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Abstract: Reinsurers possess high volumes of policy listings data from insurers, which they use to
provide insurers with analytical insights and modeling that guide reinsurance treaties. These insurers
often act on the same data for their own internal modeling and analytics needs. The problem is this
data is messy and needs significant preparation in order to extract meaningful insights. Traditionally,
this has required intensive manual labor from actuaries. However, a host of modern AI techniques
and ML system architectures introduced in the past decade can be applied to the problem of insurance
data preparation. In this paper, we explore a novel application of AI/ML on policy listings data that
poses its own unique challenges, by outlining the holistic AI-based platform we developed, ECLIPSE
(Elegant Cleaning and Labeling of Insurance Policies while Standardizing Entities). With ECLIPSE,
actuaries not only save time on data preparation but can build more effective loss models and provide
crisper insights.

Keywords: entity resolution; data matching; NLP; labeling; MLOps; machine learning; data preparation;
AI; Apache Spark (Spark SQL)

1. Introduction

The main objective of this paper is to outline a new standard for data preparation on
insurance policy listings, namely ECLIPSE. The main problem ECLIPSE addresses is that
actuaries within insurance and reinsurance companies spend a lot of time cleaning dirty
data, often spending more time on this data preparation and cleaning than on modeling
and insight generation. To address this problem, we explore and answer several research
questions: What are the key components of data preparation for policy listings? What are
the most important data properties of policy listings across insurance lines? How can we
leverage both the specialized domain of the datasets and modern AI algorithms/tools to
improve existing processes for each data preparation component? What are important KPIs
to measure improvements in the data preparation process, and can we quantify how much
we advance the state-of-the-art? Finally, we explore how ECLIPSE can be generalized to
datasets beyond policy listings, and other future directions of improvement.

Machine learning AI is often applied in data preparation systems. First, Sawarkar and
Kodati (2021) of IBM explore using data science techniques of word embeddings and entity
resolution for schema standardization. This paper expands on schema standardization
data science by exploring the application of ensembles of ML-driven algorithms and the
related human-in-the-loop workflows/systems. Second, the paper expands on entity res-
olution, used not only for schema standardization but generally to identify/standardize
entities represented in various formats. A survey on entity resolution is presented by
Papadakis et al. (2020), where the authors identify common blocking techniques and sim-
ilarity functions. The research on entity resolution started in the 1950s and disparate
methods have been proposed, summarized by Vidhya and Geetha (2019). Though some
latest methods combine modern machine learning techniques such as semi-supervised
learning and the Expectation-Maximization algorithm, it is hard to find a state-of-the-art
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(henceforth SOTA) model that outperforms in most areas due to the nature of the underly-
ing entity. In addition, many entity resolution models, despite their technical soundness,
are computationally infeasible for all practical purposes, especially for a system that contin-
uously receives new data and must provide entity resolution results in a timely manner.
This paper, by applying specifically to the insured companies within insurance policies,
establishes novel and practical techniques that build upon the established fundamentals.
Next, labeling is a critical step in data preparation, where ML is often used: Stanford
researchers present the Snorkel system in Ratner et al. (2017), which is an ML system widely
used to auto-label records. Finally, applying AI systems to data preparation means ven-
turing into MLOps (Machine Learning Operations), a novel discipline bringing systematic
rigor to ML systems. Symeonidis et al. (2022) provide an excellent overview of MLOps and
their challenges, which we address in our application system.

Next, application papers in insurance seem more focused on modeling. A few papers
that prepare insurance data focus on imputation (such as Euller et al. (1997)), which is only
one aspect of data cleaning. This paper approaches data preparation in insurance policies
more holistically.

Insurance policy data poses unique data quality challenges, depending on the data
preparation task at hand. We will start with entity resolution. While ECLIPSE focuses on
policy data where insured entities are mostly companies, even company data is inconsis-
tently formatted across clients and business lines. In order to build better loss models,
actuaries often need to aggregate policies on the same insured company. For example,
computing the aggregate premium on Directors and Officers (D&O) policies underwritten
by Walmart or by Google can be an important data point in exposure-based loss projections.
That means entity resolving insured companies, in order to know a policy on Alphabet and
Google, for instance, refer to the same company. Sometimes, the insured companies within
policy data have only names, other times they include partial or full address identifiers
(such as country, city, state, zip, and street), and other times they may include other at-
tributes such as revenue or North American Industry Classification System (NAICS) codes.
When resolving company data, there are often complete disagreements in one or many
of these fields, thus requiring not only a methodology to match, but a methodology to
choose the source of truth. Matching is also challenging because corporation entities may
have branches, and may have large variations in fields such as name and address. These
variations include (1) having just the names of people and city names for professional
service firms such as law LLPs, (2) out-of-date aliases, (3) companies encoded with multiple
possible names and addresses, (4) spelling errors, (5) uncommon abbreviations, and more.
Finally, addressing these challenges has to be conducted in a computationally efficient
manner, which is yet another challenge in itself.

To address these challenges and aggregate insured entities for policies, we developed
a rule-based, pairwise corporation entity resolution framework PIERCE: Performant, In-
telligent Entity Resolution for Corporation Entities. We licensed corporation listing data
across the globe from vendors such as Dun and Bradstreet, which contain entity name,
address, revenue, industry code, and corporation structure, which serves as our source of
truth. After receiving insured corporation entity information from clients, we will conduct
entity resolution to fuzzy match these entities to the standard entities in the corporation
listing. Once a match is identified, we can impute the information from the corporation
listing to augment corporation information and resolve duplicated entities with nuances.

