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Abstract: Correlation in cyber risk represents an additional source of concern for utility and industrial
infrastructures, where risks may be introduced by connected systems. A major means of reducing
risk is to transfer it through insurance. In this paper, we consider a company which has peripheral
branches in addition to its headquarters, where risk correlation is present between all of its sites and
insurance is adopted to hedge against economic losses. We employ the expected utility principle
(which leads to the well-known mean variance premium formula) to derive the insurance premium
under risk correlation under several risk scenarios. Under a first-order approximation, a quasi-linear
relationship between the premium and the two major risk factors (the number of branches and the
risk correlation coefficient) is determined.

Keywords: cyber insurance; premium; risk management; risk correlation

1. Introduction

Nowadays, companies face increasing risks and potential monetary losses. However,
the notion of risk may be subject to different interpretations. Aven (2010); Aven and Flage
(2020) have devoted significant efforts to provide the definitional foundation for the notion
of risk. For example, we can consider the definition "Risk is a measure of the probability
and severity of adverse effects” or the alternative “Risk is the combination of the probability
of an event and its consequences” (see also Kaplan and Garrick (1981); Lowrance (1976)).
An established view considers the following three major features of risk, whose combination
may be employed as a synthetic description of any risk Marotta et al. (2017):

1. Threat: the causes that create risks (e.g., theft of information, dangerous weather, fire);
2. Vulnerability: existing weaknesses that can be exploited to cause security accidents;
3. Impact: the amount of loss suffered.

An attempt to classify the levels of risk for companies and their potential consequences
is reported by Aven and Cox (2016).

From the point of view of a company, the fear of monetary losses is a great incentive
to implement risk management strategies and achieve economic well-being. Risk manage-
ment comprises the identification, assessment, and prioritization of risks, followed by the
coordination and economics-aware application of resources to minimize the probability or
impact of unfortunate and unexpected events Albadarneh et al. (2015); Refsdal et al. (2015).
Risk analysis and risk management are essential for companies to cope with disruption
of services and the consequent economic losses Covello and Mumpower (1985); Kaplan
(1991); Landsman and Sherris (2001); Paté-Cornell et al. (2018); Zio (2007). In particular, risk
management may help companies in preventing or reducing the impact of several types
of risks: strategic risks Frigo and Anderson (2011), financial risks Erb et al. (1996), risk of
globalization Broner and Ventura (2011), and operational risks Power (2005). What is of
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interest to us in this paper is cyber risk, which is fast becoming the most worrying type of
risk faced by companies Florackis et al. (2023). In particular, cyber risks are now seen as a
major source of concern for various public utilities and industrial infrastructures due to
the risk arising in individual infrastructures that derive from their interconnections and
interdependencies Bürger et al. (2019); Eling (2020); Kröger (2008); Maglaras et al. (2018).

A company can devise different strategies to cope with risks. An accepted classification,
which can be straightforwardly adopted for cyber risk, considers the following strategies
Peterson (2020): risk avoidance, risk spreading, risk transfer, risk reduction, and risk
acceptance. Excluding the first and the last strategies, which correspond, respectively, to
the extreme strategies of zeroing the risk and accepting it all, the remaining strategies may
be aggregated into the following two:

1. Risk transfer;
2. Risk mitigation.

Risk transfer consists of transferring one’s own risks to a third party. Risk mitigation
is instead another name for risk reduction and includes all those activities by which the
frequency and/or impact of risky events can be reduced.

A different way to cope with the problem is to invest in self-protection (a form of risk
mitigation), but determining the right level of investment in cyber security is not simple
Fielder et al. (2016). In addition, the costs of self-protection could be really large Armenia
et al. (2021); Mazzoccoli and Naldi (2020b, 2022); Young et al. (2016). If companies decide
to opt for risk transfer measures, they can purchase an insurance policy. In particular, firms
may avoid most of the risks leading to economic losses by paying an insurance premium to
an insurer, because the insurer will cover all the losses suffered by firms based on what is
reported in the insurance policy stipulated between the insurer and the insured (see, e.g.,
the report by the Straub and Swiss Association of Actuaries (Zürich) (1988)).

However, the lack of statistical data about security accidents and the inaccurate knowl-
edge of risks by the insurer may lead to overpriced insurance premiums Bandyopadhyay
et al. (2009, 2010). In the literature, the topics of premium computation and principles have
been addressed, e.g., by Böhme and Schwartz (2010); David (2015); Laeven and Goovaerts
(2008); Lima Ramos (2017); Mastroeni et al. (2019).

A further problem arises when we consider a set of vulnerable entities whose risks are
correlated. This is the case, e.g., for a company’s headquarters and its branches, where a
breach in any of the entities may disclose information to breach other entities Khalili et al.
(2018); Mazzoccoli and Naldi (2021); Xu et al. (2019). Though this topic has been extensively
addressed in the literature, the models proposed are often complex and may not be easy to
apply in an industrial context.

Our main contribution here is to build a simple mathematical model for the insurance
premium that considers the risk correlation between headquarters and its branches and to
show its application in a sample scenario.

The article is structured as follows. After a brief literature review in Section 2, we
describe risk correlation in Section 3 and derive a formula for the insurance premium in
the case of risk correlation in Section 4. The formula details are sorted out in Section 5,
where we analyse the importance of choosing the aversion risk coefficient in computing
the premium. We apply the formula in some reference scenarios in Section 6.

A glossary of all the terms and symbols employed in the paper is reported in Table 1
for the reader’s convenience.
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Table 1. Glossary.

Parameter Meaning

u Utility function
w Firm asset
X Monetary loss variable
P Insurance premium
α Risk aversion coefficient
r Risk premium
ρ Correlation coefficient

2. Literature Review

In this section, we present an overview of research papers that have dealt with cyber
risk correlation and the computation of insurance premiums under this scenario. We will
proceed by first considering papers that have adopted simpler, model-free characterization
(which is the approach we have opted for in this paper) to move later to more complex
models. It is to be noted that here we refer to the correlation between victims, i.e., the
probability that a potential victim suffers a breach due to another victim being breached.
We do not refer to the cases of correlated risks for the same victim (i.e., the correlation
between different sources of risk).

