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Abstract: In a recent paper “Stochastic Chain-Ladder Reserving with Modeled General Inflation”, the
effects of modeled general inflation on non-life claims reserving were studied using, along with the
so called “market approach”, a stochastic two-factor market model, characterized by deterministic
expected inflation. In the present paper, we repeat the same study, again with the market approach,
using a three-factor market model which extends the two-factor model by including stochastic
expected inflation. After detailing the theoretical model and estimating the relevant parameters on
the same market data used in “Stochastic Chain-Ladder Reserving with Modeled General Inflation”,
we repeat the application to claims reserving presented in that paper and compare the results obtained
with the two models. With these data, it is found that the inclusion of stochastic expected inflation
produces a non-negligible increase in the reserve solvency capital requirement under the one-year
view.

Keywords: claims reserving; general inflation; claims inflation; stochastic chain-ladder; reserve risk;
stochastic expected inflation; nominal interest rates; real interest rates

1. Introduction

In a recent paper (De Felice and Moriconi (2023), DFM23 for short), the problem is
considered of explicitly including general inflation in non-life stochastic claims reserving
using market-consistent approaches. An important issue discussed in DFM23 is that, given
the presence of inflation-linked securities regularly quoted in the market, inflation risk
should not be considered unhedgeable, in the sense defined in the Solvency II framework.
Therefore, the technical provisions should not be obtained by adding to the best estimate an
inflation risk margin calculated by the insurer. For hedgeable liabilities, the risk margin
is actually a market risk premium, which is to be considered incorporated in the market
prices, and which therefore must be derived using a pricing model estimated on market
data. This problem is well-known in the market-consistent valuation of life insurance
products, where the interest rate risk plays an important role, and many insurance benefits,
such as those provided by profit-sharing policies, must be valued—and hedged—using
complex market pricing models. These methods, however, are not part of the toolkit of a
typical non-life actuary, essentially because in non-life insurance applications, interest rate
risk is considered immaterial. The problem of including inflation risk in non-life claims
reserving now seems to reopen the question.

A correct assessment of the inflation effects requires the use of appropriate models for real
and nominal interest rates. In particular, only by using these methodologies can the effect on
the capital requirements, as defined in a Solvency II internal model, be properly measured and
controlled; only these methods can show the possible immateriality of these risks. Obviously,
there remains the need to consider an explicit risk margin for technical risks (i.e., pure claims
development uncertainty), since those risks remain intrinsically unhedgeable.

All of these issues have been addressed and analyzed in DFM23, but, for simplicity’s
sake, a model with deterministic (future) expected inflation was used in that paper. In
the present paper, an alternative model is proposed that also includes uncertainty on
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the expected inflation rates. In this valuation framework, a correct assessment of the
market risk premia is clearly a central issue. As is well-known, in pricing models based
only on the no-arbitrage principle (also referred to as partial equilibrium models), which
are typically used for asset trading purposes, the functional form of the risk premia is
undetermined, since it cannot be derived by the model assumptions, and for this reason,
it is usually given exogenously. This could imply some degree of arbitrariness in the
valuations. To avoid this problem, we propose in this paper a general equilibrium model,
where the market premia for the relevant risk factors are consistently derived by the model
assumptions. Three risk factors are required to correctly model our problem, and some
basic concepts in financial economics need to be used. However, we try to maintain
our approach at the simplest possible level, referring to an elementary real and nominal
economic framework. Moreover, the real interest rate and the expected inflation rate are
modeled as Ornstein–Uhlembeck processes, which provides an essentially Gaussian model
that is easy to understand and apply.

A three-factor model with an identical structure but based on “mean-reverting square-
root” processes was proposed in (Moriconi 1995). As is well-known, these Cox–Ingersoll–
Ross (CIR)-type processes have the property of precluding negative nominal interest rates,
a feature considered necessary at the time but which became unacceptable after the period
of negative nominal rates that began in 2016 in the market. Instead of correcting the model
à la CIR using mathematically complex devices, we choose here the path of simplicity, using
Gaussian, Vasicek-type processes, notwithstanding some of their empirical weaknesses.

The proposed model can be easily used for pricing and hedging interest rate deriva-
tives and inflation-linked securities. An example of a not very different model that pursues
these objectives is the one proposed by Jarrow and Yildirim (2003). However, since our aim
is to provide a market-consistent stochastic version of the actuarial approach typically used
in non-life insurance (and illustrated in DFM23), we will limit ourselves to developing
pricing formulas for real, nominal, and inflation pure discount bonds, without dealing
with problems, for example, of financial option pricing. On the other hand, since our
main purpose is to derive the probability distribution of the year-end obligations of a
non-life insurer, we are particularly interested, in addition to the risk-neutral probabilities
required for pricing, in the natural (“real world”) probabilities, which are the basis for
risk management.

The present paper is organized as follows. The structure of the three-factor model is
presented in Section 2. We first describe the real interest rate component of the model and
derive the explicit expression of real zero-coupon bonds. We then introduce money into
this real economy framework and derive the two-factor model for the CPI, which provides
the inflation component of the model. The explicit expression for the inflation discount
factors is derived and the nominal interest rates are obtained from the Fisher relation. The
estimation of the model is presented in Section 3, where the parameters of the inflation
component and the real interest rate component are estimated in two separated steps and
the real interest rate term structure is then calibrated on market data using the Hull–White
model. In Section 4, the model is applied to non-life claims reserving, using the same data
and actuarial assumptions as in DFM23. The differences in the numerical results from
the two-factor model are highlighted and discussed. In order to make the paper more
self-contained, some fundamental results on Ornstein–Uhlembeck processes are provided
in Appendix A. In Appendix B, the general valuation equation in the nominal economy
setting is derived, which is useful for clarifying the “economic” derivation of the inflation
discount factor presented in the text of the paper. The essential details for the application
of the Hull–White model are presented in Appendix C.

2. The Three-Factor Market Model

In order to model the inflation effects, measured by the percentage changes of a
specified Consumer Price Index (CPI), we consider a simple general equilibrium model
under uncertainty.
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2.1. The Real Economy Setting

We start considering an elementary real economy, where a single consumption good B
is traded. In our inflation problem, B will be interpreted as the basket of goods and services
which defines the reference CPI.

Assumptions on the market. In this economy, all values (and all securities) are measured in
terms of units of B, which will be denoted by 1. We shall consider a market defined in
continuous time which is perfect and frictionless; essentially, all agents are price taker, securi-
ties are infinitely divisible, there are no taxes or transaction costs, and riskless arbitrage
opportunities are precluded. The representative agent in this market is non-satiated (he
prefers more to less) and risk-averse, with logarithmic individual utility function. This
agent allocates his wealth W(t) (measured in 1) seeking to maximize the expected utility
of consumption over a fixed time horizon. Moreover, all the securities to be priced in this
market are not explicitly dependent on wealth.

Real bonds and interest rates. Let us denote by V(t) the real value function at time t, that is,
the market price expressed in units of B at time t. The pricing problem of a real bond traded
in this market can be represented with some degree of generality by denoting by V(t; Yτ)
the real value at time t of the future payoff Yτ , where Y is a sequence of real cash-flows
to be received on a corresponding sequence τ of dates after t. The payoff Yτ can also be
stochastic, i.e., not known at time t. However, we shall consider only (default-)risk-free
bonds, i.e., bonds for which Yτ is known on dates τ and paid for certainty on those dates.

The simplest kinds of real bonds are the unit real zero-coupon bonds (ZCBs), i.e., the
bonds which provide the single payoff 1 at the maturity date T ≥ t. The time t price of this
ZCB with maturity T is denoted by

v(t, T) := V(t; 1T) .

If we consider a ZCB with deterministic payoff YT to be received at time T, we have,
to prevent arbitrages,

V(t; YT) = v(t, T)YT ,

that is, v(t, T) is the discount factor to be used to obtain the market price (or present value) of
this bond (for this reason, the unit ZCB is also referred to as a discount bond).