Second, policy data comes in different formats from different insurers. While some
industry standards exist for subsets of insurance data, different insurers still store and
transmit data in inconsistent schemas. For policy listings, also known as exposures,
Open Data Standards (2020) focuses mostly on insured properties. This means insur-
ers are still lacking a standard industry data schema, which enhances the problem of
inconsistent schemas. This problem can also be solved by entity resolving the column
names of the schema but poses unique challenges. We must rely on fewer training data
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points, and more idiosyncratic and egregious variations and aliases. To address this, we
have designed a separate schema resolution algorithm.

Third, policy data is a constantly incoming stream, with policies always being under-
written by insurers. The new policy data may feature novel data patterns, even from the
same insurer. This requires a robust set of validations and a system to confirm and edit
incoming data streams. Fourth, while automated systems can clean and prepare schemas
and standardize insured entities/addresses, they may not be 100% accurate themselves.
There are tradeoffs to evaluate here, and a need for a human-in-the-loop. To address this,
we have designed a labeling framework and MLOps user interface.

These challenges and lack of definitive work on holistic AI systems for data preparation
in insurance, and specifically policy listings data, as well as the significant impact on the
workstreams of actuaries, present an opportunity to improve and advance the industry.
ECLIPSE advances state-of-the-art by addressing these challenges and leveraging modern
AI and MLOps systems techniques. To summarize, it consists of:

• PIERCE: Performant, Intelligent Entity Resolution for Corporation Entities;
• Schema Standardization;
• Interactive Validation Resolution;
• Intuitive User Interface for Human Labeling and Interactions with the MLOps System.

Future work can extend on these AI systems to further automate data preparation in
new insurance lines, data standards, and entities. For example, the company resolution
framework can be generalized into broader entity resolution, to de-duplicate and augment
other insured entities or objects. Similarly, more ML models can be created to facilitate
correcting other validation issues.

2. Results

PIERCE outperforms other popular entity resolution frameworks run on corporation
entities when it comes to match rate, precision, and resolve time. As a rule-based entity
resolution framework, PIERCE is flexible with adjustable thresholds and methods, and
especially when compared with black box entity resolution models, can be easily modified
to include or exclude certain types of matches identified in production. This provides us
with a human comprehensible process and lays a good foundation for future improvements.

After comparing to traditional schema standardization methods such as the edit
distance method (based on Levenshtein (1966)) and existing labeling frameworks such
as Snorkel, our schema standardization model has significant advantages in performance,
especially in the accuracy of low-frequency classes. Currently, many tools provide MLOps
deployment solutions such as Seldon Core, BentoML, Tensorflow Serving, and more, as
evidenced in the MLOps survey presented by Kreuzberger et al. (2022). In production,
we choose MLFlow, as it is an open-source tool that can be more easily adopted and is
more flexible for the customizations outlined. By designing the whole pipeline of schema
standardization, interactive validation resolution, and intuitive user interfaces within our
MLOps system, we provide a complete solution to insurance data ingestion and preparation
with strong self-improvement capabilities.

3. Materials and Methods
3.1. Data Properties and Cleaning Rules

This section summarizes the properties of insurer policy data, that lead to the data
quality variations we touched on. The section also outlines any initial cleaning rules or
algorithms to address these issues straight away.

3.1.1. Schema Properties and Initial Cleaning

Policy listings data coming from different insurance companies and systems will have
different column names, and the variations are summarized in the following examples in
Table 1:
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1. Redundant words: some variations may contain redundant words compared to the
standard column names.

2. Omitted words: some variations may omit some words in standard column names,
and only keep important keywords.

3. Abbreviation: some variations consist of acronyms and abbreviations.
4. Misspelling: because the data collection always involves manual work, misspellings

could happen.
5. Little text similarity: some variants are hard to distinguish if evaluated by text similarity.

If matching the columns manually, it could be time-consuming and labor-intensive;
if using rule-based models, the rule-making process could be cumbersome and the result
may not be flexible enough. In this situation, ML models provide a practical solution to
string enumeration standardization as a multi-class classification problem.

All the special characters should be removed except some characters with actual
semantic meanings such as “$” and “#”. The words should be split based on characters
such as dash, underscore, space, or camel case, and transferred to lowercases as an initial
cleaning process.

Table 1. Column name variations.

Original Column Name Standard Column Name

insured_name_to_be_castable_to_str Insured Name
Heavy - Count Vehicle Count by Weight Class: Heavy
POL_EFF_DT Policy Inception Date (US Format)
PolcyNumber Policy Number

Predominant Insured Territory State of Domicile
Note: This table and the table and figures that follow were created by the authors during their work at Guy
Carpenter. The sample data came from anonymized and randomized Guy Carpenter data.

3.1.2. Insured Company-Related Properties and Initial Cleaning

Name, country, state, city, postal code, and street address are properties captured
for the company entity from clients. A series of cleaning steps are implemented to
standardize these properties to improve the data quality and performance of the entity
resolution model.

The company name is a mandatory input for PIERCE. Popular text similarity distance
functions such as Levenshtein distance evaluate the similarity on character level, which
are sensitive to letter case and the presence of special characters. The following steps are
conducted sequentially for text standardization.