Before delving into the specific of interdependent risks, we must, however, mention
some reference works that have provided a general framework for the use of insurance in
cyber risk or a panorama of the different approaches taken for this purpose. We mention
the works by Boehme, e.g., Böhme et al. (2019), Eling (2020), and that by Marotta et al.
(2017).

Moving now to the different approaches taken to describe the interdependence of
cyber risks, we can classify them according to the mathematical tool employed for this
purpose, giving the following list:

• Increased breach probability;
• Correlation coefficient;
• Regression;
• Joint probability distribution function;
• Multi-dimensional stochastic process;
• Copulas.

Probably the simplest approach to describe correlation is to assume that it increases
the probability of a breach, i.e., the breach probability of subject j when subject i has
suffered from a breach is larger than in the reverse case. This is the approach taken by
Dou et al. (2020), where the expected utility is employed to compute the premium. A
logarithmic utility function is adopted. The same indirect approach to quantify correlation
is adopted by Öğüt et al. (2011), where the focus is, however, not premium computation
but the use of incentives to push firms into investing in self-protection. They found that
subsidizing self-protection investments, rather than insurance subscriptions, helps induce
companies to invest in self-protection in a socially optimum way. Quite the same approach
is taken by Kunreuther and Heal (2003) (which was adopted subsequently by Hoang et al.
(2017) or the case of plug-in electric vehicles), where a game model is formulated, with
the probability of being breached depending on the actions of the other agents. The same
model of Kunreuther and Heal (2003) is also employed by Johnson et al. (2014).

The next step up in correlation characterization complexity is to employ a correlation
coefficient (which is the approach we take here). This is done, e.g., by Yang et al. (2020),
where power stations are used as the infrastructure under attack. They use ruin theory to
compute the premium, which is based on the loading factor formula, precisely as loading
on the average amount of claims. The same approach considered here has been proposed
by Xu et al. (2019) for the optimal allocation of cyber security investments for headquarters
and its branches subjected to cyber risk interconnections and by Mazzoccoli and Naldi
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(2021) to obtain a closed formula for the optimal investment in security under a set of cyber
insurance liability scenarios considering a multi-branch firm with correlated vulnerability.

A little step-up in the complexity of characterization is achieved by considering
a regression model to relate the risks suffered by different agents. Lin et al. (2018) proposed
a logistic regression where the following regressors are used: the number of past breaches
either in the company’s supplier industries or in the company’s consumer industries,
the company’s IT budget, the number of vendors of software used by the company, the
standard deviation of the IT budget across sites, and a set of financial variables.

Passing now to model-based approaches, Liu et al. proposed a semi-Markov process
model for attacks, where the premium is computed through the loading factor formula
based on the Value-at-Risk Liu et al. (2020). A multivariate normal model is instead em-
ployed by Khalili et al. (2019), where a linear contract is considered with a discount on the
base rate related to a pre-screening assessment by the insurer to reduce information asym-
metry. A similar semi-Markov process is considered by Zhang et al. (2020) to model the cy-
berattacks against pump stations in a water distribution system. The premium is computed
as the Value-at-Risk. A Stackelberg security game is proposed by Lau et al. (2020) to derive
the optimal strategy to allocate defence resources against cyber attacks, modeled again by
a semi-Markov process kernel. The premium is computed as the Tail-Value-at-Risk.

Some papers deal with the the interdependence of cyber risk by treating it as due
to the propagation of an infection. Fahrenwaldt et al. (2018) employed the susceptible–
infected–susceptible (SIS) model. Each node may be in either state (infected or susceptible).
It may transition to the infected state upon influence by its neighbours and revert to the
susceptible state after being cured. They used a polynomial approximation for claims to
compute the aggregate expected losses, but do not provide indications about pricing. A
multi-group SIR model (susceptible, infectious, or recovered) is employed by Hillairet
et al. (2022) to differentiate the propagation of attacks depending on the industrial sector
of the company. Again, the model allows for the computation of losses, but no approach
is taken for pricing. An inhomogeneous SIS model, which also accounts for the presence
of clusters where the infection propagates faster, is considered by Antonio et al. (2021).
The insurance premium is said to have been computed using the utility principle and the
standard deviation premium principle, but no further details are given. A multivariate risk
measure introduced by Dhaene et al. (2002) is adopted by Da et al. (2021) to describe the
impact of correlation in a network where a limited propagation of risk is assumed. Both the
standard deviation premium principle and the variance premium principle are considered
for premium computation.

Finally, the most complex characterization of correlation is probably given by copulas.
A copula model is employed by Lau et al. (2021), again in the context of power stations.
Premium computation is carried out by using Tail-Value-at-Risk (probably quite an extreme
assessment of risk) using a coalition of insureds to reduce the premium by compensating
cor extreme value occurrences. Gumbel and Clayton copulas are tested by Herath and
Herath (2011) on the basis of ICSA (International Computer Security Association) data
to model the correlation between the number of computers affected and the dollar value
of losses. The insurance premium is computed using a very simple formula that just
discounts the expected loss. Again, Gumbel and Clayton copulas, with the addition of
a Frank copula, are employed in Su et al. (2021) to model the correlation between the
frequency of cyber incidents and the number of computers involved. The same approach
as used by Herath and Herath (2011) is taken for premium computation. A vine copula is
instead proposed by Peng et al. (2018), where an ARMA-GARCH (AutoRegressive Moving
Average - Generalized AutoRegressive Conditional Heteroskedasticity) model is used
to describe the marginal process of individual servers under attack. No indications are
provided for insurance premium computation. A mixed approach is proposed by Böhme
and Kataria (2006), where a correlation coefficient is employed to describe correlation in the
intra-company scenario and a t-copula is used for global correlation among the companies
in the insurer’s portfolio.
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3. Multi-Site Companies, Cyber Risk Correlation, and Cyber Insurance

As stated in the Introduction, we are interested in a scenario where a company has
many sites (its headquarters plus several branches), all subject to cyber risk, with the levels
of cyber risks experienced on the different sites being correlated. We also assume that the
company intends to resort to insurance to protect itself against cyber risk on all its sites.
In this section, we describe the scenario more precisely and introduce the quantities of
interest to describe cyber risk and the insurance contract.