The (logarithmic) rate of return, the “log-return”, corresponding to the discount factor
v(t, T), is given by

hx(t, T) := − log v(t, T)
T − t

. (1)

The real instantaneous rate of interest x(t) at time t is defined as the rate of return of a ZCB
currently maturing, i.e.,

x(t) := lim
T→t

h(t, T) .

2.2. The Single-Factor Model for Real Interest Rates

Under uncertainty, at time t, the future prices and returns of real bonds are not known.
In order to model these prices and rates, they are represented as known functions of one
or more sources of uncertainty, or risk factors (also referred to as base variables). We shall
consider for the real interest rates a univariate stochastic model having x(t) as the single
risk factor. More specifically, we shall assume the following Markov property:

V(t; Yτ) = V(x(t), t; Yτ) ,

where the price V(t) at time t depends only on the current value x(t) of x. In this case, x(t)
is also referred to as the state variable.
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We assume that x(t) is a diffusion process described by the following stochastic
differential equation (SDE):

dx(t) = fx(x(t), t) dt + gx(x(t), t) dWx(t) , (2)

where Wx(t) is a Wiener process. The choice of the functions fx and gx, together with the
initial condition x(t) = xt, completely specifies the conditional probability distribution of
x(T) given xt for T > t.

We shall assume for this process the “Vasicek specifications” (see Vasicek (1977)), i.e.,
a mean-reverting drift fx and a constant diffusion coefficient g2

x. Precisely,{
fx(x(t), t) = αx (γx − x(t)), αx, γx constant, αx ≥ 0 ,

gx(x(t), t) = σx ≥ 0 constant .
(3)

With these fx and gx functions, the process (2) is a special case of the Ornstein–
Uhlenbeck (OU) process, which we characterize by the following SDE:

dz(t) = (a z(t) + b) dt + σ dWz(t), a, b ∈ R, σ > 0 . (4)

In Appendix A, we provide some fundamental results on the z(t) process that will be useful
for deriving many important properties of our model.

A first property is that in the Vasicek case, the conditional probability distribution of
x(T) given x(t), for T = t + τ ≥ t, is normal, with mean

E
[
x(T)|x(t)

]
= γx −

(
γx − x(t)

)
e−αxτ (5)

and variance

Var
[
x(T)|x(t)

]
=

σ2
x

2 αx

(
1− e−2 αxτ

)
, (6)

which is independent of x(t). This normality property is Result A1 in Appendix A.1,
and expressions (5) and (6) are obtained by (A4) and (A5), respectively, after the changes
a = −αx and b = αxγx (and, obviously, interpreting the OU process z(t) as x(t)).

A fundamental tool for no-arbitrage pricing in a perfect market is the so-called hedging
argument. It essentially consists in composing a portfolio of securities that is instantaneously
riskless and then requiring that, to avoid arbitrages, the instantaneous return on this
portfolio is equal to the risk-free rate. In a diffusion model, this condition provides the
general valuation equation (GVE), a deterministic differential equation that must be satisfied
by the price of all securities traded in the market.

In our model, the hedging argument requires that the price V(t) of any real security
which depends only on x(t) and t must satisfy the no-arbitrage relation:1

Et

(
dV(t, xt)

V(t, xt) dt

)
= x(t) + φx(t, xt)

∂V(t, xt)

V(t, xt) ∂x
. (7)

This expression prescribes that the instantaneous expected return of V must be equal to
the instantaneous real interest rate x plus an additional return that reflects the market risk
premium for the risk factor x. This excess return is given by a factor (∂V/∂x)/V expressing
the semi-elasticity of V with respect to x, multiplied by the risk premium coefficient φx(t, xt).
The form of this coefficient is to be specified, since, by Ito’s lemma,

Et

(
dV(t, xt)

dt

)
=

1
2

g2
x

∂2V
∂x2 + fx

∂V
∂x

+
∂V
∂t

, (8)
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expression (7) can be written as

1
2

g2
x

∂2V
∂x2 + ( fx − φx)

∂V
∂x

+
∂V
∂t

= x V . (9)

This deterministic (parabolic) partial differential equation is the GVE of our model. Once
the coefficients fx, gx, and φx are specified, the price V(t) of any security will be obtained
as the solution of (9) under the appropriate boundary conditions (essentially determined
by the contractual characteristics of the security). In particular, for the zero-coupon bond
providing the payoff YT at time T ≥ t, this condition is V(T) = YT .

Another fundamental result for our pricing problem is obtained by the well-known
Feynman–Kac theorem. According to this theorem, the solution of the GVE (9) with
terminal condition V(T) = YT can be expressed in integral (i.e., in expectation) form as

V(t; YT) = ĚR
t

(
e−
∫ T

t x(s)ds YT

)
, (10)

where ĚR
t (·) denotes the conditional expectation taken with respect to the so-called risk-

neutral probability measure P̌R, that is, the probability determined by the risk-adjusted drift
f̌x := fx − φx and the diffusion coefficient g2

x. Since fx and gx have been chosen in the
Vasicek form, to completely define the pricing problem, it remains to specify the form of
the risk premium φx.

2.3. The Market Risk Premium and the ZCB Pricing Formula
2.3.1. Equilibrium and the Market Risk Premium

In a partial equilibrium model, where prices are determined solely by no-arbitrage
arguments, the form of the risk premia must be given exogenously, which introduces some
degree of arbitrariness into the pricing problem. In a general equilibrium model, instead,
the market risk premium for a given state variable is endogenously determined, consistent
with the model assumptions. This consistency property motivated our choice of a general
equilibrium approach, given that risk premia can have a significant impact on the level
of prices. It can be shown (see Cox et al. (1985)) that in our model, φx is given by the
covariance of changes in the state variable x(t) with percentage changes in the optimally
allocated wealth W∗(t) (the value of the so-called market portfolio), i.e.,

φx(x(t), t) = Cov

(
dW∗(t)

W∗(t) dt
, dx(t)

)
. (11)

With arguments similar to those in (Cox et al. 1985), we find that in our model, the
real interest rate risk premium must be an affine function of x(t):

φx = η − π x(t), η, π constant. (12)

With this choice, the risk-adjusted drift is

f̌x = (αxγx − η)− (αx − π) x(t) , (13)

and the pricing problem (9), or (10), is completely defined. It is convenient to write the
risk-adjusted drift as a function of risk-adjusted “mean-reverting” parameters,2 that is,

f̌x = α̌xγ̌x − α̌xx(t), with α̌x := αx − π, γ̌x :=
αxγx − η

αx − π
.
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2.3.2. The ZCB Pricing Formula

For our purposes, it is sufficient to consider the pricing of the real unit ZCB. In this
case, we have

v(t, T) = ĚR
t

(
e−
∫ T

t x(s)ds
)

and we find that the following closed-form expression holds, for T = t + τ ≥ 0:

v(t, t + τ) = Ax(τ) e−x(t) Bx(τ) , (14)

with

Bx(τ) :=
1− e−α̌x τ

α̌x
(15)

and

Ax(τ) := exp


(

γ̌x −
σ2

x
2 α̌2

x

) (
Bx(τ)− τ

)
− σ2

x
4 α̌x

B2
x(τ)

 .

In order to derive this expression, let us denote by ϕX(s) = E
(

es X
)

, s ∈ R, the
moment-generating function of the random variable X. As is well-known, in the normal
case X ∼ N (µ, σ2), one has ϕX(s) = es µ+s2σ2/2. The ZCB price v(t, T) is the exponential
expectation ĚR

t

(
e−X(t,T)

)
with X(t, T) :=

∫ T
t x(s)ds. Using Result A2 in Appendix A.3,

after the changes

z(t) = x(t), Z(t, T) = X(t, T), a = −α̌x, b = α̌x γ̌x ,

we find that X(t, T) is normal, so

v(t, T) = ϕX(t,T)(−1) = exp
{
−Et

(
X(t, T)

)
+

1
2

Vart
(
X(t, T)

)}
,

which provides (14) if the expressions (A14) and (A15) of Result A2 are used, respectively,
for the mean and the variance.

