them to be linear with the trading rate. We can
write h(ν) = bν and f (ν) = kν for k, b ≥ 0, which are finite constants. Minimizing by ν, we
obtain the following equation to later solve for ν and we obtain Equation (43).

− ∂y H + a∗
λ

1− µ
b∂SH + (S + 2νk) = 0 (42)

ν∗ =
1
2k

(
∂y H − S− a∗

λ

1− µ
b∂S H

)
(43)

where ν∗ is the optimal trading rate, the speed at which the agent is acquiring shares.
Upon substituting back into the HJB Equation (41), the value function H then solves the
non-linear partial differential equation (PDE).

∂tH +
1
2

σ2∂SS H − 1
4k

(
∂y H − S− a∗

λ

1− µ
b∂S H

)2
= 0 (44)
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By observing the terminal condition and the way in which y and S enter into the DPE,
we propose a quadratic function in y to use as the ansatz to solve this equation. The ansatz
is shown in Equation (45)

H(t, S, y) = yS + h0(t) + h1(t)y + h2(t)y2 (45)

where h0(t), h1(t), and h2(t) are yet to be determined according to the terminal condition
H(T, S, y) = yS + αy2; then, h2(T) = α and h1(T) = h0(T) = 0. To match them with the
previous terminal condition, our new functions h0, h1 and h2 can express each partial of H
in terms of the new functions:

∂tH = ∂th0 + y∂th1 + y2∂th2;

∂SH = y; ∂SS H = 0;

∂yH = S + h1 + 2h2y.

(46)

Now we rewrite the Equation (44) in terms of h0, h1, and h2 in Equation (47)

∂th0 + y∂th1 + y2∂th2 −
1
4k

[
h1 + y

(
2h2 − a∗

λ

1− µ
b
)]2

= 0 (47)

It is worth mentioning that with this new structure, the second derivative of H becomes
zero and this causes the effect of σ to disappear. Now, with help of the boundary conditions,
we are able to solve for h0, h1, and h2. Let us order the equation as follows:{

∂th2 −
1
4k

(
2h2 − a∗

λ

1− µ
b
)2
}

y2 +

{
∂th1 −

1
2k

h1

(
2h2 − a∗

λ

1− µ
b
)}

y

+

{
∂th0 −

1
4k

h2
1

}
= 0

(48)

Let us write 1
2k

(
2h2 − a∗ λ

1−µ b
)
= f (t) and then, using the second term in Equation (48),

the coefficient of y, we obtain the following:

∂th1 −
1
2k

h1

(
2h2 − a∗

λ

1− µ
b
)
= 0

∂th1

h1
= f (t)

dlog(h1) = f (t)

log(h1) + c1 =
∫

f (s)ds

h1 = c′1e
∫

f (s)ds, as f or h1(T) = 0

0 = c′1e
∫ T

0 f (s)ds, ⇔ c′1 = 0 ⇒ h1(t) = 0

(49)

From the third term in Equation (48), the independent coefficient, we obtain the
following:

as h1 = 0, ⇒ ∂th0 = 0

⇒ h0 = c2, h0(T) = 0 = c2

⇔ c2 = 0 ⇒ h0(t) = 0

(50)
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Finally, we can solve h2 from the first term in Equation (48), the coefficient of y2.

ε = a∗
λ

1− µ
b

∂th2 −
1
4k

(2h2 − ε)2 = 0
(51)

Rewriting this in the form of a first-order separable ODE:∫ 4k

(2h2 − ε)2 ∂th2 =
∫

1dt

−2k
2h2 − ε

= t + c3

h2 =

[
−2k

t + c3
+ ε

]
1
2

(52)

Matching h2(T) from Equation (52) and the terminal condition h2(T) = α, we can
define the value of c3 as follows:

α =
1

2(T + c3)
[−2k + εT + εc3]

c3 =
−2k

2α− ε
− T

(53)

Now, the solution is fully determined as H(t, S, y) = yS + h2(t)y2. With these changes,
ν∗t becomes Equation (54).

ν∗t =
1
2k

(2h2(t)− ε)Yν∗
t (54)

From the derivative defined as dYν
t = −νtdt from Equation (38), we can obtain the

optimal agent’s remaining shares Yν∗
t as follows:

dYν
t = − 1

2k
(2h2(t)− ε)Yν

t dt

dYν
t

Yν
t

= − 1
2k

(2h2(t)− ε)dt
∫

d(log(Yν
t )) =

∫
− 1

2k
(2h2(u)− ε)du

log(Yν
t ) =

∫ t

0
− 1

2k

(
−2k

u + c3
+ ε− ε

)
du log(Yν

t ) =
∫ t

0

1
u + c3

du

log(Yν
t ) = log

(
t

c3
+ 1
)
+ c4 Yν

t =

(
1 +

t
c3

)
ec4

(55)