We consider a set of n sites. For the time being, we do not distinguish between the
headquarters and its branches. All the mathematical treatments in the following will not
make use of such a distinction. Actually, all the results stay valid if we do not consider the
branches of a single company but the sites of different companies, as long as the cyber risks
suffered by those companies are correlated.

The reason for cyber risk correlation may be multifarious. The sites may share portions
of their databases containing information that may be used to compromise other sites, or a
site may be used to launch an attack against another site, being recognized as a trustful
partner and possessing credentials that allow it to penetrate the victim site’s defence lines.
Examples of such situations are reported by Nagurney and Shukla (2017). Here, we do not
go further into describing the security vulnerabilities that may lead to the correlation of
cyber risks.

The consequence of correlation is that any site may be prone to two kinds of cyber
attack Xu et al. (2019):

1. Direct attack due to the attacker attempting to breach the site without exploiting
information or vantage positions from another site;

2. Indirect attack due to breaches that take place in another site.

As a consequence of a successful attack, the generic i-th site suffers an economic loss
described by the random variable Xi ∈ R+, i = 1, 2, . . . , n. Each random loss follows a
probability distribution (which may be different among the sites). However, for the time
being, we do not make any assumption regarding the marginal distribution and assume to
know just its first two moments E[Xi] and V[Xi].

We also assume that any two losses Xi and Xj are correlated, their correlation being
described by their covariance C(Xi, Xj).

We assume that the assets owned by the company on its generic i-th site are wi ∈ R+,
i = 1, 2, . . . , n. These assets are threatened by attackers, which would cause the loss Xi.

However, the value of the i-th site is mediated by the utility function

u(x) : Rn
+ → R.

For our aims, we suppose that u(·):
• Is a twice differentiable function on Rn

+;
• Is an increasing function and concave on Rn

+.

We recall that the loss X suffered by the company on its sites is a multidimensional
random variable with non-independent random variable components, which diminishes
the value of each site’s asset, so that the value of the i-th site after the attack is the random
quantity u(wi − Xi).

On the other hand, the company wishes to indemnify itself against cyberattacks by
paying an insurance premium Pi for its i-th site. Its utility will also be reduced to u(wi − Pi)
because of that payment to the insurer.

According to the expected utility principle Kaas et al. (2008), we can set a fair premium
by comparing the alternatives for the insured: buying an insurance policy and ending up
with utility u(wi − Pi) for the i-th site, or suffering the (random) monetary loss Xi and
ending up with utility u(wi − Xi). In order to consider the problem of insurance for the
set of all the sites, we define the vectors of the assets, losses, and premiums, respectively,
as w = (w1, ..., wn), X = (X1, ..., Xn), and P = (P1, ..., Pn). The fair premium is that for
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which the alternatives of accepting the losses or paying the insurance premium are utility-
equivalent (on average), i.e., that resulting from the following equilibrium equation (in
vectorial form):

E[u(w− X)] = u(w− P) (1)

We can set the premium P by solving the equilibrium equation approximately through
the Taylor series expansion for both sides, centered in w− E[X]. Though we can stretch
the Taylor approximation using the fourth order Mazzoccoli and Naldi (2020a), this would
require considerably more information about the risk, so we continue to use the usual
approximation, stopping at the second order:

u(w− P) ' u(w−E[X]) +∇u(w−E[X]) · (E[X]− P)

u(w− X) ' u(w−E[X]) +∇u(w−E[X]) · (E[X]− X)

+
1
2
(E[X]− X)∇2u(w−E[X]) · (E[X]− X)

(2)

where

1. ∇u is the gradient of the function u, ∇u = (∂x1 u, ..., ∂xn u);
2. ∇2u is its hessian matrix with entries (∇2u)ij = ∂xi ∂xj u, i, j = 1, ..., n;
3. a · b denotes the standard scalar product between two vectors a and b ∈ Rn.

4. Premium Model with Risk Correlation for Multi-Site Companies

In this section, we show how to compute the insurance premium if a headquarters
and its branches decide to protect themselves against possible economic losses.

Our final aim is to prove the following theorem, which gives us a simple formula for
the premium in the presence of correlation and risk aversion:

Theorem 1. The solution of the equilibrium Equation (1) has the following form:

P = (P1, ..., Pn)

Pi = E[Xi] +
αi
2
V[Xi] +

1
2 ∑

j 6=i
αjCov(Xi, Xj) + o(E[X]− P) + o(E[(E[X]− X)2])

(3)

where αi and αj are the risk aversion coefficients of the i-th and j-th firms, and o(·) is the remaining
term in the Peano form.

Furthermore, the consequent total premium is

PT =
n

∑
i=1

Pi.

To prove Theorem 1, we have to prove some propositions that will help us to reach
our aim. We first rewrite the equilibrium Equation (1) in a form that allows us to simplify it
(Lemma 1), then we rewrite it by isolating the terms involving the premium (Corollary 1),
and finally provide its solution (Lemma 2).

We start by exploiting an approximation for the equilibrium Equation (1).

Lemma 1. The equilibrium Equation (1) can be written in the following form:

n

∑
i=1

(E[Xi]− Pi)∂xi u(w−E[X]) =
1
2

n

∑
i=1

V[Xi]∂
2
xi

u(w−E[X])

+
1
2

n

∑
i 6=j

n

∑
j=1

Cov(Xi, Xj)∂xi ∂xj u(w−E[X]) + o(E[X]− P) + o(E[(E[X]− X)2])

(4)
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Proof. We start by using a multidimensional Taylor expansion for Equation (1) in the
neighbourhood of w−E[X].

Thus, taking into account the functions u(w− P) and u(w− X), we get the follow-
ing expressions:

u(w− P) = u(w−E[X]) +∇u(w−E[X]) · (E[X]− P) + o(E[X]− P) (5)

u(w− X) = u(w−E[X]) +∇u(w−E[X]) · (E[X]− X)

+
1
2
(E[X]− X)∇2u(w−E[X]) · (E[X]− X) + o(E[X]− X)2

(6)

where

1. ∇u is the gradient of the function u, ∇u = (∂x1 u, ..., ∂xn u);
2. ∇2u is its hessian matrix with entries (∇2u)ij = ∂xi ∂xj u, i, j = 1, ..., n;
3. a · b denotes the standard scalar product between two vectors a and b ∈ Rn.