Expression (14) plays the role of the fundamental pricing formula in our three-factor
model since, as we will see, the expression of the inflation discount factor and that of
nominal ZCB price can also be considered variants of this formula.

Expression (14) implies

hx(t, t + τ) = − log Ax(τ)

τ
+ x(t)

B(τ)
τ

. (16)

Hence, the log-return at time t, for the given τ, is an affine function of the risk factor x(t).
Moreover, it is immediately verified that

lim
τ→0

hx(t, t + τ) = x(t) . (17)

2.3.3. The Sensitivity Function and the Effects of Mean-Reversion

For a better interpretation even of some of the results of our actuarial applications, it
is useful to recall some properties of the function Bx(τ) defined in (15). By (14),

Bx(τ) = −
∂v(t, t + τ)

v(t, t + τ) ∂x
. (18)

Hence, Bx(τ) is equal to (minus) the semi-elasticity of the price v with respect to x. It
provides the percentage changes in the bond price attributable to an unexpected shift in the
risk factor x and is then also referred to as the sensitivity of v w.r.t. x. For this reason, Bx(τ)
is typically used as a measure of the real interest rate risk of the ZCB v(t, t + τ). Bx(τ) is
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measured in time units, is zero for τ = 0, and is monotonically increasing with τ. If α̌x > 0
(genuine mean-reversion), then Bx(τ) < τ for τ > 0 and has a horizontal asymptote at
level 1/α̌x; the mean-reversion produces a ceiling on the interest rate risk. If α̌x < 0 (“mean
repulsion”), then Bx(τ) > τ for τ > 0 and diverges for τ → ∞. The function Bx(τ) for
different values of α̌x is illustrated in the left figure of Table 1.

Table 1. Functions Bx(τ) and their horizontal asymptotes (left) and functions Bx(τ)/τ (right) for
α̌x = 0.05 (blue lines), α̌x = 0.1 (green lines), and α̌x = 0.5 (red lines).

In our applications, it will be important to consider the variance of future values of
the discount factors v(T, T + τ) for T = t + τ ≥ 0. For the corresponding log-returns, we
have, by (16),

Var
(
h(T, T + τ)|x(t)

)
= Var

(
x(T)|x(t)

) (Bx(τ)

τ

)2

, (19)

where the conditional variance of x(T), given by (6), depends on the parameters σx, αx. As
illustrated in the right figure of Table 1, for α̌x > 0, the factor Bx(τ)/τ as a function of τ
takes values in (0, 1], is monotonically decreasing, and decreases more rapidly for increasing
values of α̌x. This illustrates the important role that the risk-neutral mean-reversion plays
in reducing the variability of returns and discount factors when the maturity changes.

2.3.4. Simulation of Future Prices and Rates

Using expression (14), at time t, future values of ZCB prices, i.e., future discount
factors v(t′, t′ + τ) at time t′ > t, can be simulated at time t as:

ṽ(t′, t′ + τ) = Ax(τ) e−x̃(t′) Bx(τ).

The conditional mean and variance of the normal variable x(t′) are given by (5) and (6),
and the random variable v(t′, t′ + τ) is lognormal. Of course, hx(t′, t′ + τ) is normal.

2.4. Introducing Money: The Two-Factor Model for the Price Index

Obviously, inflation effects can only occur when money is present in the economy.
Therefore, to model inflation, we introduce money in this real market and denote by 1 one
unit of money (say, EUR 1). We denote by p(t) the price in units of money of one unit of
the reference basket B which defines the CPI. In this simple model, we assume that the
introduction of money has no effects on the underlying equilibrium and money is only a
measure of nominal value, that is, p(t) is simply the number of 1 needed for receiving one 1
at time t. However, this is sufficient for modeling nominal bonds.
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Let us denote by V(t) the nominal value function at time t, that is, the market price
expressed in EUR at time t. The general relation between nominal and real price is

V(t) = p(t)V(t) , (20)

because receiving one real unit, 1, at time t is equivalent to receiving p(t) nominal units,
1, at the same date. Let us consider the real value V(t; 1T) of a bond which provides with
certainty the unit nominal payoff 1T at maturity T ≥ t. Since, by relation (20), 1T = p(T) 1T ,
to prevent arbitrage, the real value of this bond can be represented by

V(t; 1T) = V
(
t; 1/p(T)

)
.

Then, for the nominal unit ZCB price v(t, T), i.e., the money value at time t of one
money unit at time T, we have, again by relation (20),

v(t, T) = p(t)V
(
t; 1/p(T)

)
.

The same argument applies to more general nominal bonds. Therefore, in order to model
nominal bond prices—or, equivalently, to model prices of the form V

(
t; 1/p(T)

)
—we

have to extend the model for x(t) by making appropriate assumptions on the stochastic
dynamics of p(t).

2.4.1. The Two-Factor Model for the Price Index

We assume that the CPI is a diffusion process described by the following SDE:

dp(t) = fp(p(t), t) dt + gp(p(t), t) dWp(t) , (21)

with {
fp(p(t), t) = y(t) p(t) ,

gp(p(t), t) = σp p(t), σp > 0 .
(22)

Since Et

(
dWp(t)

)
= 0, one has

y(t) = Et

(
dp(t)
p(t) dt

)
. (23)

Therefore, y(t) is the expected instantaneous rate of inflation at time t. If y(t) is deterministic,
the CPI process is a geometric Brownian motion. However, in order to obtain a more
realistic model, we assume that y(t) is also stochastic.

Our assumption is that the expected instantaneous inflation rate is a diffusion process
described by the following SDE:

dy(t) = fy(y(t), t) dt + gy(y(t), t) dWy(t) , (24)

with {
fy(y(t), t) = αy(γy − y(t)), αy, γy constant, αy > 0 ,

gy(y(t), t) = σy, σy > 0 constant .
(25)

With this Vasicek specification, y(t) is also an Ornstein–Uhlembeck process.
As concerns the correlation structure, we assume

Covt[dWy(t), dWp(t)] = ρ dt, ρ ∈ [−1, 1] constant ,

and
Covt[dWx(t), dWy(t)] = Covt[dWx(t), dWp(t)] = 0 . (26)
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Assumptions (26) state the independence between real and nominal quantities and
have important consequences. First of all, the form of the market risk premium φx is the
same as in (12) and the market risk premia for the new two state variables are zero:

φy(t) = φp(t) = 0 , (27)

since property (11) also holds for the nominal quantities φy and φp and W∗(t) is a real
quantity.

2.4.2. The Inflation Discount Factor and the Fisher Relation

Since the real payoff Yτ is independent of p and y, the price of real bonds V(t; Yτ)
is still obtained by the univariate model for x(t). In particular, v(t, T) still has the Vasicek
form (14).

As concerns V(t; 1/p(T)), we have, by extension of (10):

V

(
t;

1
p(T)

)
= ĚR

t

(
e−
∫ T

t x(s)ds 1
p(T)

)
,

where now the risk-neutral measure P̌R is three-dimensional. However, by the indepen-
dence assumptions (26), we have

V

(
t;

1
p(T)

)
= ĚR

t

(
e−
∫ T

t x(s)ds
)

ĚR
t

(
1

p(T)

)
= v(t, T) ĚR

t

(
1

p(T)

)
.

Hence,

v(t, T) = v(t, T) ĚR
t

(
p(t)
p(T)

)
.

For the expectation on the right-hand side, we observe that, since in the real economy,
the risk premia φy and φp are set to zero, the relevant risk-neutral measure is equal to the
natural probability measure. We define the folloing:

u(t, T) := ĚR
t

(
p(t)
p(T)

)
= Et

(
p(t)
p(T)

)
,

which will be referred to as the inflation discount factor on the time interval [t, T]. Hence,
we have

v(t, T) = v(t, T) u(t, T) . (28)

Expression (28) can be referred to as the Fisher relation in multiplicative form. As we
shall see, since y(t) is stochastic, future expectations, i.e., u(t′, T) for t < t′ < T, are not
known at time t. That is, like future real discount factors, future inflation discount factors
too are stochastic.