From our initial assumptions, where Yν
0 = N, we can conclude that ec4 = N. Further-

more, from Yν
t = N−Qν

t we can obtain the optimal agent’s inventory Qν∗
t and we obtain it

as follows:

Qν
t = N

(
1− 1− t

c3

)
Qν

t = −N t
c3

Qν
t = N

t(2α− ε)

2k + 2αT − εT
Qν

t = Nt

(
1− ε

2α
k
α +

(
1− ε

2α

)
T

) (56)

Finally, we can obtain the optimal speed for acquisition in (57)

ν∗t = N

(
1− ε

2α
k
α +

(
1− ε

2α

)
T

)
(57)
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ν∗t expresses the optimal strategy for every t. The value of ε contains the compound
Hawkes process parameters λ, µ, and the coefficient of the permanent price impact b. The
ratio between the coefficient of the temporal price impact k and the terminal liquidation
inventory α is known as the relative price impact at the terminal date and, in general, α� k;
then k

α < 1.
In Section 6.4 we present numerical results using the price data observed for Apple,

Amazon, and Google on 21 June 2012 (LOBster data) LOBster (2012) and the parameter cali-
bration of parameters a∗ and λ

1−µ from Swishchuk and Huffman (2020) for the GCHP2SDO.
We calculated the optimal acquisition strategy for the agent’s trading rate, ν∗, and the
optimal depth δ∗,±. In Section 6.4, the results are drawn to show the behavior of the optimal
strategy throughout the time available. The parameters used for k, b, φ, α, N, T, κ, and λ±

are shown in the tables of each stock, according to the model and the asset drawn.

5. Optimal Market-Making Problem

The market-making problem models how a market maker (MM) maximizes terminal
wealth by trading in and out of positions using limit orders (LOs). The MM provides
liquidity to the limit order book (LOB) by posting buy and sell LOs, and the control variable
is the depth δ, which is measured based on the midprice, at which these LOs are posted.
The key stochastic processes for this model are:

• S = (St)0≤t≤T , denotes the midprice, assumed to satisfy the SDE driven by a GCHP,

as seen in Equation (4), with S±t = S0 ±
[

a∗ λ
1−µ

]
t + σWt, σ > 0 and W = (Wt)0≤t≤T

is a standard Brownian motion, S+
t is the price for the acquisition side, and S−t is the

price for the liquidation side;
• δ± = (δ±t )0≤t≤T denote the depth at which the agent posts LOs; sell LOs are posted at

a price of S−t + δ+t , and buy LOs at a price of S+
t − δ−t ;

• M± = (M±t )0≤t≤T denote the counting processes corresponding to the arrival of other
participants’ buy (+) and sell (−) market orders (MOs), which arrive at Poisson times
with intensities λ±;

• Nδ,± = (Nδ,±
t )0≤t≤T denote the controlled counting processes for the agent’s filled

sell (+) and buy (−) LOs;
• Xδ = (Xδ

t )0≤t≤T denote the MM’s cash process and this satisfies the SDE

dXδ
t = (S−t + δ+t )dNδ,+

t − (S+
t − δ−t )dNδ,−

t ; (58)

• Qδ = (Qδ
t )0≤t≤T denotes the agent’s inventory process and

Qδ
t = Nδ,−

t − Nδ,+
t (59)

For the counting processes, Nδ
t is not a Poisson process. The intensity of the process Nδ

t
is controlled by the agent, because the greater the depth, δ, the lower is the probability of
the LO being filled. The probability of the arrival rate of the MO’s other market participants
is a constant λ > 0. Modeling the probability of the LO being filled is conditional on the
MO arriving, and this is a popular choice in the literature, as in Cartea et al. (2015) (see
discussion in Section 5.4) , where it is expressed by theprobability e−κ±δ±t , where κ is a
positive constant. Finally, following the Bayes rule, the fill probability would be the product
of these two, Λδ,±

t = λ±e−κ±δ±t .
The market maker seeks the strategy (δ±s )0≤s≤T that maximizes cash at the terminal

date T. The MM must liquidate their terminal inventory QT at time T using MO. Then, the
MM adds boundaries to the inventory via q < 0 < q̄, both of which are finite. Thus, the
performance criteria are as presented in Equation (60):

Hδ(t, x, q, S+, S−) = Et,x,q,S+ ,S−

[
XT + Qδ

T(S
−,δT − αQδ

T)− φ
∫ T

t
(Qu)

2du
]

(60)
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where α ≥ 0 represents the fees charged for taking liquidity at the end of the term and
φ ≥ 0 is the running inventory penalty parameter. Thus, the MM’s value function is as
shown in Equation (61):