Now, we want to compute the expected value of the function u(w− X). In particular,
we find that the following developments hold for the individual terms in Equation (6):

E[u(w−E[X])] = u(w−E[X]) (7)

E[∇u(w− X) · (E[X]− X)] = E
[

n

∑
i=1

∂xi u(w− X)(E[Xi]− Xi)

]

=
n

∑
i=1

∂xi u(w− X)E[E[Xi]− Xi] = 0

(8)

E[(E[X]− X)∇2u(w−E[X]) · (E[X]− X)]

=E
[

n

∑
i=1

n

∑
j=1

∂xi ∂xj u(w−E[X])(E[Xi]− Xi)(E[Xj]− Xj)

]

=
n

∑
i=1

∂2
xi

u(w−E[X])V[Xi] +
n

∑
i 6=j

n

∑
j=1

∂xi ∂xj u(w−E[X])Cov(Xi, Xj)

(9)

Substituting Equations (8) and (9) first into Equation (6) and then into the initial
Equation (1), we obtain the following equation:

n

∑
i=1

(E[Xi]− Pi)∂xi u(w−E[X]) =
1
2

n

∑
i=1

V[Xi]∂
2
xi

u(w−E[X])

+
1
2 ∑

i 6=j

n

∑
j=1

Cov(Xi, Xj)∂xi ∂xj u(w−E[X]) + o(E[X]− P) + o(E[(E[X]− X)2])

(10)

Since our aim is to obtain the value of the premium, we can further rewrite the
equilibrium equation to isolate the terms involving the premiums Pi and derive the follow-
ing corollary:
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Corollary 1. From Lemma 1, it follows that the linear combination of the insurance premiums Pi,
i = 1, ..., n, has the following form:

n

∑
i=1

Pi∂xi u(w−E[X]) =
n

∑
i=1

E[Xi]∂xi u(w−E[X])− 1
2

n

∑
i=1

V[Xi]∂
2
xi

u(w−E[X])

− 1
2 ∑

i 6=j

n

∑
j=1

Cov(Xi, Xj)∂xi ∂xj u(w−E[X]) + o(E[X]− P) + o(E[(E[X]− X)2])

(11)

We can now solve Equation (11) for the premiums.
For simplicity, without loss of generality, we denote u := u(w−E[X]).

Lemma 2. The solution of Equation (11) is given by

Pi = E[Xi] +
1
2

(
−

∂2
xi

u
∂xi u

)
V[Xi] +

1
2 ∑

j 6=i

(
−∂xi ∂xi u

∂xi u

)
Cov(Xj, Xi)

+ o(E[Xi]− Pi) + o(E[(E[Xi]− Xi)
2]), i = 1, ..., n

Proof. The solution of Equation (11) is equivalent to finding the solution of the following
equations separately, since Equation (11) is just the sum of the individual terms pertaining
to each site.

P1∂x1 u = E[X1]∂x1 u− 1
2V[X1]∂

2
x1

u− 1
2

n

∑
i=2

Cov(X1, Xi)∂x1 ∂xi u

+o(E[X1]− P1) + o(E[(E[X1]− X1)
2])

...

Pn∂xn u = E[X1]∂xn u− 1
2V[Xn]∂2

xn u− 1
2

n−1

∑
i=1

Cov(Xn, Xi)∂xn ∂xi u

+o(E[Xn]− Pn) + o(E[(E[Xn]− Xn)2])

(12)

Since the utility function u is an increasing function, we have ∂xi u 6= 0. Thus, after
dividing each i-th term for ∂xi u, the solution follows:

P1 = E[X1] +
1
2

(
−

∂2
x1

u
∂x1 u

)
V[X1] +

1
2

n

∑
i=2

(
−∂x1 ∂xi u

∂x1 u

)
Cov(X1, Xi)

+o(E[X1]− P1) + o(E[(E[X1]− X1)
2])

...

Pn = E[X1] +
1
2

(
− ∂2

xn u
∂xn u

)
V[Xn] +

1
2

n−1

∑
i=1

(
−∂xn ∂xi u

∂xn u

)
Cov(Xn, Xi)

+o(E[Xn]− Pn) + o(E[(E[Xn]− Xn)2])

(13)

Up to now, we have not adopted any particular choice for the utility function. In the
following, we choose a utility function u that respects the CARA (Constant Absolute Risk
Aversion) property conditions shown below.

−
∂2

xi
u

∂xi u
= αi i = 1, ..., n (14)

−
∂xi ∂xj u

∂xi u
= αj i, j = 1, ..., n (15)
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lim
x→0

u(x) = 0 (16)

where αi and αj are real positive constants.
This is a well-known property Xie (2000) which implies that risk aversion does not

depend on the level of wealth. The utility function u : Rn
+ → R that satisfies the CARA

properties (14)–(16) is the exponential utility function of several variables defined as follows:

u(x) = 1− e−(α1x1+...+αnxn) (17)

In fact, it is easy to check that the utility function of Equation (17) satisfies these
three properties

1. −
∂2

xi
u

∂xi u = − α2
1e−(αi xi+...+αn xn)

−α1e−(αi xi+...+αn xn) = αi.

2. −
∂xi ∂xj u

∂xi u = − αiαje−(αi xi+...+αn xn)

−α1e−(αi xi+...+αn xn) = αj.

3. lim
x→0

(1− e−(α1x1+...+αnxn)) = 1− 1 = 0.

An example of a bidimensional exponential utility function is shown in Figure 1,
where α1 = 1 and α2 = 1.

0
1

2
3 0

1

2

3
0

0.5

1

x1

x2

U
ti

lit
y

Figure 1. An example of a bidimensional exponential utility function (α1 = 1 and α2 = 1).

Despite the simplifying assumption of the independence of wealth level, the exponen-
tial utility function has been widely employed in the literature Böhme and Schwartz (2010);
Brunello (2002); Marotta et al. (2017); Martinelli et al. (2018).

When the utility function is exponential, the premium takes the following form.