If we consider the inflation and the nominal log-returns,

hy(t, T) := − log u(t, T)
T − t

, hr(t, T) := − log v(t, T)
T − t

, (29)

expression (28) provides
hr(t, T) = hx(t, T) + hy(t, T) ,

where hx(t, T) is given by (1). This is the celebrated Fisher relation in its classical form,
representing the nominal interest rate as the sum of the real interest rate and the expected
inflation rate.
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2.4.3. The Expression for the Inflation Discount Factor

Let us define the CPI logarithmic price ratio on the time period [t, T]:

L(t, T) = log

(
p(T)
p(t)

)
.

Of course,

u(t, T) := Et

(
p(t)
p(T)

)
= Et

(
e−L(t,T)

)
. (30)

Using Result A3 in Appendix A.4, with a = −αy and b = αy γy, for T = t + τ ≥ t, the
random variable L(t, T) is normal, with mean

µL(t, T) := Et
(

L(t, T)
)
= y(t)By(τ) + γy

(
τ − By(τ)

)
− 1

2
σ2

p τ (31)

and variance

σ2
L(t, T) := Vart

(
L(t, T)

)
= σ2

p τ −
(

σ2
y

α2
y
+ 2

ρσyσp

αy

)
(By(τ)− τ)−

σ2
y

2 αy
B2

y(τ) , (32)

where By(τ) is given by β(τ) with a = −αy, that is,

By(τ) :=
1− e−αy τ

αy
. (33)

It is important to note that these expressions are independent of the current level p(t) of
the CPI. Furthermore, given the model parameters, the variance σ2

L(t, T) only depends on
τ = T − t and the mean µL(t, T) depends on t only through y(t).

Using (31) and (32), an expression for u(t, T) is immediately obtained by computing
the following moment-generating function:

ϕL(t,T)(−1) = e−µL(t,T)+ 1
2 σ2

L(t,T) . (34)

We obtain

u(t, t + τ) = Ay(τ) e−
(

y(t)−σ2
p

)
By(τ) , (35)

where By(τ) is given by (33) and

Ay(τ) := exp


(

γy − σ2
p −

ρ σyσp

αy
−

σ2
y

2 α2
y

)(
By(τ)− τ

)
−

σ2
y

4 αy
B2

y(τ)

. (36)

For the inflation discount factor, the same properties already illustrated for the real
discount factor hold; at time t, the inflation log-returns are affine functions of y(t), and
future values u(t′, T) and hy(t′, T), for t < t′ < T, are, respectively, lognormally and
normally distributed. Moreover, it is easily verified that

lim
τ→0

hy(t, t + τ) = y∗(t) := y(t)− σ2
p . (37)

For the function By(τ) given by (33), the same properties and the same interpretation
hold as for Bx(τ). By(τ) is a time measure of expected inflation risk, providing the sensi-
tivity of the inflation discount factor u(t, t + τ) to the risk factor y(t). The only difference
is that, being that αy is the natural risk reversion parameter, it is positive by assumption,
so only the “capped” behavior (asymptote at 1/αy) is possible for By(τ); the difference
τ − By(τ) is strictly positive and monotonically increasing with τ > 0.
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2.4.4. Simulation of Future Rates and Prices

Also in this case, expression (35) allows us to easily simulate at time t future inflation
discount factors as lognormal variables. More interesting for our applications, future values
p(T), T > t, of the CPI are also simulated as lognormal, that is,

p̃(T) = p(t) eL̃(t,T)) = p(t) eµl(t,T)+σL(t,T) ε̃ , (38)

with ε standard normal. Taking account of (34), expression (38) can be also written as

p̃(T) = p(t)
1

u(t, T)
e

1
2 σ2

L(t,T)+σL(t,T) ε̃ . (39)

This expression is important because if the discount factors u(t, T) can be observed in
the market (as will be the case in our applications), future values of the CPI can be simulated
in a market-consistent manner, i.e., consistent with the current market expectations on
future inflation. This is equivalent to posing µL(t, T) = − log u(t, T) + σ2

L(t, T)/2. In
this case, since y(t) and γy do not enter into the expression of the variance σ2

L(t, T), their
observation or estimation is not required for the simulations of p(T).

Remark 1. In the two-factor model used in DFM23, where y(t) is deterministic, the risk-neutral
inflation discount factor is defined as

ǔ(t, T) := 1
/

Ěp
t

(
p(T)
p(t)

)
= 1

/
Ěp

t

(
eL(t,T)

)
,

where the expectation is taken w.r.t. the risk-neutral probability measure P̌p of the price process p(t) in
the nominal economy setting and we use again the definition L(t, T) = log

(
p(T)/p(t)

)
. However,

in the two-factor model, one has Ěp
t

(
eL(t,T)

)
= e

∫ T
t (y(s)−σ2

p)ds, then ǔ(t, T) = e−
∫ T

t (y(s)−σ2
p)ds =

Ěp
t

(
e−L(t,T)

)
, as in (30). Thus, the two models are formally consistent. Of course, in the three-factor

model, the distribution of L(t, T) is more complex than in the case with deterministic expected inflation.

2.4.5. An “Economic” Derivation of the Inflation Discount Factor

Alternative derivations of expression (35) are available in the literature. We illustrate
one which is interesting for its economic meaning. This derivation originates by the
following observation. If we define a “new” Vasicek-type stochastic process y̌(t), with
drift parameters

α̌y = αy, γ̌y = γy − σ2
p −

ρ σy σp

αy
, (40)

the process y̌∗(t) := y̌(t)− σ2
p is described by the following SDE:

dy̌∗(t) = α̌y

(
γ̌y − y̌∗(t)

)
dt + σy dWy̌∗(t) .

By Result A2 in Appendix A.3, the stochastic integral Y̌∗(t, T) :=
∫ T

t y̌∗(s) ds is normal
with mean

µY∗(t, T) := Et

(
Y̌∗(t, T)

)
= y̌∗(t)By(τ) + γ̌y

(
τ − By(τ)

)
and variance

σ2
Y∗(t, T) := Vart

(
Y̌∗(t, T)

)
=

σ2
y

α2
y
(By(τ)− τ)−

σ2
y

2 αy
B2

y(τ) .
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Then, it is easily verified that expression (35) can also be obtained as

u(t, T) = Et

(
e−
∫ T

t y̌∗(s)ds
)

. (41)

The interesting point is that this is equivalent to saying

u(t, T) = ĚN
t

(
e−
∫ T

t y∗(s)ds
)

, (42)

where y∗(t) is as in (37) and ĚN
(·) is the expectation taken with respect to a probability

measure P̌N defined by the modified mean-reverting drift f̌y(y∗(t), t) = α̌y(γ̌y − y∗(t)).
By the Feynman–Kac theorem, this expression of u(t, T) is the solution, with terminal
condition u(T, T) = 1, of the following partial differential equation:

1
2

g2
y

∂2u
∂y2 + f̌y

∂u
∂y

+
∂u
∂t

= y∗ u , (43)

which has exactly the same form of the general valuation Equation (9) for the real ZCB
price v. As is shown in Appendix B, (43) is actually the general valuation equation for
the discount factor u(t, T) in the nominal economy setting, i.e., when the security prices
are measured in money units. In this setting, the market price of risk for the p(t) and y(t)
factors are different from zero, and take exactly the form which determines the risk-adjusted
drift f̌y and the modified process y∗(t).3 Then P̌N is actually the risk-neutral measure in

the nominal economy and ĚN
(·) is the corresponding expectation. These findings derive

from the more general priciple that our pricing model can be reformulated in a nominal
economy framework provided that the appropriate change of probability measure is made.

2.5. Nominal Interest Rates

By the Fisher relation (28) and expressions (14) and (35), we obtain the following
closed-form expression for the nominal discount factor:

v(t, t + τ) = Ax(τ)Ay(τ) e−x(t) Bx(τ)−
(

y(t)−σ2
p

)
By(τ) . (44)

The instantaneous nominal interest rate r(t) is naturally defined as

r(t) = lim
τ→0

hr(t, t + τ) ,

with hr(t, t + τ) given in (29). Therefore, by (17) and (37), we obtain the Fisher relation for
instantaneous returns:

r(t) = x(t) + y∗(t) .