H(t, x, q, S+, S−) = sup
δ±∈A

Hδ(t, x, q, S+, S−), (61)

where A is the admissible set of strategies, F -predictable, and bounded from below. Now,
let us solve the optimal control problem, applying the theorem of the dynamic programming
principle for counting processes (Cartea et al. 2015). As we defined in the key stochastic
processes for this model,there exist two different prices for the bid and ask side. Thus, the
HJB equation is as shown in Equation (62):

0 = ∂tH + σ2∂SS H − a∗
λ

1− µ
∂S−H + a∗

λ

1− µ
∂S+ H − φq2

+ λ+ sup
δ+
{e−κ+δ+

(
H(t, x + (S− + δ+), q− 1, S−)− H(t, x, q, S+)

)
}1q > q

+ λ− sup
δ−
{e−κ−δ−(H(t, x− (S+ − δ−), q + 1, S+)− H(t, x, q, S−)

)
}1q < q̄

(62)

where
(

a∗ λ
1−µ

)
∂+S H + 1

2 σ2∂S+S+ H is the infinitesimal generator of the process S+
t , and

likewise for S−t , as stated in Equation (12). In this case, to simplify the analysis, we assume
that ∂S−S−H = ∂S+S+ H; then it can be written as ∂SS. 1 is the indicator function.

The terminal condition H(T, x, q, S−) = x + q(S− − αq) is determined as the market
maker, at the end of the time period, will liquidate the terminal inventory at the liquidation
price and it is also penalized in the proportion of α. Following this terminal condition, we
propose an ansatz for H, as shown in Equation (63):

H(t, x, q, S+, S−) = x + qS− + h(t, q) (63)

To match this with the previous terminal condition, our new function h has the terminal
condition h(T, q) = −αq2. We can also write each partial of H in terms of h:

∂tH = ∂th(t, q); ∂S−H = q;

∂S+ H = 0; ∂SSH = 0
(64)

H(t, x− (S− − δ+), q− 1, S+, S−)− H(t, x, q, S+, S−) = δ+ + h(t, q− 1)− h(t, q)

H(t, x− (S+ − δ−), q + 1, S+, S−)− H(t, x, q, S+, S−) = −S+ + S− + δ− + h(t, q + 1)− h(t, q)

− S+ + S−+ = −2a∗
λ

1− µ
t

(65)

Now we can rewrite the Equation (62) in terms of h in Equation (66) :

φq2 + a∗
λ

1− µ
q = ∂th(t, q)

+ λ+ sup
δ+
{e−κ+δ+

(
δ+ + h(t, q− 1)− h(t, q)

)
}1q>q

+ λ− sup
δ−
{e−κ−δ−

(
δ− + h(t, q + 1)− h(t, q)− 2a∗

λ

1− µ
t
)
}1q<q̄

(66)

Maximizing by δ+ and δ−, we obtain the following equation to later solve for δ+ and
δ− and we obtain Equations (68) and (70).

0 = λ+[e−κ+δ+(−κ+)(δ+ + h(t, q− 1)− h(t, q)) + e−κ+δ+ ] , q 6= q (67)



Risks 2022, 10, 160 17 of 32

δ+ =
1

κ+
− h(t, q− 1) + h(t, q) , q 6= q (68)

0 = λ−[e−κ−δ−(−κ−)(δ− + h(t, q + 1)− h(t, q)− 2a∗
λ

1− µ
t) + e−κ−δ− ] , q 6= q̄ (69)

δ− =
1

κ−
− h(t, q + 1) + h(t, q) + 2a∗

λ

1− µ
t , q 6= q̄ (70)

Now, the boundary cases are δ+,∗(t, q) = +∞ and δ−,∗(t, q) = +∞ when q = q̄ and q,
respectively.

With these maximized strategies, we can substitute the optimal controls into the DPE
in Equation (66):

φq2 + a∗
λ

1− µ
q = ∂th(t, q)

+
λ+

κ+
e−κ+( 1

κ+
−h(t,q−1)+h(t,q))

1q>q

+
λ−

κ−
e−κ−( 1

κ− −h(t,q+1)+h(t,q)+2a∗ λ
1−µ t)

1q<q̄

(71)

To find an analytical solution, we need to match it with the previous terminal condition.
We propose to use the following function for h(t, q), where the terminal condition h(T, q) =
−αq2 prevails. As was carried out in a previous work (Cartea et al. 2015), we define the fill
probabilities to be the same on both sides of the LOB, meaning that κ = κ+ = κ−, and thus
express the suggested ansatz as follows:

h(t, q) =
1
κ

log ω(t, q) (72)

with the terminal condition ω(T, q) = e−ακq2
; then h(T, q) = 1

κ log(e−ακq2
) = −αq2.