1. Convert company name to lowercase;
2. Remove null value placeholder such as “nan”, “none”, “null”;
3. Remove characters in brackets;
4. Remove special characters, but some special characters such as “;” will be kept;
5. Replace multiple whitespaces with single whitespace;
6. Replace company type with its standard abbreviation. For example

• “comp”, “company” to “co”;
• “société anonyme” to “sa”.
In some cases as shown in Table 2, multiple company names are composite in one

string with delimiters such as “;”, “doing business as” or “formerly known as”. Composite
company names are split by these delimiters and then exploded into multiple rows of
split expressions (including the original composite format). The entity is matched if one
expression is matched. The example can be found in Table 3.
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Table 2. Company name with text standardization.

Company Name Company Name Cleaned

GUY CARPENTER COMPANY (NEW YORK) guy carpenter co
HP Incorporated, DBA Hewlett-Packard hp inc dba hewlettpackard

Table 3. Company name with split of composite company name.

Company Name Company Name Cleaned

guy carpenter co guy carpenter co
hp inc dba hewlettpackard hp inc dba hewlettpackard
hp inc dba hewlettpackard hp inc
hp inc dba hewlettpackard hewlettpackard

The country is the only mandatory address property for PIERCE, while state, city,
postal code, and street address are optional. A series of text standardizations are imple-
mented to standardize company addresses. Table 4 shows an example for address cleaning.

• Country may be presented in a full or abbreviated format and may be misspelled. A
Python package “pycountry” is utilized to fuzzy match country to ISO 3166-1 alpha-2
format;

• State is lowercased and mapped to its standard abbreviation;
• City is lowercased;
• Postal code is truncated if extension digits are provided, and padded to standard digit

length if leading 0 s are missing;
• Street address

1. Convert street address to lowercase;
2. Remove special characters;
3. Replace multiple whitespaces with single whitespace;
4. Map street type to abbreviations, for example

– “aven”, “avenu”, “avenue” to “ave”;
– “boul”, “boulevard”, “boulv” to “blvd”.

Table 4. Address properties with text standardization.

Address Property Type Address Property Address Property Cleaned

Country United States US
State New York NY
City

Postal Code 10036-2728 10036
Street Address 1166 AV OF AMERICAS 1166 ave of americas

Company address properties may come in composite format, where only the street ad-
dress is provided and the other address properties are null. A Python package “usaddress”
is used to parse composite US addresses. For international addresses and addresses with
missing properties, we run a geocoder to acquire coordinates, impute missing properties,
and further standardize international addresses.

3.2. PIERCE Algorithm Outline

Company properties such as revenue and industry are of critical importance in risk
analysis. However, data quality issues such as missing and wrong properties remain
a formidable challenge. Many insurance models require company information such as
industry code and revenue as mandatory input, which is usually not provided directly by
clients. Company entities may also have branches and variations in name and address,
which constitute big problems in recognizing the same entity and risk aggregation.
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This becomes an excessive challenge as we receive insurance data from clients with
varied data quality. To solve this, we license corporation listing data across the globe
from vendors, which contain entity names, address properties, revenue, industry code,
and company structure. After receiving insured company entity information from clients,
we will run entity resolution to fuzzy match these entities to the standard entities in the
corporation listing. Once a match is identified, we can impute the information from the
corporation listing to augment client data and resolve duplicated entities with nuances.

We want to integrate an accurate, efficient, and robust entity resolution model in the
system; hence, we developed a rule-based, pairwise company entity resolution framework
PIERCE.

PIERCE takes query data, reference data, and configuration as the input, and utilizes
company name and address properties to find the most similar match in reference data.
Query data and reference data contain corporation information from clients and corporation
listings, and the configuration includes parameters and thresholds that control the process
of PIERCE.

PIERCE consists of three major steps. The cleaning step standardizes the company
name and address for better comparability. The blocking step selects a plausible subset
from the reference data for each entity in query data. The matching step evaluates the
pairwise similarity and decides the best match.

Entity resolution is a computation and memory intensive task, and the corporation
listing data contains hundreds of millions of rows. PIERCE is developed with a distributed
computation framework PySpark Chen et al. (2018), and deployed on the cloud to leverage
extendable computation resources Chen et al. (2018).

3.2.1. Blocking Rules

PIERCE is a pairwise entity resolution model, which requires a blocking data frame of
candidate entity pairs to evaluate. A naive method is to conduct a pairwise comparison
between each entity in query and reference data, and the time complexity is O(m·n), where
m and n represent the number of entities in query and reference data. Though it helps to
reduce the loss of potential matches overlooked in the blocking step, it is unnecessary since
the majority of matches evaluated are irrelevant, and it will generate a large blocking data
frame that crashes the computer memory and the computation will never be finished. To
increase the efficiency while keeping the most plausible matches under evaluation, PIERCE
applies a series of rule-based blocking methods based on the similarity of company name
and address.

Two versions of further cleaned company names are used in blocking and matching to
exclude uninformative characters. Company name core removes company abbreviations
and high-frequency words. Company name filtered removes company abbreviation and
single characters. An example can be found in Table 5.

Table 5. Company name core and company name filtered.