Lemma 3. The insurance premium for the i-th insured is

Pi = E[Xi] +
αi
2
V[Xi] +

1
2 ∑

j 6=i
αjCov(Xi, Xj) (18)

Proof. Substituting Equation (17) into Equation (13) provides us with an expression for the
i-th customer premium Pi:

Pi = E[Xi] +
αi
2
V[Xi] +

1
2 ∑

j 6=i
αjCov(Xi, Xj) (19)
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Thanks to the previous Lemmas and Corollary we can now prove Theorem 1, which
gives us the overall premium for the company comprising its n sites.

Theorem 2. The solution of the equilibrium Equation (1) has the following form:

P = (P1, ..., Pn)

Pi = E[Xi] +
αi
2
V[Xi] +

1
2 ∑

j 6=i
αjCov(Xi, Xj) + o(E[X]− P) + o(E[(E[X]− X)2])

(20)

where αi and αj are the risk aversion coefficients of the i-th and j-th firms.
The overall premium is then

PT =
n

∑
i=1

Pi.

Proof. This theorem is a strict consequence of Lemmas 1 and 2 for the solution of the
insurance premium, and Lemma 3 for its mathematical structure.

In fact, by reformulating the equilibrium equation as presented in Lemma 1; determin-
ing the solution for the i-th insurance premium, denoted as Pi, as outlined in Lemma 2; and
employing the CARA utility function as described in Lemma 3, we establish the proof of
the theorem.

It is to be noted that, while we have employed the covariance function so far, we can
formulate all the premium formulas in an alternative form by invoking the correlation
coefficient. If we employ the notation ρij for the correlation coefficient between the i-th and

the j-th firm, the covariance is Cov(Xi, Xj) = ρij
√
V[Xi]

√
V[Xj], and we can substitute that

expression into the premium formula.

5. Risk-Aversion Coefficient

In Section 4, we derived the premium formula. However, after choosing the exponen-
tial utility function, the premium appears to depend on the risk-aversion coefficient, for
which we have not provided any indication. In the absence of indications for this coefficient,
any premium formula remains void of operational relevance. In this section, we provide
some indications to set the risk aversion coefficient and arrive at an applicable expression
for the premium.

The problem of the risk aversion coefficient has already been examined, e.g., by Weber
(2010) and Hillson and Murray-Webster (2017)). In general, firms may have different risk
attitudes, which are measured by their risk aversion. Risk aversion is the tendency of
people to prefer outcomes with low uncertainty over outcomes with high certainty. Thus,
firms are said to be (see Section 1.2 of Eeckhoudt et al. (2011)):

• Risk-averse if they accept to pay a sum of money rather than accepting an uncertain
outcome with the same expected loss;

• Risk-neutral if they are indifferent between the certain payment and the uncertain
outcome with the same expected loss;

• Risk-seeking otherwise.

We can relate the risk-averse behavior to the risk-aversion coefficient α appearing in
Equation (18). If we choose a high value for α, we can observe a considerable increase in
the premium due to the presence of the variance term. Instead, if the value of α is low,
the predominant term is the expected value of the losses E[X], as demonstrated by Naldi
and Mazzoccoli (2018). In particular, the higher α, the more importance is attributed to
the riskiness expressed by the variance and the covariance. If α tends to 0, there is no risk
aversion, and the choice relies on the expected value. Hence, higher values of α correspond
to a growing risk-averse behaviour.
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We can perform an elementary dimensional analysis of the risk-aversion coefficient
by looking at Equation (18). Since the dimension of E[Xi] is monetary, the dimension of
both αiV[Xi] and αjCov(Xi, Xj) is the squared power of money, and the dimension of αi,
i = 1, 2, . . . , n, must be the inverse of money.

This understanding of the dimension of the risk-aversion coefficient leads us to the
choices suggested by Babcock et al. (1993) and Olivieri and Pitacco (2015) for the risk-
aversion coefficient. They say that this coefficient is proportional to the inverse of the
expected value of the loss X, i.e., α ∝ 1

E[X]
. In particular, their suggested values for α are

(the subscript O refers to the proposal by Olivieri and Pitacco, while the subscript B refers
to that by Babcock):

αO =
1

E[X]

αB =
ln
(

1+2r
1−2r

)
E[X]

(21)

respectively, where r is the probability premium, i.e., the increase in probability above 1
2

that an individual requires to maintain a constant level of utility equal to the utility of the
status quo. In particular, if the utility function u is strictly concave, the probability premium
takes values in the interval (0, 1

2 ).

The risk-aversion coefficients αB and αO coincide if and only if ln
(

1+2r
1−2r

)
= 1 =⇒ r =

e−1
2(e+1) . It follows that αB < αO if r < e−1

2(e+1) and αB > αO if r > e−1
2(e+1) .

In Figure 2, we show the ratio between these two risk aversion coefficients (αB/αO).

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

αB = αO

r

α
B

/
α

O

Figure 2. Ratio between the risk aversion coefficients αB and αO.

In our paper, we decide to use the definition given by Babcock since it captures more
information than Olivieri and Pitacco’s one.

Defining η := 1+2r
1−2r , we find that the risk aversion coefficients assume the follow-

ing form:

αi =
ln(ηi)

E[Xi]
, i = 1, ..., n (22)

It follows that, by replacing the risk aversion coefficients in Equation (22) in Equation (19),
the resulting premium for the i-th firm takes the following form:

Pi = E[Xi] + ln(ηi)
V[Xi]

2E[Xi]
+

1
2 ∑

j 6=i
ρij ln(ηj)

√
V[Xi]

√
V[Xj]

E[Xj]
(23)
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6. Numerical Results

In this section, we give some numerical examples that are based on data in the existing
scientific literature. Several models have been proposed for the occurrence of a risky
event and the severity of the loss due to this event. In our article, we show the resulting
value of the insurance premium considering four major models as reference examples,
reported by Edwards et al. (2016); Lin et al. (2018); Mastroeni et al. (2019); Wheatley et al.
(2016). In particular, Edwards et al. (2016) use a negative binomial distribution to model
the frequency of the occurrences and a lognormal distribution to model the severity of the
losses, Mastroeni et al. (2019) use a Poisson distribution and a generalized distribution,
respectively, and Lin et al. (2018) estimate the frequency of the occurrences and use a Pareto
distribution for the severity of the losses. Finally, Wheatley et al. (2016) use a Poisson
distribution for the frequency and a double truncated exponential distribution for the
severity. In Table 2, we show the major risk parameters (frequency of incidents and average
loss) for these scenarios. As you can see, they encompass different degrees of severity.