Now, we have to match the new ansatz with the previous PDE Equation (71)

∂th(t, q) =
1
κ

∂tω(t, q)
1

ω(t, q)
;

e−1elog (
ω(t,q−1)

ω(t,q) )
= e−1 ω(t, q− 1)

ω(t, q)
;

and e−1e−2a∗ λ
1−µ tκ ω(t, q + 1)

ω(t, q)

(73)

Putting all together in Equation (74),

(φq2κ + a∗
λ

1− µ
qκ)ω(t, q) = ∂tω(t, q) + λ+e−1ω(t, q− 1)

+ λ−e−(1+2a∗ λ
1−µ tκ)

ω(t, q + 1)

(74)

Let us break the vector ω(t, q) from q̄ to q, and let A(t) denote the (q̄− q + 1) square
matrix described below.

ω(t) = [ω(t, q̄), ω(t, q̄− 1), · · ·ω(t, q)]> (75)

Ai,q(t) =


−φκq2 − a∗ λ

1−µ qκ if i = q,

λ+e−1 if i = q− 1,

λ−e−(1+2a∗ λ
1−µ tκ) if i = q + 1,

0 otherwise

(76)
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Then, Equation (74) becomes (77)

∂tω(t)+ A(t)ω(t) = 0 (77)

This matrix SDE is called the temporary inhomogeneous equation, given that the
matrix A(t) is dependent on time. To solve this equation, we will use “the method of
Tanabe and Solevski” from Functional Analysis (Yosida 1980), Chapter XIV.

To solve this equation, first let us rewrite Equation (77) as Equation (79). According to
what we know, which is the terminal condition ω(T) = Z, where Z is a (q̄− q)-dim vector

where each component is Zj = e−ακ j2 , j = q̄, · · · , q. Then, we can write the matrix A(T),
which is now a matrix with only one constant, and we will thus call it B.

Bi,q(t) =


−φκq2 − a∗ λ

1−µ qκ if i = q,

λ+e−1 if i = q− 1,

λ−e−(1+2a∗ λ
1−µ Tκ) if i = q + 1,

0 otherwise

(78)

∂tω(t) = −Bω(t)− (A(t)− B)ω(t) (79)

Then, following the solution in Yosida (1980), we obtain the equation in (80).

ω(t) = exp((T − t) · B) · Z +
∫ T

t
exp((s− t) · A(s)) · (B− A(s)) ·ω(s) ds (80)

B− A(t)i,q(t) =



0 if i = q,
0 if i = q− 1,

λ−e−1
[

e−2a∗ λ
1−µ Tκ − e−2a∗ λ

1−µ tκ
]

if i = q + 1,

0 otherwise

(81)

Now, to continue solving these equations, we use an exponential expansion with the
Taylor series for ex and eA(t), where A(t) is a square matrix.

ex ≈ 1 + x

eA(t) ≈ I+ A(t)
(82)

These approximations allow us to express the matrices and the solution in the follow-
ing way:

Ai,q(s) ≈


−φκq2 − a∗ λ

1−µ qκ if i = q,

λ+e−1 if i = q− 1,

λ−e−1
(

1− 2a∗ λ
1−µ sκ

)
if i = q + 1,

0 otherwise

(83)

Bi,q ≈


−φκq2 − a∗ λ

1−µ qκ if i = q,

λ+e−1 if i = q− 1,

λ−e−1
(

1− 2a∗ λ
1−µ Tκ

)
if i = q + 1,

0 otherwise

(84)

(B− A(s))i,q(s) ≈


0 if i = q,
0 if i = q− 1,

λ−e−1
(
−2a∗ λ

1−µ κ(T − s)
)

if i = q + 1,

0 otherwise

(85)
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e((s−t)·A(s))
i,q ≈


1 + (s− t)

(
−φκq2 − a∗ λ

1−µ qκ
)

if i = q,

(s− t)
(
λ+e−1) if i = q− 1,

(s− t)(λ−e−1)
(

1− 2a∗ λ
1−µ sκ

)
if i = q + 1,

0 otherwise

(86)

With these approximations, we can calculate the solution in Equation (80) element by
element. First, let us calculate the multiplication of the matrices e((s−t)·A(s)) · (B− A(s)) in
Equation (87)

(s− t)
(
λ+e−1) · λ−e−1

(
−2a∗ λ

1−µ κ(T − s)
)

if i = q and i 6= q̄− q + 1 ,(
1 + (s− t)

(
−φκq2 − a∗ λ

1−µ qκ
))
· λ−e−1

(
−2a∗ λ

1−µ κ(T − s)
)

if i = q + 1,

(s− t)(λ−e−1)
(

1− 2a∗ λ
1−µ sκ

)
· λ−e−1

(
−2a∗ λ

1−µ κ(T − s)
)

if i = q + 2,

0 otherwise

(87)

To solve the integral in Equation (80), we use an approximation with a final point of
ω(s). In this way, we can calculate a closed solution for this problem.