Company Name Company Name Core Company Name Filtered

joe w richard farm llc joe richard joe richard farm

The sorted initial blocking method blocks entities with the same sorted initials of the
company name core. The sorted initials are the initials of the company name core sorted in
alphabetic order. For example, the sorted initials are “jr” for “joe richard”. This method
performs well against edge cases where the company name is misspelled but the first
character of each word is correct, or the words are presented in a different order. However,
this method has to be combined with address blocking, because it may result in a very large
blocking data frame that contains every pair of entities with the same sorted initials when
used alone. Table 6 shows an example of sorted initial blocking method.
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Table 6. Examples of sorted initial blocking method.

Company Name in
Query Data

Company Name in
Reference Data Sorted Initials

joe w richard farm llc W Joe Richard Limited jr

The bag-of-words blocking method blocks entities with at least one mutual word in
the company name core. The company name core is first split into an array of words, and
an intersect operation is conducted to decide if a pair of company names have any mutual
word. This method works well when one company name has additional or different words,
especially when the company name in reference data is a company, while the name of the
policyholder is the business owner; an example can be found in Table 7. This method also
has to be paired with address blocking to avoid large blocking data frames.

Table 7. Examples of bag-of-words blocking method.

Company Name in
Query Data

Company Name in
Reference Data Mutual Words

Joe W Richard Richard Family LLC [“richard”]

The identical company name blocking method blocks entity pairs with identical
company names filtered in the same country.

TF-IDF blocking method first decides a list of unique words in the company name
above given the TF-IDF threshold in each country and then blocks entities with the same
unique words in the same country. This method performs well when the company name
contains a unique word (usually a brand name) but their company names and addresses
differ a lot.

PIERCE uses country, state, city, and postal code for address blocking.
The hierarchical address blocking method blocks entity pairs based on most granular

address properties provided except the street address. This method is used together with
the Sorted Initials or Bag-of-words method to decide the blocking. The steps are:

1. If postal code is provided, block entity pairs with same first three digits of postal code;
2. Otherwise, if city is provided, block entity pairs with same city;
3. Otherwise, if state is provided, block entity pairs with same state.

The identical address blocking method blocks entity pairs if they have an identical
country, state, city, postal code, and street address. This method is robust in the case where
the company name significantly differs while the company address is identical.

3.2.2. Similarity Algorithm

The match is decided by evaluating the similarity of each pair of entities in the blocking
data frame. Several distance functions are implemented to categorize the similarity of
the company name and address as a good, similar, or bad match, respectively, based on
thresholds. The final matches are selected from the nine categories specified in the PIERCE
configuration, which reflects the user’s preference on the trade-off between match rate
and precision. This method allows the algorithm to evaluate the similarity with different
methods independently and mimics human logic in deciding matches. Tge default match
configuration is shown in Table 8.
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Table 8. Default match configuration.

Company Name Similarity Company Address
Similarity

Supported in Default Match
Configuration

Good Good Yes
Good Similar Yes
Good Bad Yes

Similar Good Yes
Similar Similar Yes
Similar Bad No

Bad Good No
Bad Similar No
Bad Bad No

Company name Levenshtein distance measures the distance between two company
name cores by counting the minimum number of single-character edits, including insertions,
deletions, or substitutions, to convert one to the other. Because company names have
various numbers of characters, and thus, it is hard to find a single threshold, the distance
is further normalized by being divided by the longer character length of company names.
The distance performs well when the company name is misspelled or contains additional
short characters. The company name is a good match if the normalized Levenshtein
distance is lower than 0.15, a similar match if the normalized distance is lower than 0.3, bad
match otherwise.

Normalized Levenshtein Distance =
lev(a, b)

Max(|a|, |b|) , (1)

where a and b denote the two strings, and |a| denotes the length of string a.
For example in Table 9, for two company name cores with whitespace removed

“joewrichard” and “joerichad”, the normalized Levenshtein distance is calculated with the
following steps.

Table 9. Normalized Levenshtein distance.

Levenshtein Distance Longer Character Length Normalized Levenshtein
Distance

2 Max(11, 9) = 11 2/11

The company name Jaccard distance measures the similarity between two company
names by counting the number of mutual words and then normalizes the similarity by
dividing it by the larger number of words in each name. This method is robust against
company names with various orders and is sensitive to misspellings. The company name
is a good match if the normalized Jaccard distance is lower than 0.2, a similar match if the
normalized distance is lower than 0.9, bad match otherwise.

Normalized Jaccard Distance = 1− |A ∩ B|
|A ∪ B| , (2)

where A and B denote the words in string a and b, and |A| denotes the number of words
in string a.For example in Table 10, for two company names filtered “joe richard” and
“richard”, the normalized Jaccard distance is calculated with the following steps.

Table 10. Normalized Jaccard distance.

Word Intersection Word Union Normalized Jaccard Distance

“richard” “joe”, “richard” 1/2
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Company address may still vary after cleaning. Heuristic rule distance measures the
similarity between company addresses based on a series of steps.

1. Good match if addresses are identical;
2. Similar match if one of the conditions is satisfied

• House numbers are same and normalized Levenshtein distance of other part of
street address is smaller than 0.6;

• Distance of house numbers is smaller than 30 and Levenshtein distance of other
part of street address is smaller than 4;

• Bag-of-words distance of street address is 0.

3. Bad match otherwise.

Coordinate distance measures the distance between two company addresses by calcu-
lating the distance of coordinates resolved by the geocoder. This method only applies to
entities with complete addresses provided.