Since v(t, t + τ) depends on the two risk factors x(t) and y(t), two different risk
measures must be used:

− ∂v(t, t + τ)

v(t, t + τ) ∂x
= Bx(τ), − ∂v(t, t + τ)

v(t, t + τ) ∂y
= By(τ), (45)

where Bx(τ) and By(τ) are the real interest rate measure and the expected inflation risk
measure previously defined.

Given the normality properties of x(T)|x(t) and y(T)|y(t), r(T)|r(t) is also normal,
with mean equal to the sum of the means minus σ2

p and, by the independence assumption,
with variance equal to the sum of the variances. Given the normality of the exponent in
(44), future nominal log-returns are normally distributed and future nominal ZCB prices
are lognormally distributed.
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3. Estimation of Model Parameters
3.1. Market Data

In order to estimate the parameters of the three-factor model, we used the same market
data, by type and observation period, as in DFM23. This allows the results obtained with
the three-factor model to be compared with those obtained with the two-factor model used
in that paper.

• Price index process. As the reference CPI we choose the Harmonised Index of Consumer
Prices (HICP), which is compiled by Eurostat and the euro-area national statistical
institutes and is published at the end of each month.
We use the monthly time series {p(θ)}θ∈Θm , where Θm is the set of month-end dates
in [January 2005, December 2022].

• Inflation discount factors. To estimate the parameters of the inflation component of the
model, we use the Zero-Coupon Inflation-Indexed Swaps (ZCIIS). On each trading day
t the ZCIIS rate iM(t, t + τ) is quoted on the market for time-to-maturity τ ∈ T M :=
{1, . . . , 10, 12, 15, 20, 25} years. As shown in DFM23 (see also Brigo and Mercurio
(2007)), the following no-arbitrage relations hold:

v(t, t + τ)
(
1 + iM(t, t + τ)

)τ
= v(t, t + τ), τ ∈ T M .

Hence,
(
1 + iM(t, t + τ)

)−τ provides the inflation discount factor uM(t, t+ τ) prevailing
on the market at time t for time-to-maturity τ.
We use the daily time series {iM(θ, θ + τ)}τ∈T M, θ∈Θ, where Θ is the set of trading
days in [1 January 2005, 30 December 2022]. As a usual market practice, swap rates
for the missing maturities in T M are computed by linear interpolation of quoted
swap rates. Hence, at each date θ ∈ Θ the swap rates iM(θ, θ + τ) are available for
τ ∈ T := {1, 2, . . . , 25} years. These maturities are usually sufficient for non-life
actuarial applications.

• Nominal discount factors. Since the real discount factors are not directly observable on
the market, we take data on the nominal risk-free discount factors, or rates, and then
use the Fisher relation.
In order to calibrate the model on the market at the valuation date t = 30 December
2022, we consider the risk-free nominal discount factors vM(t, t + τ) published by
EIOPA. We choose the version including volatility adjustment. However, in order to
obtain a complete estimate of the model, including the parameters of the natural
probability measure, we also take the triple A yield curves computed by the European
Central Bank (ECB) on each trading day (for details, see the Technical Notes download-
able from the ECB website European Central Bank (2023)). These curves are obtained
by interpolating the observed returns on triple A bonds with different maturities
using the Svensson model, a six-parameter smooth function. For the log-returns the
Svensson function has the following form:

hr(t, t + τ; π) =β0 + β1 ϑ1
1− e−τ/ϑ1

τ
+ β2

(
ϑ1

1− e−τ/ϑ1

τ
− e−τ/ϑ1

)

+ β3

(
ϑ2

1− e−τ/ϑ2

τ
− e−τ/ϑ2

)
,

(46)

with the parameter set π = (β0, β1, β2, β3, ϑ1, ϑ2) (to avoid confusion, we have re-
named the ECB parameters τ1 and τ2 as ϑ1 and ϑ2, respectively). Observe that
limτ→0 hr(t, t + τ; π) = r(t) = β0 + β1. Thus, with this interpolating function there
is no problem in determining the initial point of the yield curve. Differently from
DFM23, where only the parameters β0, β1 are required, we use the daily time series
of the entire parameter sets {π̂(θ)}θ∈Θ estimated by ECB. The corresponding yield
curves are denoted by hM

r (θ, θ + τ) and the instantaneous interest rates as rM(θ).4
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For further details and illustrations, see De Felice and Moriconi (2023). In particular,
Figure 1 in that paper shows the yield curves hM

r (t, t + τ), hM
y (t, t + τ), hM

x (t, t + τ) as well as
the risk-neutral market expectations of the future annual inflation rates:

µ̌τ := − log
uM(t, t + τ)

uM(t, t + τ − 1)
, (47)

for τ up to 25 years. In our three-factor model, however, the risk-neutral market expecta-
tions µ̌τ are equal to the natural expectations µτ of future inflation rates.

3.2. Parameters of the Inflation Component

Our aim in this section is to derive an estimate of the parameters of the CPI distribution,
including the instantaneous expected inflation rate, which is not directly observable. In
a first step we estimate αy and σy, then we estimate σp and ρ, and finally, we provide an
estimate of γy and y(θ) for all θ ∈ Θ.

3.2.1. Time Series Estimate of αy and σy

We consider the time series of market inflation log-returns hM
y (θ, θ + τ) for θ ∈ Θ and

τ ∈ T . As a first step of the estimation procedure, we estimate αy and σy on the time
series of the one-year log-returns hM

y (θ, θ + 1). In principle, a time series of instantaneous
inflation rates yM(θ) := limτ→0 hM

y (θ, θ + τ) would be needed. However, yM(θ) is not directly
observable and should be extrapolated by observed returns over finite time periods. Since
an appropriate extrapolation function is not available at this stage, we defer to Section 3.2.3
the estimate of a time series of instantaneous inflation rates yM(θ) and consider here directly
the market log-returns for one-year time-to-maturity. The rationale is that hM

y (θ, θ + 1)
should be the observed inflation rate for which the correlation with the instantaneous rate
yM(θ) is highest.5

We use the affinity property of the log-returns. We rewrite expression (35) as

u(t, t + τ) = A′y(τ) e−y(t) By(τ) ,

with
A′y(τ) := eσ2

p By(τ) Ay(τ) ,

where Ay(τ) is given by (36). Then we can write

hy(t, t + τ) = Cy(τ) + y(t)
By(τ)

τ
, (48)

with

Cy(τ) := −
log A′y(τ)

τ
. (49)

By Ito’s lemma, we have the following SDE for hy(t, t + τ) (where we omit the depen-
dence on t + τ):

dhy(t) = fy
By(τ)

τ
dt + σy

By(τ)

τ
dWy(t)

=

(
αyγy

By(τ)

τ
− αy

By(τ)

τ
y(t)

)
dt + σy

By(τ)

τ
dWy(t) .

(50)

Since, by (48), y(t) By(τ)/τ = hy(t)− Cy(τ) we obtain

dhy(t) =

αy

(
γy

By(τ)

τ
+ Cy(τ)

)
− αy hy(t)

 dt + σy
By(τ)

τ
dWy(t) ,
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or
dhy(t) =

(
a hy(t) + b

)
dt + σh dWy(t) , (51)

with

a := −αy, b := αy

(
γy

By(τ)

τ
+ Cy(τ)

)
, σh := σy

By(τ)

τ
. (52)

Observe that, since αy > 0, then By(τ)/τ < 1; hence, σh < σy.
As shown in Appendix A.2, for a chosen time-to-maturity τ and a chosen time step ∆t,

(51) corresponds to the following first-order autoregressive model:

hy(θ + ∆t, θ + ∆t + τ) = β0 + β1 hy(θ, θ + τ) + e(θ) ,

where the error terms e(θ) are independent with zero mean and variance Ω2. Using the time
series of market values hM

y (θ, θ + τ), the parameter estimates β̂0, β̂1, and Ω̂2 are obtained by
linear regression and the corresponding estimate of the mean-reversion coefficient is given
by

α̂y = −â = − log β̂1

∆t
. (53)

Then we obtain

B̂y(τ) =
1− e−α̂y τ

α̂y
, σ̂2

h = Ω̂2 2α̂y

1− e−2α̂y ∆t , σ̂2
y =

σ̂2
h

B̂2
y(τ)/τ2

. (54)

This estimation procedure can be applied for any value of τ for which market observa-
tions are available. However, as previously noticed, the most reliable results should be that
obtained for τ = 1 year. The corresponding estimation procedure (assuming 260 trading
days per year, that is, ∆t = 1/260) provided the following results:

αy = 0.53878, σy = 0.01802.