ω(t) = exp((T − t) · B) · Z + Z ·
∫ T

t
exp((s− t) · A(s)) · (B− A(s)) ds (88)

Now, we merely have to calculate the integral
∫ T

t exp((s− t) · A(s)) · (B− A(s)) ds.
Let us carry this out for the following cases:

when i = q and i 6= q̄− q + 1

(
λ+e−1

)
· λ−e−1

(
−2a∗

λ

1− µ
κ

)
·
(
− t3 − 3Tt2 + 3T2t− T3

6

)
(89)

when i = q + 1

λ−e−1
(
−2a∗

λ

1− µ
κ

)
·
(
(t− T)2((a∗ λ

1−µ qκ + φκq2)(t− T) + 3)

6

)
(90)

when i = q + 2

(
λ−e−1

)2
(
−2a∗

λ

1− µ
κ

)
·
(
(t− T)3(2a∗ λ

1−µ κ · (t + T)− 2)

12

)
(91)

and 0 otherwise. This matrix can be called D(t) and we can write the solution for ω(t) as
in Equation (92)

ω(t) = exp((T − t) · B) · Z + Z · D(t) (92)

Finally, going back with the construction,we can obtain the optimal depths for the
market-making problem, as in Equations (94) and (95).

h(t, q) =
1
κ

log ( exp((T − t) · B) · Z + Z · D(t)) (93)

δ+,∗(t, q) =
1
κ
− h(t, q− 1) + h(t, q) , q 6= q (94)

δ−,∗(t, q) =
1
κ
− h(t, q + 1) + h(t, q) + 2a∗

λ

1− µ
t , q 6= q̄ (95)

δ+,∗ and δ−,∗ give the optimal strategy for every t for different inventory levels. This
result is a generalization of the results in Cartea et al. (2015) because it allows the price
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to be driven by a compound Hawkes process. The optimization contains the compound
Hawkes process parameters λ and µ. The impact on the price has a direction according to
whether it is a buy or sell posting.

In Section 6.5, we present numerical results using the observed price data for Apple,
Amazon, and Google on 21 June 2012 (LOBster data) LOBster (2012) and the parameter cali-
bration of parameters a∗ and λ

1−µ from Swishchuk and Huffman (2020) for the GCHP2SDO.
We calculated the optimal market-making strategy for an agent’s trading rate, ν∗, and the
optimal depth δ∗,±. In Section 6.5, the results are drawn to show the behavior of the optimal
strategy throughout the time available. The parameters used for k, b, φ, α, N, T, κ, and λ±

are shown in the tables of each stock, according to the model and the asset drawn.

6. Numerical Results with Real Data

In this section, we demonstrate the implementation of the new optimized strategies
solved in Sections 3–5. We applied our results to real order book data collected from LOBster
academic-data LOBster (2012). We considered level 1 and executed operations (meaning
limit orders at the best ask and bid price, where the event types were 4 and 5) in this database
for Apple, Amazon, and Google on 21 June 2012. The parameter calibration of the general
compound Hawkes process for the parameters a∗ and λ

1−µ was taken from Swishchuk and
Huffman (2020) for the GCHP2SDO. We calculated the optimal liquidation, acquisition, and
market-making strategies for the agent’s trading rate, ν∗, and the optimal depth δ∗,±.

In the figures below, the results are drawn to show the behavior of the optimal strategy
throughout the time available and to explain how to use this model in practice. The
parameters used for k, b, φ, α, N, T, κ, and λ± are shown in the tables of each stock,
according to the model and the asset drawn. The fixed parameters were changed in order
to show the adaptability of the results.

6.1. LOBster Data

LOBster is an online limit order book data tool designed to provide easy-to-use, high-
quality limit order book data. LOBster data generate a “message” and an “orderbook” file
for each active trading day of a selected ticker. The “orderbook” file contains the evolution
of the LOB up to the requested number of levels. The “message” file contains indicators for
the type of event causing an update of the LOB in the requested price range. All events are
timestamped to seconds after midnight, with a decimal precision of at least milliseconds
and up to nanoseconds, depending on the requested period. The liquidity of these data is
presented in Table 1 and Figure 1.

6.2. Main Findings

• The trading rate for the optimal liquidation was sensitive to the parameters of the
GCHP driving the prices through ζ in Equation (26). In this case, as the calibrated a∗

values were too small, the effect was diminished.
• The parameter φ, the running inventory penalty, in the optimal liquidation model was

changed for the three stocks. We noted, in regard to φ, that as this parameter increased,
the time taken for the agent to deplete their inventory decreased (see Figures 2–4).