3.2.3. Evaluation Methodology

A desirable entity resolution model in our system would quickly make as many
matches as possible with sufficient confidence. Therefore, we use three metrics—match rate,
precision, and resolve time— to measure the model performance. The model performance
is subject to query data, reference data, and configuration. Usually, the model performs
better on US entities and all address properties provided. Users can customize the matching
criterion by adjusting the thresholds in the configuration. The metrics are reported from
experiments with our client data and corporation listing data.

The match rate measures the model’s capability of finding matches, which is calculated
by the number of entities resolved over the number of entities queried. This metric can be
easily calculated when the entity resolution is finished. The match rate is impacted by the
quality of query data, completeness of reference data, and thresholds in configuration. The
emperical match rates by different types of entity are shown in Table 11.

Match Rate =
NResolved
NQueried

, (3)

Table 11. Match rate by types of entity.

Address Completeness US Entity International Entity

Complete Address 0.7632 0.6471
Partial Address 0.6717 0.5209

Precision measures the probability of an entity being correctly resolved, which is
calculated by the number of entities correctly resolved over the number of entities resolved.
To obtain this metric, a sample of resolved entities needs to be manually inspected. There is
a trade-off between match rate and precision. When the model uses a rigorous threshold to
decide the match, the match rate tends to be lower and precision higher, and vice versa.
The emperical match rates by different types of entity are shown in Table 12.

Precision =
NCorrectly Resolved

NResolved
, (4)

Table 12. Precision by types of entity.

Address Completeness US Entity International Entity

Complete Address 0.99 0.95
Partial Address 0.92 0.91
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Resolve time measures the model’s efficiency to finish an entity resolution job. Resolve
time is dependent on the number of entities in the query and reference data, completeness
of address, computation resource, and blocking and evaluation methods enabled. The
metrics are reported on resolving client data with corporation listing data, containing
552 million entities, on a cluster with 32 CPU cores and 256 GB memory. With given
reference data, the resolve time scale linearly to the size of query data with an intercept,
because the algorithm will inevitably scan the full reference data, which consumes constant
time regardless of the size of query data. The resolve time by number of entities in query
data is shown in Table 13.

Table 13. PIERCE resolve time by number of entities in query data.

Number of Entities in Query Data Resolve Time in Minute

100 13.1
1000 13.3

10,000 13.7
100,000 18.3

1,000,000 74

3.3. Schema Matching Algorithm Outline
3.3.1. Ensemble Algorithm

Stacking is an ensemble learning technique to combine the predictions of several other
learning algorithms. Stacking typically yields performance better than any single one of the
component-trained models, as evidenced in Wolpert (1992). The simplest form of stacking
means fitting the first-level classifiers to the same training dataset and using the outcome as
the training dataset of the second-level classifier. Unfortunately, this may cause overfitting,
as evidenced in Raschka (2018). In practice, cross-validation is used to prevent overfitting
and yields a significant improvement, especially in the minority classes.

After comparing the performance of different algorithms, stacking with cross-validation
works the best as illustrated in Figure 1.

Figure 1. The structure of stacking model.
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The stacking structure can combine the advantage of different first-level classifiers,
including both rule-based models and machine learning models.

• Model 1 is the rule-based model, which creates rules for standard columns and
combines them as one model.

• Model 2 is FastText (introduced by Joulin et al. (2016)), which is a library for learning
word embeddings and text classification created by Facebook’s AI Research lab.

• Model 3 is XGBoost (introduced by Chen and Guestrin (2016)), which takes edit
distance (Levenshtein and Jaro), and BERT embeddings (as described in Devlin et al.
(2018)) cosine distance as features.

Each first-level model is trained on the same set of data and generates class proba-
bilities. The meta-classifier (second-level classifier) will be trained on the combination of
class probabilities from the first-level classifiers and generate its own class probabilities
as the final prediction. For the ECLIPSE schema matching algorithm, we take the class
with the highest probability as the matching result. After comparing the performance
between logistic regression, XGBoost, and a fully connected neural network, the neural
network works the best among the three meta-models and also performs better than each
model individually.

3.3.2. Evaluation Methodology
Key Metrics

There are three key metrics that need to be considered to evaluate different algorithms.

1. Micro and macro-averaging scoring metrics
With binary classification, the model is always evaluated in terms of scoring metrics
such as precision, recall, and F1 score. For a multi-class classification problem, the
micro-average scores are calculated from the individual classes’ true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) of the model, and
the macro-average scores are calculated as the arithmetic mean of individual classes’
precision and recall scores.
Micro-averaging scores weight each instance or prediction equally, which means they
are more influenced by the majority classes, which have more samples.

Micro Averaging Precision =
(TP1 + TP2 + ... + TPn)

TP1 + TP2 + ... + TPn + FP1 + FP2 + ... + FPn
(5)

Macro-averaging scores weight all classes equally to evaluate the overall performance
of the classifier, and they are more influenced by the minority classes because the
scores ignore label frequencies.

Macro Averaging Precision =
(Prec1 + Prec2 + ... + Precn)

n
(6)

Schema Standardization, as an imbalanced multi-class classification problem, needs
to take both micro and macro-averaging scores into account.

2. Categorical Cross-Entropy
Categorical cross-entropy quantifies the difference between two probability distribu-
tions. It can be used as the loss function in multi-class classification tasks, and here can
be used as the measurement of probabilities of different models on the same dataset.

Categorical Cross Entropy =
1
N

N

∑
i=1

yilog(p(yi)) + (1− yi)log(1− p(yi)) (7)

3. Inference speed
While we do not need to be concerned about the model training time as the training
process is separated from the model deployment, the inference time is an important
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metric. This is because schema standardization requires real-time inference and it
directly influences the user experience.