Remark 2. The illustrated estimation procedure is viable because in our model, the inflation market
risk premium φN

y is independent of y(t), and hence the mean-reversion coefficient αy is the same
under the natural and the risk-neutral measure. This approach could not be directly applied to x(t),
since the time series estimate allows us to obtain the real-world parameter αx, while Bx(τ) depends
on its risk-adjusted version α̌x = αx − π.

3.2.2. Time Series Estimate of σp and ρ

From the monthly time series {p(θ)}θ∈Θm of HICP values observed at each month-end
in Θm =[January 2005, December 2023], we derived the time series of monthly log-price-
ratios (∆t = 1/12):

L(θ, θ + ∆t) = log
p(θ + ∆t)

p(θ)
. (55)

We show how σp and ρ can be estimated in our model considering this time series and a
corresponding time series of stochastic integrals.

Let us consider the two random variables L(t, t + ∆t) and Y(t, t + ∆t) :=
∫ t+∆t

t y(s)ds.
For chosen ∆t, these variables are normal and, using expression (A22) in Appendix A.4
(with the usual specifications Z = Y and a = −αy), we have

Vart
(

L(t, t + ∆t)
)
= σ2

p ∆t + Covt
(

L(t, t + ∆t), Y(t, t + ∆t)
)

,

where, by expression (A21),

Covt
(

L(t, t + ∆t), Y(t, t + ∆t)
)
= Vart

(
Y(t, t + ∆t)

)
− 2 ρ

σyσp

αy

(
By(∆t)− ∆t

)
.
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Therefore, σ2
p can be obtained as

σ2
p =

1
∆t

[
Vart

(
L(t, t + ∆t)

)
− Covt

(
L(t, t + ∆t), Y(t, t + ∆t)

)]
and, in turn, ρ is given by

ρ =
Covt

(
L(t, t + ∆t), Y(t, t + ∆t)

)
−Vart

(
Y(t, t + ∆t)

)
2 (σyσp/αy)

(
∆t− By(∆t)

) .

Since y(t) is not observable, we use

H(t, t + ∆t) :=
∫ t+∆t

t
hy(s, s + τ)ds

for a given τ (which, for the same reasons illustrated in Section 3.2.1, should be 1 year). By
(48), Covt(L, H) = Covt(L, Y) By(τ)/τ and Vart(H) = Vart(Y) B2

y(τ)/τ2; hence,

σ2
p =

1
∆t

[
Vart

(
L(t, t + ∆t)

)
−
(

τ/By(τ)
)

Covt
(
`(t, t + ∆t), H(t, t + ∆t)

)]
and

ρ =
Covt

(
L(t, t + ∆t), H(t, t + ∆t)

) (
τ/By(τ)

)
−Vart

(
H(t, t + ∆t)

) (
τ/By(τ)

)2

2 (σyσp/αy)
(

∆t− By(∆t)
) .

The variance Vart(H) and the covariance Covt(L, H) can be estimated on a monthly
(∆t = 1/12) time series

{
L(θ, θ + ∆t)

}
θ∈Θm of CPI log-price-ratios and a corresponding

monthly time series
{
H(θ, θ + ∆t)

}
θ∈Θm , where

H(θ, θ + ∆t) := δ
n−1

∑
k=0

hM
y (θ + kδ, θ + kδ + τ) ,

with δ = ∆t/n, and n represents the number of trading days in each month. The estimates
obtained in the previous section were used for αy and σy.

This estimation procedure provided the following results:

σ̂p = 0.01731, ρ̂ = 0.61428.

3.2.3. Estimate of y(t) and γy on a Time Series of Cross-Sections

Having estimated the parameters αy, σy, σp, and ρ, our model provides an appropriate
extrapolation procedure that allows us to estimate the instantaneous inflation rate y(t),
together with the parameter γy, by a regression on an observed cross-section of log-returns
{hM

y (t, t + τ)}τ∈T . Since these returns are affine functions of y(t), by some manipulations,
this estimation procedure takes the form of a linear regression.

Using again expression (35), let us consider the following:

− log u(t, t + τ) = τ hy(t, t + τ) = − log Ay(τ; γy)− σ2
p By(τ) + y(t) By(τ).
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We have

−
(

log Ay(τ) + σ2
p By(τ)

)
= −

(
γy −

σ2
y

2 α2
y

)(
By(τ)− τ

)
+

σ2
y

4 αy
B2

y(τ) + σ2
p By(τ)

= −
(

By(τ)− τ
)

︸ ︷︷ ︸
xγ(τ)

γy

+
σ2

y

2 α2
y

(
By(τ)− τ

)
+

σ2
y

4 αy
B2

y(τ) + σ2
p By(τ)︸ ︷︷ ︸

c0(τ)

.

Then, defining `u(τ) := τ hy(t, t + τ)− c0(τ) as the dependent variable and

xy(τ) := By(τ), xγ(τ) := τ − By(τ)

as the independent variables, we are led to the following two-dimensional linear model
(without intercept):

`u(τ) = y xy(τ) + γy xγ(τ) + e(τ) , (56)

with the usual assumptions on the error terms e(τ).
For the estimation at the valuation date t, the data for the dependent variable are the

cross-section {`M
u(t, t + τ) := τ hM

y (t, t + τ)− ĉ0(τ)}τ∈T , where ĉ0(τ) is computed using
the parameter estimates previously derived. However, we need not only an estimate
at time t = 30 December 2022, but also an estimate for each θ ∈ Θ, i.e., at each date
of the time series. So, we repeated the linear regression estimate (56) for each cross-
section

{
hM

y (θ, θ + τ)
}

τ∈T
, θ ∈ Θ, thus obtaining the time series of estimated values{

γ̂y(θ), ŷ(θ)
}

θ∈Θ
. These estimates are illustrated in Figure 1.

Figure 1. Daily cross-sectional estimates of y(θ) (blue line) and γy(θ) (red line).

Remark 3. Of course, a γy parameter different for each time point is clearly inconsistent with
the model assumptions. However, this forcing of the assumptions is only used here to obtain an
extrapolation function not too inconsistent with the model. On the other hand, our model for the
inflation discount factors is too simple to capture the market dynamics well enough to produce
constant parameter estimates across any observation date. We point out, however, that, since in
Section 3.3.3 we will calibrate the real discount factors vM(t, t + τ) = vM(t, t + τ)/uM(t, t + τ) on
the observed term structure of real interest rates using the Hull and White model, the estimates of
γy(θ) will not be used.
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3.3. Parameters of the Real Interest Rate Component

In this section, we estimate both the natural and the risk-neutral parameters of real
interest rate component of the model, introduced in Sections 2.2 and 2.3.

3.3.1. Derivation of Real Interest Rate Data by Nominal Interest Rate Data

By the estimated Svensson parameters π̂ published each trading day by ECB, we
computed the risk-free nominal log-returns hM

r (θ, θ + τ) according to (46) and then derived
the corresponding real log-returns using the Fisher relation:

hM
x (θ, θ + τ) = hM

r (θ, θ + τ)− hM
y (θ, θ + τ), τ ∈ T , θ ∈ Θ . (57)

The Fisher relation was also used to derive the corresponding time series of estimated
real instantaneous interest rates:

x̂(θ) = rM(θ)− ŷ(θ)− σ̂2
p , θ ∈ Θ , (58)

where ŷ(θ) is estimated in the previous section and σ̂p in Section 3.2.2. The time series of
these estimated instantaneous rates are illustrated in Figure 2.