• As mentioned in Section 4, the trading rate for the optimal acquisition was a constant
proportion over time, leading us to obtain N in the time T.

• The trading rate for the optimal acquisition was sensitive to the parameters of the
GCHP driving the prices through the equation of ε in Equation (51). The trading rate
was higher according to the structure of the solution and the values of the calibrated
parameters; this is in contrast with the results presented in Cartea et al. (2015) using a
price model of the general stationary Gauss–Markov process.

• The parameter α, the terminal liquidation penalty, in the optimal acquisition model
was changed for the three stocks. We were able to visualize the effects of α. As this
parameter increased, the trading acquisition rate increased and we observed that if α
was very small, the agent could not complete the inventory N (see Figures 5–7).
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• The depth in limit orders for the optimal market-making model was sensitive to the
parameters of the GCHP, driving the prices from many sides, the matrix D(t) in the
solution, and specifically from the depth to the buy side of LOs, δ∗,−. In this case, the
greater the expected value of the GCHP, the deeper the LO should be placed.

• The parameter κ, the main factor affecting the probability of filling limit orders in the
optimal market-making model, was changed for the three stocks. We were able to
visualize the effects of κ. As this parameter increased, the depth for the LO price on
the buy or sell side decreased (see Figures 8–10).

• It was interesting to visualize how, in the optimal market-making model, different
levels of inventory q led to a curve with four inflection points for the optimal depth in
prices (see subfigrues (a) and (c) of Figures 8–10).

• As the time in the optimal market-making model grew to T, the optimal depth de-
creased in a linear way to a positive optimal depth in the long run (see subfigrues (b)
and (d) Figures 8–10).

Table 1. Stock liquidity of AAPL (Apple), AMZN (Amazon), and GOOG (Google) for 21 June 2012
(Swishchuk and Huffman 2020).

Ticker Avg # of Orders per Second Price Changes in 1 Day

AAPL 51 64,350
AMZN 25 27,557
GOOG 21 24,084

(a) (b)

(c)

Figure 1. Apple stock price, Amazon stock price, and Google stock price. The three figure above show
the the observed stock price on 21 June 2012, from LOBster data. (a) Apple stock price; (b) Amazon
stock price; (c) Google stock price.
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6.3. Numerical Results for Optimal Liquidation Problem

We calculated the optimal liquidation strategy for an agent’s trading rate, ν∗ for Apple
stock on 21 June 2012, see Table 2 and Figure 2.

Table 2. Liquidation parameters for Apple stock.

Parameter Value Used Parameter Value Used

T 1 k 0.001
b 0.001 N 1
α 100 λ

1−µ * 2.4840
a * −1.1463× 10−5 φ 0.001

* This parameter was calibrated in Swishchuk and Huffman (2020).

(a) Optimal liquidation inventory Q∗ Apple

(b) Optimal liquidation strategy ν∗ Apple

Figure 2. Optimal liquidation inventory and optimal liquidation strategy for Apple stocks. (a) the
inventory calculated with Equation (33), using the parameters in Table 2. (b) the optimal liquidation
value calculated with Equation (34), using the parameters in Table 2.



Risks 2022, 10, 160 23 of 32

We calculated the optimal liquidation strategy for an agent’s trading rate, ν∗ for
Amazon stock on 21 June 2012, see Table 3 and Figure 3.

Table 3. Liquidation parameters for Amazon stock.

Parameter Value Used Parameter Value Used

T 1 k 0.001
b 0.001 N 1
α 100 λ

1−µ * 1.1110
a * −2.7373× 10−5 φ 0.01

* This parameter was calibrated in Swishchuk and Huffman (2020).

(a) Optimal liquidation inventory Q∗ Amazon

(b) Optimal liquidation strategy ν∗ Amazon

Figure 3. Optimal liquidation inventory and optimal liquidation strategy for Amazon stocks. (a) the
inventory calculated using Equation (33), using the parameters in Table 3. (b) the optimal liquidation
value calculated using Equation (34), using the parameters in Table 3.
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We calculated the optimal liquidation strategy for an agent’s trading rate, ν∗ for Google
stock on 21 June 2012, see Table 4 and Figure 4.

Table 4. Liquidation parameters for Google stock.

Parameter Value Used Parameter Value Used

T 1 k 0.001
b 0.001 N 1
α 100 λ

1−µ * 0.8857
a * −1.4301× 10−4 φ 0.1

* This parameter was calibrated in Swishchuk and Huffman (2020).