Table 2. Frequency and average annual loss in the scenarios considered.

Scenarios Frequency Avg Loss (USD)

Edwards et al. (2016) 0.008 2.82 · 104

Mastroeni et al. (2019) 0.036 8.6 · 107

Lin et al. (2018) 0.032 1.2 · 107

Wheatley et al. (2016) 0.38 1.4 · 108

In the following, we report the premium obtained for all these models and show the
impact of the number of branches and the correlation coefficient. For each mode, we first
propose a bidimensional plot that shows the overall dependence on both parameters, and
then show some cuts, where we set one parameter and vary the other.

The pictures pertaining to the scenario proposed by Edwards et al. (2016) are shown in
Figures 3 and 4; those for the scenario proposed by Mastroeni et al. (2019) are shown
in Figures 5 and 6; those for the scenario proposed by Lin et al. (2018) are shown in
Figures 7 and 8; and finally those for the scenario proposed by Wheatley et al. (2016)
are shown in Figures 9 and 10.

0 0.2 0.4 0.6 0.8 1 0

5

104

6

8

·104

ρ

n

P

Figure 3. Impact of the number of branches n and the correlation coefficient ρ on the insurance
premium P (scenario as proposed by Edwards et al. (2016)).
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Figure 4. Left: impact of the number of branches n on the insurance premium; right: impact of the
correlation coefficient ρ on the insurance premium (scenario as proposed by Edwards et al. (2016)).
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Figure 5. Impact of the number of branches n and the correlation coefficient ρ on the insurance
premium P (scenario as proposed by Mastroeni et al. (2019)).
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Figure 6. Left: impact of the number of branches n on the insurance premium; right: impact of the
correlation coefficient ρ on the insurance premium (scenario as proposed by Mastroeni et al. (2019)).
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Figure 7. Impact of the number of branches n and the correlation coefficient ρ on the insurance
premium P (scenario as proposed by Lin et al. (2018)).
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Figure 8. Left: Impact of the number of branches n on the insurance premium; right: Impact of the
correlation coefficient ρ on the insurance premium (scenario as proposed by Lin et al. (2018)).
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Figure 9. Impact of the number of branches n and the correlation coefficient ρ on the insurance
premium P (scenario as proposed by Wheatley et al. (2016)).
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Figure 10. Left: impact of the number of branches n on the insurance premium; right: impact of the
correlation coefficient ρ on the insurance premium (scenario as proposed by Wheatley et al. (2016)).

In all pictures, we can see that a quasi-linear relationship occurs for both parameters.
Each parameter works as a booster for the impact of the other. The range due to the
proportional term with respect to the baseline case (i.e., no correlation and no branches)
is, however, different in each of the scenarios. We observe a very small range (less than
1%) in the scenario considered by Lin et al. (2018), while it approaches close to 50% in the
scenarios considered by Edwards et al. (2016) and Mastroeni et al. (2019). It may exceed
100% for the scenario adopted by Wheatley et al. (2016).

7. Conclusions

We have proposed a formula for the insurance premium in the case of correlated risks
considering a company with multiple sites (or a network of interconnected companies).
The formula is easy to apply and calls for a simple characterization of the correlated risks,
requiring just the first two moments (mean and variance) and the correlation coefficient
and representing a significant advantage over more complex characterization approaches.
We have also shown the resulting premium under several scenarios embodying different
probability models for incident frequency and associated losses. The results show that the
premium exhibits a quasi-linear relationship with both the number of branches and the
risk correlation coefficient among the branches. Thus, each of the two determinants acts as
a booster for the impact of the other. The impact of the probability models underlying the
risk scenarios is visible through the resulting range of the premium. A comparison with
the baseline case (no correlation and no branches) shows that the impact of correlation and
the number of branches varies from a few to several hundred percentage points.

As a future research stream, we envisage considering the impact of the incorrect
estimation of the breach frequency and associated losses, as well as the role of moral hazard
due to the insured not taking suitable countermeasures against cyber risks or not disclosing
correct information about its self-protection status.

Author Contributions: Authors contributed equally: methodology, L.M., A.M. and M.N.; writing
L.M., A.M. and M.N.; formal analysis L.M., A.M. and M.N.; conceptualization L.M., A.M. and M.N.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
Albadarneh, Aalaa, Israa Albadarneh, and Abdallah Qusef. 2015. Risk management in agile software development: A comparative

study. Paper presented at 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Amman, Jordan, November 3–5; pp. 1–6.



Risks 2023, 11, 167 16 of 18

Antonio, Yeftanus, Sapto Wahyu Indratno, and Suhadi Wido Saputro. 2021. Pricing of cyber insurance premiums using a markov-based
dynamic model with clustering structure. PLoS ONE 16: e0258867. [CrossRef]

Armenia, Stefano, Marco Angelini, Fabio Nonino, Giulia Palombi, and Mario Francesco Schlitzer. 2021. A dynamic simulation
approach to support the evaluation of cyber risks and security investments in smes. Decision Support Systems 147: 113580.
[CrossRef]

Aven, Terje. 2010. On how to define, understand and describe risk. Reliability Engineering & System Safety 95: 623–31.
Aven, Terje, and Louis Anthony Cox, Jr. 2016. National and global risk studies: How can the field of risk analysis contribute? Risk

Analysis 36: 186–90. [CrossRef] [PubMed]
Aven, Terje, and Roger Flage. 2020. Foundational challenges for advancing the field and discipline of risk analysis. Risk Analysis 40

(Suppl. 1): 2128–36. [CrossRef]
Babcock, Bruce A., E. Kwan Choi, and Eli Feinerman. 1993. Risk and probability premiums for cara utility functions. Journal of

Agricultural and Resource Economics 18: 17–24.
Bandyopadhyay, Tridib, Varghese Jacob, and Srinivasan Raghunathan. 2010. Information security in networked supply chains: Impact

of network vulnerability and supply chain integration on incentives to invest. Information Technology and Management 11: 7–23.
[CrossRef]

Bandyopadhyay, Tridib, Vijay S. Mookerjee, and Ram C. Rao. 2009. Why it managers do not go for cyber-insurance products.
Communications of the ACM 52: 68–73. [CrossRef]

Böhme, Rainer, and Galina Schwartz. 2010. Modeling cyber-insurance: Towards a unifying framework. Paper presented at Workshop
on the Economics of Information Security: WEIS, Cambridge, MA, USA, June 7–8.