Inference Speed Trade-Off

The two main factors that affect the inference speed are the choice of model and feature
selection: the choice of the model determines the model inference time; feature selection
determines the time spent in scanning files and getting features. After comparing three
different model structures, there is no significant difference, evidenced by Table 14.

Table 14. Inference time of different model structures.

Method Inference Time (On 850 Records and Model
Loading Time Included)

Logistic regression stacking model 21.84 s
XGBoost stacking model 21.13 s

Neural network stacking model 21.70 s

The features of this model not only include the original strings and their word em-
beddings but also the distinct values/value ranges/data types of each column. However,
extracting these additional features means more time spent on scanning all data in a file,
especially when the file is large. All in all, this implies there is a trade-off between accuracy
and inference time. Here is a comparison of the speed and accuracy in three scenarios:

• Using only text string to train;
• Adding a feature—LOB (line of business) categories of the file

1. LOB categories including common columns for all LOB: Financial Lines, M&A,
Excess Casualty, Auto, Cyber, Workers Comp, Medical Malpractice

2. Assume that each file belongs to only one LOB category, which could be the main
LOB calculated from the “Line of Business” column in the file;

• Adding two features: LOB categories and if the data in this column is numeric

1. Scan the first 25 rows to infer the data type of each column.

Even though the accuracy increases as shown in Table 15, especially Macro F1, which
means the LOB categories improve the performance of minority classes, the execution time
spent on scanning files and extracting features increased a lot. Usually, our assumption
of LOB categories is not aligned with real-life situations, as a file could contain special
columns for multiple LOBs and the LOB category could be wrong. So generally speaking,
in practical real-life scenarios, the accuracy score may not improve while the inference time
increases.

Table 15. Performance comparison on different feature selection.

Use Text String Add LOB Categories Add LOB Categories and If
It Is Numeric

Time on scan files and getting
features 100 ms 4 s 10 s

Time on model inference 13 s 13 s 13 s
Micro F1 score 0.843902 0.848780 0.850153
Macro F1 score 0.838478 0.849353 0.848612

Performance

After comparing different stacking methods, first-level classifiers, and second-level
classifiers, we found that the best structure is a fully connected neural network as the
meta-classifier combining three first-level classifiers: rule-based, FastText, and XGBoost.
These conclusions are readily apparent from the experiment results shown in Tables 16–18.
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Table 16. Performance comparison on stacking method.

Method Micro F1 Score Macro F1 Score

Snorkel 0.800061 0.524684
Stacking Classifier 0.841288 0.544087

Stacking with cross-validation 0.874390 0.849452

Table 17. Performance comparison on first-level classifiers.

Method Micro F1 Score Macro F1 Score Categorical Cross-Entropy

Rule-based model 0.732927 0.429624 7.202598
FaseText model 0.858537 0.858149 2.682244
XGBoost model 0.740244 0.544715 0.888559

Table 18. Performance comparison on second-level classifiers.

Method Micro F1 Score Macro F1 Score Categorical Cross-Entropy

Logistic regression
meta-model 0.837805 0.671334 0.776860

XGBoost meta-model 0.832927 0.726524 0.802349
Neural network meta-model 0.874390 0.849452 0.794606

3.4. Interactive Validation Resolution
3.4.1. Validations Covered

After the schema standardization, the ingested data will go through a set of validations
depending on requirements to ensure the data quality. These validation rules, carefully
tailored to policy listings data, can be divided into the following categories:

• Expect column names to be in set: The uploaded files should at least contain some
mandatory fields such as “Insured Name”, “Policy Number”, etc.

• Expect column values to be between: Some numerical columns, such as premium,
should be within a certain range.

• Expect column value length to be between: The length of some columns, such as
insured name, should be within a certain range.

• Expect column values to be of castable type: Some columns should be a certain data
type, such as insured name should be a column of string type.

• Expect column values to be not null: Some columns are required not to contain null
values.

• Expect column values to be in set: Some columns are required to contain a certain set
of values, such as the value of “New or Renewal Indicator” should only be “New” or
“Renewal”.

• Expect column values to be unique: Some columns are required to be unique.
• Expect column values to match regex: The value of some columns should match a

certain pattern such as the “Website” column should be a valid URL pattern.

3.4.2. User Interface for Validation Editing

By designing an interactive user interface within ECLIPSE, we allow users to review
the failed and passing validations clearly in table format. We present the name of the
validation, its description when relevant, whether it succeeded, whether it is an error (hard)
or warning (soft), the number of rows that fail, and the number of rows that pass the
validation. Overall summary statistics show how many rows and columns are failing any
validation. An example of this table is shown in Table 19.

Users can download the file of rows failing validations, edit it, and re-upload it. Alter-
natively, ECLIPSE provides an editing interface that allows users to resolve the validation
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error right within the app. Providing an in-app interface is a smoother UX that can better
encourage stakeholders to edit based on their domain expertise.

Table 19. Example Validations Table within ECLIPSE.