(a) Optimal liquidation inventory Q∗ Google

(b) Optimal liquidation strategy ν∗ Google

Figure 4. Optimal liquidation inventory and optimal liquidation strategy for Google stocks. (a) the
inventory calculated using Equation (33), using the parameters in Table 4. (b) the optimal liquidation
value calculated using Equation (34), using the parameters in Table 4.
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6.4. Numerical Results for Optimal Acquisition Problem

We calculated the optimal acquisition strategy for an agent’s trading rate, ν∗ for Apple
stock on 21 June 2012, see Table 5 and Figure 5.

Table 5. Acquisition parameters for Apple stock.

Parameter Value Used Parameter Value Used

T 1 k 0.001
b 1000 N 1
α 0.01 λ

1−µ * 2.4840
a * −1.1463× 10−5

* This parameter was calibrated in Swishchuk and Huffman (2020).

(a) Optimal acquisition inventory Q∗ Apple

(b) Optimal acquisition strategy ν∗ Apple

Figure 5. Optimal acquisition inventory and optimal acquisition strategy for Apple stocks. (a) the
inventory calculated with Equation (56), using the parameters in Table 5. (b) the optimal acquisition
value calculated with Equation (57), using the parameters in Table 5.
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We calculated the optimal acquisition strategy for an agent’s trading rate, ν∗ for
Amazon stock on 21 June 2012, see Table 6 and Figure 6.

Table 6. Acquisition parameters for Amazon stock.

Parameter Value Used Parameter Value Used

T 1 k 0.001
b 1000 N 1
α 0.1 λ

1−µ * 1.1110
a * −2.7373× 10−5

* This parameter was calibrated in Swishchuk and Huffman (2020).

(a) Optimal acquisition inventory Q∗ Amazon

(b) Optimal acquisition strategy ν∗ Amazon

Figure 6. Optimal acquisition inventory and optimal acquisition strategy for Amazon stocks. (a) the
inventory calculated with Equation (56), using the parameters in Table 6. (b) the optimal acquisition
value calculated with Equation (57), using the parameters in Table 6.
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We calculated the optimal acquisition strategy for an agent’s trading rate, ν∗ for Google
stock on 21 June 2012, see Table 7 and Figure 7.

Table 7. Acquisition parameters for Google stock.

Parameter Value Used Parameter Value Used

T 1 k 0.001
b 1000 N 1
α 0.01 λ

1−µ * 0.8857
a * −1.4301× 10−4

* This parameter was calibrated in Swishchuk and Huffman (2020).

(a) Optimal acquisition inventory Q∗ Google

(b) Optimal acquisition strategy ν∗ Google

Figure 7. Optimal acquisition inventory and optimal acquisition strategy for Google stocks. (a) the
inventory calculated with Equation (56), using the parameters in Table 7. (b) the optimal acquisition
value calculated with Equation (57), using the parameters in Table 7.
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6.5. Numerical Results for Optimal Market-Making Problem

We calculated the optimal market making strategy for an agent’s optimal depth, δ∗,±

for Apple stock on 21 June 2012, see Table 8 and Figure 8.

Table 8. Market-making parameters for Apple stock.

Parameter Value Used Parameter Value Used

T 1 κ 10
λ± 0.833 N 1
φ 0.1 λ

1−µ * 2.4840
a * −1.1463× 10−5 α 1
q −20 q̄ 20

* This parameter was calibrated in Swishchuk and Huffman (2020).

(a) Agent’s optimal depth δ∗,+ Apple, t = 0 (b) Agent’s optimal depth δ∗,+ Apple

(c) Agent’s optimal depth δ∗,− Apple, t = 0 (d) Agent’s optimal depth δ∗,− Apple

Figure 8. Agent’s optimal depth for selling LOs and Agent’s optimal depth for buying LOs for Apple
stocks. (a) the agent’s optimal depth calculated with Equation (94), using the parameters in Table 8 at
time zero. (b) the agent’s optimal depth calculated with Equation (94), using the parameters in Table 8
in 3 dimensions. (c) the agent’s optimal depth calculated with Equation (95), using the parameters in
Table 8 at time zero. (d) the agent’s optimal depth calculated with Equation (95), using the parameters
in Table 8 in 3 dimensions.
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We calculated the optimal market making strategy for an agent’s optimal depth, δ∗,±

for Amazon stock on 21 June 2012, see Table 9 and Figure 9.

Table 9. Market-making parameters for Amazon stock.

Parameter Value Used Parameter Value Used

T 1 κ 20
λ± 0.833 N 1
φ 0.1 λ

1−µ * 1.1110
a * −2.7373× 10−5 α 1
q −20 q̄ 20

* This parameter was calibrated in Swishchuk and Huffman (2020).