Figure 2. Daily estimates of y(θ) (blue), r(θ) (red), and x(θ) (green line).

3.3.2. Time Series Estimate of Natural Real Interest Rate Parameters

In order to estimate the real-world parameters αx, γx, σx of the real interest rate process
introduced in Section 2.2, we applied to the time series {x̂(θ)} the classical OU estimators
just used in Section 3.2.1. This estimation procedure provided the following results:

α̂x = 1.19764, γ̂x = 0.00159, σ̂x = 0.02184.

By the independence assumption, σ̂r =
√

σ̂2
x + σ̂2

y = 0.02832.

3.3.3. Calibration of the Real Interest Rate Model

To simulate at the valuation date t the future real discount factors v(t′, t′ + τ), t′ ≥ t,
we have to calibrate the real interest rate model on time t data. In order to obtain a perfect
fit to the term structure derived from the market data, we used the extension of Vasicek’s
model provided by Hull and White (Hull and White 1990). The details of this model
are given in Appendix C. As shown in the appendix, the Hull–White estimates of future
discount factors v(t′, t′ + τ), for t ≤ t′, τ ≥ 0, are computed as

vHW(t′, t′ + τ) =
vM(t, t + τ)

vM(t, t′)
AHW

x (t′, t′ + τ) e−ωx(t′) Bx(τ) , (59)

where ωx(t′) is normal with mean zero and variance
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Var
(

ωx(t′)
)
= σ2

x
1− e−2 αx (t′−t)

2 αx
,

and
AHW

x (t′, t′ + τ) := e
1
2 (V(τ)−V(t′+τ)+V(t′)) ,

with

V(τ) :=
σ2

x

α̌x
2

(
τ +

2
α̌x

e−α̌x τ − 1
2α̌x

e−2 α̌x τ − 3
2 α̌x

)
.

The sensitivity function in (59) has the usual form Bx(τ) =
(

1− e−α̌x τ
)

/α̌x.
The parameters σx and αx have already been estimated (as σ̂x = 0.02184 and

α̂x = 1.19764). It therefore remains to estimate the risk-neutral mean-reversion parameter
α̌x. In DFM23, where the same problem arises for the calibration of nominal interest rates,
this was accomplished by a best-fitting procedure of the model yield function hr(t, t + τ) to
the current market term structure hM

r (t, t + τ), τ ∈ T . This procedure applied to our real
interest rate data has proven to be scarcely reliable, producing rather unstable estimates of
α̌x. We therefore found it convenient to perform the estimation using the entire time series
of cross-sections

{
hM

r (θ, θ + τ)
}

τ∈T
for θ ∈ Θ. Using the affinity property of v(t, t + τ)

as we did in Section 3.2.1 for the inflation discount factor u(t, t + τ), we are led to the
following SDE for the real log-returns, which is the analogue of (51):

dhx(t, t + τ) =
(
a hx(t, t + τ) + b

)
dt + σx

Bx(τ)

τ
dWx(t), τ ≥ 0 .

The coefficients a and b, which have the same form as in (52), are known at time t. Thus,
we have

Vart
(
dhx(t, t + τ)

)
= σ2

x

(
Bx(τ)

τ

)2

dt, τ ≥ 0 .

These variances are independent of t. For a sufficiently small finite time interval ∆t,
we can consider the following approximations:

σ2
∆hx

(τ) := Vart
(
∆hx(t, t + τ)

)
≈ σ2

x

(
Bx(τ)

τ

)2

∆t, τ ≥ 0 .

We derived a time series estimate σ̂2
∆hx

(τ) of these variables for τ ∈ T by taking the
sample variance of the daily increments:{

∆hM
r (θ, θ + τ) := hM

r (θ + ∆t, θ + ∆t + τ)− hM
r (θ, θ + τ)

}
θ∈Θ

, ∆t = 1/260,

and we thus obtained an estimate of α̌x by solving the ordinary-least-squares problem:

̂̌αx = argmin
α̌x

∑
τ∈T

[
σx

Bx(τ; α̌x)

τ

√
∆t− σ̂∆hx (τ)

]2

.

We obtained ̂̌αx = 0.33109.

4. Applying the Market Model to Claims Reserving
4.1. The Essential Elements of the Claims Reserving Application

For the claims reserving applications of the model, we adopt the definitions, theoretical
framework, and simulation schemes proposed in DFM23. However, we do not consider the
“actuarial approach”, which is characterized by the exclusion of interest rate risk. As also
noted in DFM3, if we accept this approximation, it would not make sense to use a stochastic
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model for interest rates, much less one with stochastic expected inflation. Therefore, here
we will only consider the so-called “market approach” and remove the superscript M used
in the DFM23 notation when it is necessary to distinguish this approach from the actuarial
approach (denoted there by the superscript A). We recall here for convenience the essential
definitions introduced in DFM23.

The chain-ladder reserve at the current date t = I, the end of year 2022, is given by

Rcc
I =

n−1

∑
k=1

CI

(
Dcc

I+k

)
vM(I, I + k) ,

where

• the superscript cc indicates that the chain-ladder algorithm is applied to a triangle
of claim payments expressed at current costs, i.e., adjusted for the past inflation as
measured by the HICP index (the CPI to which the ZCIIS are linked);

• CI

(
Dcc

I+k

)
denotes the chain-ladder estimate at time I of the sum Dcc

I+k of the incre-
mental payments (at time I costs) to be performed in the k-th future calendar year.

Of course, vM(I, I + k) are the current market real discount factors, computed as vM(I, I +
k)/uM(I, I + k), where vM(I, I + k) are the risk-free discount factors provided at time I by
EIOPA (including volatility adjustment) and uM(I, I + k) are the inflation discount factors
derived by the ZCIIS observed at time I.

As regards reserve risk under the ultimate point of view, the predictive distribution of
the discounted ultimate obligations (DUOs) provided by S simulations is given by

DUO =

{
sŨcc

I =
n−1

∑
k=1

sD̃cc
I+k vM(I, I + k); s = 1, . . . , S

}
. (60)

It is assumed that the claim payments sD̃cc
I+k are provided by the bootstrap simulation

of a chosen stochastic chain-ladder model. Under the short-term view of reserve risk, as
prescribed by Solvency II, the predictive distribution of the year-end obligations (YEOs) is
given by

YEO =

{
sỸcc

I+1 := sD̃cc
I+1

s p̃(I + 1)
p(I)

+ sR̃cc
I+1; s = 1, . . . , S

}
,

where the residual reserve at time I + 1 in the s-th simulation is given by

sR̃cc
I+1 :=

n−1

∑
k=2

sC̃I+1

(
Dcc

I+k

)
s p̃(I + 1)

p(I) sṽ
M
(I + 1, I + k) . (61)

Here, sṽ
M
(I + 1, I + k) are the real discount factors at time I + 1 simulated consistently

with the current term structure vM(I, I + k) using the Hull and White Formula (59) and
the price index s p̃(I + 1) at time I + 1 is simulated as suggested in Section 2.4.4 using
expression (39). The inflation discount factors uM(t, t + τ) derived by the ZCIIS quoted in
the market represent, by definition, risk-neutral expectations. However, in the three-factor
model, we have uM(t, t + τ) = u(t, t + τ), since the risk premia φp and φy are zero. So, in
effect, expression (39) is written as

p̃(T)
p(t)

=
1

uM(t, T)
e

1
2 σ2

L(t,T)+σL(t,T) ε̃ . (62)

Remark 4. In the two-factor model (see Section 4.2 in DFM23), the expression corresponding to
(39) is

p̃(T)
p(t)

=
1

u(t, T)
e−

1
2 σ2

L(t,T)+σL(t,T) ε̃ .
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But in that model, the natural and the risk-neutral measures are different and the relation holds as
u(t, T) = uM(t, T) e−σ2

L(t,T). Thus, we obtain a relation formally identical to (62). This means that
in the two models, the market data uM(t, T) are used in the same way. Of course, as already pointed
out, the expression of σ2

L(t, T) is different in the two models. However, it is immediately verified
that if in the three-factor model we set σy = 0, i.e., if we make expected inflation deterministic, we
obtain σ2

L(t, T) = σ2
p (T − t), as in the two-factor model.