Böhme, Rainer, and Gaurav Kataria. 2006. Models and measures for correlation in cyber-insurance. Paper presented at Workshop on
the Economics of Information Security: WEIS, Cambridge, UK, June 28–30; Volume 2, p. 3.

Böhme, Rainer, Stefan Laube, and Markus Riek. 2019. A fundamental approach to cyber risk analysis. Variance 12: 161–85.
Broner, Fernando, and Jaume Ventura. 2011. Globalization and risk sharing. The Review of Economic Studies 78: 49–82. [CrossRef]
Brunello, Giorgio. 2002. Absolute risk aversion and the returns to education. Economics of Education Review 21: 635–40. [CrossRef]
Bürger, Olga, Björn Häckel, Philip Karnebogen, and Jannick Töppel. 2019. Estimating the impact of it security incidents in digitized

production environments. Decision Support Systems 127: 113144. [CrossRef]
Covello, Vincent T., and Jeryl Mumpower. 1985. Risk analysis and risk management: An historical perspective. Risk Analysis 5: 103–20.

[CrossRef]
Da, Gaofeng, Maochao Xu, and Peng Zhao. 2021. Multivariate dependence among cyber risks based on l-hop propagation. Insurance:

Mathematics and Economics 101: 525–46. [CrossRef]
David, Mihaela. 2015. Auto insurance premium calculation using generalized linear models. Procedia Economics and Finance 20: 147–56.

[CrossRef]
Dhaene, Jan, Michel Denuit, Marc J Goovaerts, Rob Kaas, and David Vyncke. 2002. The concept of comonotonicity in actuarial science

and finance: Theory. Insurance: Mathematics and Economics 31: 3–33. [CrossRef]
Dou, Wanchun, Wenda Tang, Xiaotong Wu, Lianyong Qi, Xiaolong Xu, Xuyun Zhang, and Chunhua Hu. 2020. An insurance theory

based optimal cyber-insurance contract against moral hazard. Information Sciences 527: 576–89. [CrossRef]
Edwards, Benjamin, Steven Hofmeyr, and Stephanie Forrest. 2016. Hype and heavy tails: A closer look at data breaches. Journal of

Cybersecurity 2: 3–14. [CrossRef]
Eeckhoudt, Louis, Christian Gollier, and Harris Schlesinger. 2011. Economic and Financial Decisions under Risk. Princeton: Princeton

University Press.
Eling, Martin. 2020. Cyber risk research in business and actuarial science. European Actuarial Journal 10: 303–33. [CrossRef]
Erb, Claude B., Campbell R. Harvey, and Tadas E. Viskanta. 1996. Political risk, economic risk, and financial risk. Financial Analysts

Journal 52: 29–46. [CrossRef]
Fahrenwaldt, Matthias A., Stefan Weber, and Kerstin Weske. 2018. Pricing of cyber insurance contracts in a network model.

ASTIN Bulletin: The Journal of the IAA 48: 1175–218. [CrossRef]
Fielder, Andrew, Emmanouil Panaousis, Pasquale Malacaria, Chris Hankin, and Fabrizio Smeraldi. 2016. Decision support approaches

for cyber security investment. Decision Support Systems 86: 13–23. [CrossRef]
Florackis, Chris, Christodoulos Louca, Roni Michaely, and Michael Weber. 2023. Cybersecurity risk. The Review of Financial

Studies 36: 351–407. [CrossRef]
Frigo, Mark L., and Richard J. Anderson. 2011. What is strategic risk management? Strategic Finance 92: 21.
Herath, Hemantha, and Tejaswini Herath. 2011. Copula-based actuarial model for pricing cyber-insurance policies. Insurance Markets

and Companies: Analyses and Actuarial Computations 2: 7–20.
Hillairet, Caroline, Olivier Lopez, Louise d’Oultremont, and Brieuc Spoorenberg. 2022. Cyber-contagion model with network structure

applied to insurance. Insurance: Mathematics and Economics 107: 88–101. [CrossRef]
Hillson, David, and Ruth Murray-Webster. 2017. Understanding and Managing Risk Attitude. London: Routledge.
Hoang, Dinh Thai, Ping Wang, Dusit Niyato, and Ekram Hossain. 2017. Charging and discharging of plug-in electric vehicles (pevs) in

vehicle-to-grid (v2g) systems: A cyber insurance-based model. IEEE Access 5: 732–54. [CrossRef]

http://doi.org/10.1371/journal.pone.0258867
http://dx.doi.org/10.1016/j.dss.2021.113580
http://dx.doi.org/10.1111/risa.12584
http://www.ncbi.nlm.nih.gov/pubmed/26914151
http://dx.doi.org/10.1111/risa.13496
http://dx.doi.org/10.1007/s10799-010-0066-1
http://dx.doi.org/10.1145/1592761.1592780
http://dx.doi.org/10.1093/restud/rdq015
http://dx.doi.org/10.1016/S0272-7757(01)00062-0
http://dx.doi.org/10.1016/j.dss.2019.113144
http://dx.doi.org/10.1111/j.1539-6924.1985.tb00159.x
http://dx.doi.org/10.1016/j.insmatheco.2021.09.005
http://dx.doi.org/10.1016/S2212-5671(15)00059-3
http://dx.doi.org/10.1016/S0167-6687(02)00134-8
http://dx.doi.org/10.1016/j.ins.2018.12.051
http://dx.doi.org/10.1093/cybsec/tyw003
http://dx.doi.org/10.1007/s13385-020-00250-1
http://dx.doi.org/10.2469/faj.v52.n6.2038
http://dx.doi.org/10.1017/asb.2018.23
http://dx.doi.org/10.1016/j.dss.2016.02.012
http://dx.doi.org/10.1093/rfs/hhac024
http://dx.doi.org/10.1016/j.insmatheco.2022.08.002
http://dx.doi.org/10.1109/ACCESS.2017.2649042


Risks 2023, 11, 167 17 of 18

Johnson, Benjamin, Aron Laszka, and Jens Grossklags. 2014. How many down? toward understanding systematic risk in networks.
Paper presented at 9th ACM Symposium on Information, Computer and Communications Security, Kyoto, Japan, June 4–6;
pp. 495–500.