Rule Name Detailed Description Success Validation Type Failure Count Success Count

policy listings mandatory
columns

The following columns are not
in the data: New or Renewal
Indicator, Original Currency

False hard 4 7

line of business to be in set False hard 18 31
policy inception date is not

null true hard 0 49

policy expiration date is not
null true hard 0 49

insured name is not null true hard 0 49
policy number is not null true hard 0 49

country of domicile is not null true hard 0 49
gross policy premium at client
participation must be smaller

than 1,000,000,000
true hard 0 49

insured name length must be
between 1 and 255 true hard 0 49

policy expiration date must be
after 1980 true hard 0 49

state of domicile is valid true hard 0 49

3.4.3. Assistance Algorithms

The line of business standardization is supported by a machine learning model that is
very similar to the model for schema standardization. They use the same stacking structure
that contains a neural network as the meta-classifier combining rule-based, FastText, and
XGBoost as the three first-level classifiers. The only difference is that they have different
training data: the schema standardization is using the origin column names and their
standard column name labels; the LOB standardization is using the origin LOB values and
their standard LOB categories.

3.5. Labeling UX and MLOps
3.5.1. Labeling Framework for Pierce, Schema Matching, and Assistance Algos

Within the web application, in order to intuitively present the suggestions provided
by the schema-matching model, we designed a specialized user interface. Users can review
and correct the schema suggestions via a drop-down menu. Not only does this ensure the
correctness of ingested data, but also by saving and adding the user-confirmed labels to the
training dataset and periodically retraining, the model performance improves continuously.

For a better user experience, we color schema suggestions in green and yellow, mean-
ing high and low confidence scores, respectively. The coloring is based on the threshold
decided by the ROC curve. Since this is a multi-class classification problem, we treat records
with standard column matches as positive records and records that cannot be matched to
any standard columns as negative records. Based on this, we can calculate the true positive
rate and false positive rate and draw the ROC curve in Figure 2. The optimal cut-point is
the point closest to (0,1), which represents the threshold of 0.9089 and is shown as a red
point on the curve.
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Figure 2. ROC curve for schema standardization. The dotted red line represents a random guess,
while the blue line represents the classifier.

3.5.2. Real-Time MLOps System

In general, the MLOps (Machine Learning Operations) framework can be divided into
three parts as illustrated in Figure 3: development, deployment, and operation. This is
not a new taxonomy; in fact, Raj (2021) similarly classifies MLOps in his practical guide
to engineering MLOps. After the development of the ECLIPSE schema standardization
model, it needs to be deployed to our web application for data ingestion. Our MLOps
framework uses GitHub as a hosting service for development and version control and is
served on Kubernetes. The model training, registration, and version control are supported
by MLFlow on Databricks, which is a popular open-source component of MLOps systems
(see Chen et al. (2020)). After deployment, the web application provides a user interface for
both labeling and monitoring, allowing human-in-the-loop feedback to be added to the
training dataset. For example, users can label missing or false positive matches provided
by PIERCE or schema standardization algorithms, and these edge cases will be digested to
add new methods or tune thresholds to improve ECLIPSE’s component algorithms.

Figure 3. MLOps framework for data ingestion.

4. Discussion

We have developed ECLIPSE to standardize, improve, and automate with ML the data
preparation of insurance policies. Thus far, we have outlined the details of how ECLIPSE
achieves this through:
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• Data cleaning rules for insurance policies;
• PIERCE Algorithm for Entity Resolution;
• ML Modeling for Schema Standardization;
• Validation Rules and ML-Assisted Resolution;
• Labeling and MLOps framework.

Now, we will summarize our contributions and existing work, as well as explain the
implications of our research in practice and for the future.

4.1. Contributions and Existing Work

The main contribution of this research is the ECLIPSE system, which is effectively an
insurance policy data preparation standard. ECLIPSE was born out of a desire for actuaries
to spend less time cleaning dirty data, and spend more time modeling. At Guy Carpenter,
actuaries had designed all sorts of disparate data preparation and cleaning schemes across
business lines and a significant portion of their jobs was doing this cleaning manually
in Excel: when they adopted ECLIPSE, they experienced an over 50% improvement in
processing time for client modeling requests and analyses. The problem that actuaries
spend significant time cleaning data is also borne out in the literature. For example, the
American Academy of Actuaries acknowledges that 80% of time in any modeling project
is spent understanding and cleaning data Beuerlein et al. (2018). The idea that applying
AI to insurance data preparation can lead to such drastic savings and re-allocations of
actuaries’ time is also evidenced in the literature. For example, in Ullal et al. (2022), the
authors survey the different interactions between AI and humans and find that in services
sectors requiring high intelligence, AI will partner with humans and help automate many
routine tasks.

The reality of data preparation is often missing in research: most actuarial research
papers focus on the risk model itself, with clean data as input. For example, in Gao et al.
(2022), the authors build a claims frequency model, but the data cleaning is limited to a
simple shaping operation. As mentioned in the introduction, data preparation literature for
insurance is largely missing. In that sense, the novelty of ECLIPSE as a holistic insurance
data preparation standard will help bridge the literature gap.

Due to its novelty, the ECLIPSE system is not comparable to existing work as a whole,
but in the Results section, we compared results for its entity resolution algorithm PIERCE,
its schema standardization model, and its MLOps components with other solutions, by
running those other solutions on insurance policy data.