(a) Agent’s optimal depth δ∗,+ Amazon, t = 0 (b) Agent’s optimal depth δ∗,+ Amazon

(c) Agent’s optimal depth δ∗,− Amazon, t = 0 (d) Agent’s optimal depth δ∗,− Amazon

Figure 9. Agent’s optimal depth for selling LOs and agent’s optimal depth for buying LOs for
Amazon stocks. (a) agent’s optimal depth calculated with Equation (94), using the parameters in
Table 9 at time zero. (b) agent’s optimal depth calculated with Equation (94), using the parameters in
Table 9 in 3 dimensions. (c) agent’s optimal depth calculated with Equation (95), using the parameters
in Table 9 at time zero. (d) agent’s optimal depth calculated with Equation (95), using the parameters
in Table 9 in 3 dimensions.
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We calculated the optimal market making strategy for an agent’s optimal depth, δ∗,±

for Google stock on 21 June 2012, see Table 10 and Figure 10.

Table 10. Market-making parameters for Google stock.

Parameter Value Used Parameter Value Used

T 1 κ 50
λ± 0.833 N 1
φ 0.1 λ

1−µ * 0.8857
a * −1.4301× 10−4 α 1
q −20 q̄ 20

* This parameter was calibrated in Swishchuk and Huffman (2020).

(a) Agent’s optimal depth δ∗,+ Google, t = 0 (b) Agent’s optimal depth δ∗,+ Google

(c) Agent’s optimal depth δ∗,− Google, t = 0 (d) Agent’s optimal depth δ∗,− Google

Figure 10. Agent’s optimal depth for selling LOs and agent’s optimal depth for buying LOs for
Google stocks. (a) agent’s optimal depth calculated with Equation (94), using the parameters in
Table 10 at time zero. (b) agent’s optimal depth calculated with Equation (94), using the parameters
in Table 10 in 3 dimensions. (c) agent’s optimal depth calculated with Equation (95), using the
parameters in Table 10 at time zero. (d) agent’s optimal depth calculated with Equation (95), using
the parameters in Table 10 in 3 dimensions.
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7. Conclusions

In this paper, we solved the optimal liquidation, acquisition, and market-making
problems in the high-frequency trading market. We designed the problems to work along
with a special price modeled using a general compound Hawkes process and its diffusion
results. The results showed themselves to be sensitive to the parameters of the GCHP
driving the prices, which are important characteristics that reflect the behavior of real-world
price processes such as the dependence on the previous process and jumping attributes. In
these models, the agent maximized their value function by solving the Hamilton–Jacobi–
Bellman (HJB) equation to design a strategy for asset trading. The optimal solutions were
expressed based on the parameters for the arrival rates and the midprice process, modeled
as a GCHP. The visualization of the LOBster data and how the optimal solutions worked
granted a better understanding of the models. Furthermore, it enabled us to explain in a
clear way the importance of certain critical parameters working in the models and how they
affected the optimized results. We were also able to realize how the calibrated midprice
process could be used to adjust the trader’s response by looking at the arrival rates and
depth of prices in the LOB.

8. Discussion and Future Work

After reviewing our results and those of previous works, it is important to remark that
the GCHP is a more general model, meaning that it can be structured to have Markovian
properties and imitate the behavior of contrasting price models. Thus, we can say that
it has an advantage over those models in that it can adjust in an extended way to the
behavior of the real-world prices in HFT, resulting in more flexible optimized models.
These new optimized processes, calculated in this paper, can be compared with the general
stationary Gauss–Markov process used in Cartea et al. (2015) and also with the Markov
renewal process adopted by Fodra and Pham (2015), as well as the Cox–Ingersoll–Ross
model operated by Fruth et al. (2019). These optimization problems are based on different
price models. There are arguments for and against the use of these price models, which
have been detailed in the introduction, and now with the solutions provided by the GCHP
approach, we can see that the optimized values contain relevant characteristics from the
real-world prices in HFT. These models have the limitation of working with approximations
for GCHP, such as LLN and FCLT. This paper is a first step towards solutions obtained
with the infinitesimal generator of the GCHP.

There are many directions of research that could be followed after obtaining these
results. These models worked with the use of diffusion approximations for GCHP. In future
research, we suggest working with diffusion approximations for semi-Markovian models
such as those described in Swishchuk et al. (2017). These processes allow new book events
to depend on the previous event, preserving the advantageous properties of Markov chains.
This could illustrate other characteristics of real-world prices. Furthermore, working with
the actual GCHP and its infinitesimal generator to solve optimization problems represents
a harder challenge, given that the infinitesimal generator has to be defined according to the
counting process, the distribution of the interarrival times, and the transition probabilities.
In future works, we will aggregate these important steps to contribute to the literature on
mathematical finance in HFT markets.
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