Kaas, Rob, Marc Goovaerts, Jan Dhaene, and Michel Denuit. 2008. Modern Actuarial Risk Theory: Using R. Berlin/Heidelberg: Springer
Science & Business Media, Volume 128.

Kaplan, Stan. 1991. Risk assessment and risk management-basic concepts and. In Risk Management: Expanding Horizons in Nuclear
Power and Other Industries. Boca Raton: CRC Press, p. 11.

Kaplan, Stanley, and B. John Garrick. 1981. On the quantitative definition of risk. Risk Analysis 1: 11–27. [CrossRef]
Khalili, Mohammad Mahdi, Mingyan Liu, and Sasha Romanosky. 2019. Embracing and controlling risk dependency in cyber-insurance

policy underwriting. Journal of Cybersecurity 5: tyz010. [CrossRef]
Khalili, Mohammad Mahdi, Parinaz Naghizadeh, and Mingyan Liu. 2018. Designing cyber insurance policies: The role of pre-screening

and security interdependence. IEEE Transactions on Information Forensics and Security 13: 2226–39. [CrossRef]
Kröger, Wolfgang. 2008. Critical infrastructures at risk: A need for a new conceptual approach and extended analytical tools. Reliability

Engineering & System Safety 93: 1781–87.
Kunreuther, Howard, and Geoffrey Heal. 2003. Interdependent security. Journal of Risk and Uncertainty 26: 231–49. [CrossRef]
Laeven, Roger J. A., and Marc J. Goovaerts. 2008. Premium calculation and insurance pricing. Encyclopedia of Quantitative Risk Analysis

and Assessment 3: 1302–14.
Landsman, Zinoviy, and Michael Sherris. 2001. Risk measures and insurance premium principles. Insurance: Mathematics and

Economics 29: 103–15. [CrossRef]
Lau, Pikkin, Lingfeng Wang, Zhaoxi Liu, Wei Wei, and Chee-Wooi Ten. 2021. A coalitional cyber-insurance design considering power

system reliability and cyber vulnerability. IEEE Transactions on Power Systems 36: 5512–24. [CrossRef]
Lau, Pikkin, Wei Wei, Lingfeng Wang, Zhaoxi Liu, and Chee-Wooi Ten. 2020. A cybersecurity insurance model for power system

reliability considering optimal defense resource allocation. IEEE Transactions on Smart Grid 11: 4403–14. [CrossRef]
Lima Ramos, Pedro. 2017. Premium calculation in insurance activity. Journal of Statistics and Management Systems 20: 39–65. [CrossRef]
Lin, Zhaoxin, Travis Sapp, Rahul Parsa, Jackie Rees Ulmer, and Chengxin Cao. 2018. Pricing cyber security insurance. Journal of

Mathematical Finance 12: 46–70. [CrossRef]
Liu, Zhaoxi, Wei Wei, Lingfeng Wang, Chee-Wooi Ten, and Yeonwoo Rho. 2020. An actuarial framework for power system reliability

considering cybersecurity threats. IEEE Transactions on Power Systems 36: 851–64. [CrossRef]
Lowrance, William W. 1976. Of Acceptable Risk: Science and the Determination of Safety. Los Altos: William Kaufmann Inc., p. 192

[CrossRef]
Maglaras, Leandros A., Ki-Hyung Kim, Helge Janicke, Mohamed Amine Ferrag, Stylianos Rallis, Pavlina Fragkou, Athanasios Maglaras,

and Tiago J Cruz. 2018. Cyber security of critical infrastructures. ICT Express 4: 42–45. [CrossRef]
Marotta, Angelica, Fabio Martinelli, Stefano Nanni, Albina Orlando, and Artsiom Yautsiukhin. 2017. Cyber-insurance survey. Computer

Science Review 24: 35–61. [CrossRef]
Martinelli, Fabio, Albina Orlando, Ganbayar Uuganbayar, and Artsiom Yautsiukhin. 2018. Preventing the drop in security investments

for non-competitive cyber-insurance market. In Risks and Security of Internet and Systems: Proceedings of the 12th International
Conference, CRiSIS 2017, Dinard, France, 19–21 September 2017. Revised Selected Papers 12. Cham: Springer, pp. 159–174.

Mastroeni, Loretta, Alessandro Mazzoccoli, and Maurizio Naldi. 2019. Service level agreement violations in cloud storage: Insurance
and compensation sustainability. Future Internet 11: 142. [CrossRef]

Mazzoccoli, Alessandro, and Maurizio Naldi. 2020a. The expected utility insurance premium principle with fourth-order statistics:
Does it make a difference? Algorithms 13: 116. [CrossRef]

Mazzoccoli, Alessandro, and Maurizio Naldi. 2020b. Robustness of optimal investment decisions in mixed insurance/investment
cyber risk management. Risk Analysis 40: 550–64. [CrossRef]

Mazzoccoli, Alessandro, and Maurizio Naldi. 2021. Optimal investment in cyber-security under cyber insurance for a multi-branch
firm. Risks 9: 24.

Mazzoccoli, Alessandro, and Maurizio Naldi. 2022. Optimizing cybersecurity investments over time. Algorithms 15: 211. [CrossRef]
Nagurney, Anna, and Shivani Shukla. 2017. Multifirm models of cybersecurity investment competition vs. cooperation and network

vulnerability. European Journal of Operational Research 260: 588–600. [CrossRef]
Naldi, Maurizio, and Alessandro Mazzoccoli. 2018. Computation of the insurance premium for cloud services based on fourth-order

statistics. International Journal of Simulation: Systems, Science and Technology 19: 1–6. [CrossRef]
Olivieri, Annamaria, and Ermanno Pitacco. 2015. Introduction to Insurance Mathematics: Technical and Financial Features of Risk Transfers.

Berlin/Heidelberg: Springer.
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