With regards to entity resolution, we compared ECLIPSE’s PIERCE to Zingg (2022),
another implementation of SOTA entity resolution as outlined in Papadakis et al. (2020), as
well as Dun and Bradstreet’s entity resolution service. By including specialized cleaning
rules, blocking rules, and validations, ECLIPSE has seen between 3–8% improvements in
match rate and 4–7% improvements in precision, on insurance policy data (see Table 20).
This follows from the fact that comparable solutions are not specialized to insurance
datasets, while ECLIPSE is meant to be a data preparation standard for insurance policies.
By leveraging Spark distributed computing and focusing on performance, ECLIPSE has cut
execution time by more than half, which is more generally applicable outside insurance.

Table 20. PIERCE performance comparison.

Model Match Rate Precision Resolve Time in Minute

PIERCE 0.7949 0.99 1.8
Zingg 0.7747 0.95 4.4

Vendor Model 0.7149 0.92 9.7

The experiment was conducted between two company datasets, in which companies are US-based and have
address information. The datasets contain 4101 and 29,857 entities, respectively.
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With regards to schema standardization, we have demonstrated how ECLIPSE per-
forms relative to two comparable methods in the literature: Snorkel (see Ratner et al. (2017)),
and a standard edit distance baseline (see Levenshtein (1966)). The comparable solutions
are not specialized to insurance but are also significantly simpler algorithmically than the
ML ensemble model we have outlined in Section 3.3 and in Figure 1. ECLIPSE’s added
algorithmic complexity in schema standardization, along with features/cleaning rules
specific to the insurance domain has led to significant improvements in micro/macro f1
scores (over 30% in the case of macro f1), as shown in Table 21.

Table 21. Schema standardization performance comparison.

Method Micro F1 Score Macro F1 Score

Edit Distance 0.594764 0.477850
Snorkel 0.800061 0.524684

Schema standardization
model 0.874390 0.849452

With regards to the MLOps components, Kreuzberger et al. (2022) compares several
MLOps solutions, including BentoML, Tensorflow Serving, and more. However, based
on the specialized domain and desire for widespread adoption, ECLIPSE is designed as a
more customized MLOps solution built with open-source technologies such as AngularJS
(for custom UX), Spark, Kubernetes, and mlflow. It handles the human-in-the-loop labeling
of insured entities and monitoring of specific validations on insurance policies.

4.2. Practical and Future Implications

Based on the improvements we have outlined in terms of classification KPIs, execution
time, and productivity of actuaries, we recommend actuaries and data practitioners within
the insurance industry adopt ECLIPSE as a methodology for standardizing their policy
listing datasets.

One key limitation of ECLIPSE as presented is that it is tailored to policy listings.
However, the process and ML-assisted data preparation components that we have outlined
can also be applied to other datasets within insurance, such as loss listings or claims listings.
This would require some customization of the cleaning rules, validation rules, and features,
and is an important future direction for this work. Within Guy Carpenter, we plan to
expand ECLIPSE to support other datasets and continue to establish ML-automated and
standardized data preparation on novel insurance datasets.

Another practical future implication is the need to apply more standard data schemas
and data collection standards across the insurance industry: this will reduce the amount of
human effort that is still needed via the human-in-the-loop labeling and monitoring sections
of ECLIPSE. While some progress has been made, such as in establishing more consistent
schemas in property lines by the OASIS catastrophe modeling platform (see Open Data
Standards (2020)), there is much more work to do to further minimize human-in-the-loop
interventions across all policy lines.

Future directions on algorithmic research include (1) applying more complex ML
models beyond linear weighting or similarity matrices in order to determine match scores
during entity resolution, and (2) tailoring ECLIPSE’s ML models to standardize other string
enumerations in insurance datasets, beyond just schema column names and policy lines.
This effort will likely improve on the classification KPIs and further boost the productivity
of actuaries.

5. Conclusions

By applying ML/AI and data science techniques to insurance policies, ECLIPSE
empowers actuaries with clean policy data. At Guy Carpenter, we have seen an over 50%
reduction in time spent per client analysis, as the data preparation and cleaning is now
largely automated with some human-in-the-loop, maximizing the time actuaries spend on
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core analysis and insight generation. We have shown how ECLIPSE’s components such as
entity resolution and schema standardization algorithms also have drastic improvements
over comparable solutions.

First, we saw how PIERCE standardizes insured entities, enabling policy aggrega-
tions. We advance some of the SOTA techniques outlined in Papadakis et al. (2020) by
incorporating normalized similarity functions, more intricate blocking rules specific to
insurance policy data, and a similarity matrix with tunable heuristic thresholds. In the
future, we believe further improvements can be made leveraging nonlinear ML algorithms
in conjunction with the similarity matrix, such as tree-based algos or neural networks. We
find that we are able to maintain higher than 95% precision with a 70% match rate when we
have addresses for insured entities, and an approximately 90% precision with a 60% match
rate when we do not have addresses. As demonstrated, these results drastically improve
the capacity for aggregation, and significantly outperform the SOTA of industrial entity
resolution vendors.

Second, we applied the stacking technique to ensemble ML algorithms and standardize
schemas and other string enumeration columns, such as the line of business. In the process,
we used SOTA NLP techniques and developed an end-to-end, human-in-the-loop MLOps
system. We showed how we can tune this system to tradeoff between performance and
accuracy, and tune thresholds for encouraging human-in-the-loop action. As a result, we
presented a more comprehensive overview of applying AI in insurance data preparation,
than research papers have in the past. We encourage the adoption of the ECLIPSE standard
and hope this system outline not only helps set industry standards but also aids future
researchers and data practitioners as they prepare insurance data, such as policies, losses,
or claims listings.
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