4.2. Numerical Results with the Market Approach

For the numerical calculations, we used the same triangle of paid losses used in
DFM23, which contains the MTPL claim payments observed at the end of 2022 (time I)
over the previous 22 accident years (so the data also include the period of the COVID-19
pandemic). As in that paper, the stochastic chain-ladder model used is the ODP reserving
model introduced by Renshaw and Verral (1998), in the bootstrap version proposed by
England and Verral (2002). Since the definitions of the quantities to be estimated, the
market data and the paid losses data, are the same in the two articles, the differences in the
results obtained can only be attributed to the difference in the market model used and the
estimates of the relevant parameters.

4.2.1. Recall of Results with the Two-Factor Model

In DFM23, the results of the market approach are as follows (see the paper for fur-
ther details):

Results with deterministic computations
- Undiscounted reserve with implicit inflation 100,000
- Discounted reserve with implicit inflation: Rhc

I 91,091
- Undiscounted reserve with triangle at current costs: 100,087

- Discounted reserve with triangle at current costs: Rcc|norep
I 91,391

- Undiscounted reserve with modeled inflation 109,445
- Discounted reserve with modeled inflation (BE): Rcc

I 99,402

Results with the two-factor model (100,000 simulations)

- DUO sample mean: M
(

Ucc
I

)
99,304

- DUO Std 5,101
- DUO CV 5.14%

- YEO sample mean: M
(

Ycc
I+1

)
102,809

- YEO Std 4,773
- YEO CV 4.64%
- 99.5% percentile of YEO 115,880
- Solvency Capital Requirement 13,071

- Present value of YEO sample mean: M
(

Ycc
I+1

)
v(I, I + 1) 99,461

4.2.2. Using the Three-Factor Model

Using the three-factor model, the deterministic results are obviously the same. The
results on reserve risk under the ultimate point of view also do not change, as the discount
factors used in expression (60) are those observed on the market. For the reserve risk under
the one-year view, the results are different, however.

Results with the three-factor model (100,000 simulations)

- YEO sample mean: M
(

Ycc
I+1

)
102,762

- YEO Std 4,950
- YEO CV 4.82%
- 99.5% percentile of YEO 116,314
- Solvency Capital Requirement 13,551
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- Present value of YEO sample mean: M
(

Ycc
I+1

)
v(I, I + 1) 99,416

While the YEO sample mean M
(

Ycc
I+1

)
and its discounted value are the same, within

the Monte Carlo error, as in the two-factor model, the introduction of stochastic expected
inflation in the valuation model produces a non-negligible increase in the variability of
the predictive loss distribution. The coefficient of variation increases from 4.64% to 4.82%,
and the SCR, as a percentage of the BE, increases by about 50 basis points, from 13.14% to
13.63%. These increases are roughly similar to those found in DFM23 when passing from
the actuarial approach to the market approach with the two-factor model.

With regard to the kurtosis of the predictive distribution and the relationships with
the corresponding moment-fitted lognormal distribution, there are no relevant differences
to what was found with the two-factor model.

4.2.3. The Determinants of the Increase in Variability

It may be of some interest to analyze the determinants of the increase in variability
produced by the model with stochastic expected inflation. The variance of the empirical
distribution

{
sR̃cc

I+1

}
defined in (61) is determined by the variance of the one-year repricing

factor p(I + 1)/p(I) and the year-end real discount factors vM(I + 1, I + k), k = 2, 3, . . . , n−
1. Expression (61) applies to both the tree-factor model and the two-factor model in DFM23,
the only difference being in the way these factors are calculated. Let us introduce the
shorthand notation p1 for p(I + 1)/p(I), v1k for v(I + 1, I + k), and p1v1k for the product(

p(I + 1)/p(I)
)

v(I + 1, I + k), and let us denote by σp1 , σv1k , and σp1v1k the corresponding
standard deviations. In the three-factor model, σp1 depends on the parameters αy, σy, σp, ρ
through the relation (39) and the expression (32) of σ2

L(I, I + 1), and σv1k depends on the
parameters αx, α̌x, σx entering the Hull–White expression (59) of v(I + 1, I + k). In particular,
αx and σx determine the variance of ω(I + 1). In the two-factor model, σp1 depends on the
parameter σ2

L(I, I + 1) = σp and σv1k depends on the parameters αr, α̌r, σr in the Hull–White
expression of the nominal discount factors v(I + 1, I + k) analogous to (59) (expression (32)
in DFM23). For these parameters, the estimates derived in DFM23 are

σ̂2
L(I, I + 1) = σ̂p = 0.01808, σ̂r = 0.01552, α̂r = 0.61346, ̂̌αr = 0.17433,

while with the three-factor model, we derived in the previous sections

σ̂L(I, I + 1) = 0.02313, σ̂x = 0.02184, α̂x = 1.19764, ̂̌αx = 0.33109.

Thus, volatilities are higher in the three-factor model than in the two-factor model,
but so are the mean-reversion parameters, both natural and risk-neutral. Since, as we
have seen, mean-reversion produces a decrease in variability for increasing maturities, it
is useful to compare the combined effect of these parameter values. This can be easily
carried out, since the standard deviations of the factors involved in (61) can be computed in

closed form, using the relation Std(eX) = E(eX)

√
eσ2

X − 1, valid for X ∼ N (µX, σ2
X). The

results of the computations are reported in Figure 3, where the standard deviations for
different maturities are illustrated in blue color for the three-factor model and in red for the
two-factor model. It can be seen that, although the standard deviation of ω(I + 1) is larger
in the three-factor than in the two-factor model, the standard deviations of the discount
factors in the three-factor model are smaller even before the 2-year maturity. The change in
dominance is even more evident when looking at the overall standard deviations, indicated
by continuous lines, where the crossing of the curves occurs for a maturity between 3 and 4
years. Since by far the largest portion of the year-end obligations have maturity of less than
3 years, the variability of the overall present value is greater for the blue curve than for the
red curve. That is, we have an increase in SCR with the three-factor model.
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Figure 3. Standard deviations of the stochastic factors v1k and p1v1k in the three-factor model (blue
lines) and the two-factor model (red lines), as a function of the time-to-maturity k. The dashed lines
represent σv1k and the continuous lines represent the overall volatility σp1v1k in the two models. The
dotted lines indicate the level of the standard deviation of ω(I + 1).

5. Conclusions

When simulating the distribution of year-end obligations, we find with our data that
the three-factor model produces higher volatility than the two-factor model for both the
repricing factor of the CPI and the next-year real discount factors to be applied to the claim
payments of the remaining calendar years. However, the mean-reversion, both natural and
risk-neutral, of real interest rates in the three-factor model is also higher than that derived
from nominal interest rates in the two-factor model. This may cause the overall volatility
of the three-factor model to be lower over long maturities. In our case, the overall effect
is that, with the market approach of the three-factor model, the reserve SCR (under the
one-year view) has a non-negligible increase over that derived with the market approach of
the two-factor model. This increase is grosso modo similar to that found in DFM23 when
switching from the actuarial to the market approach in the two-factor model.
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Appendix A. Some Fundamental Results on Ornstein–Uhlembeck Process

Appendix A.1. Integral Representation of the Ornstein–Uhlembeck Process

Let z(t) be the OU process described by the SDE:

dz(t) = (a z(t) + b) dt + σz dWz(t), a, b ∈ R, σ > 0 . (A1)

As is well-known, this is a shorthand expression for the following integral representation:

z(T) = z(t) +
∫ T

t
(a z(s) + b) ds + σz

∫ T

t
dWz(s), T ≥ t

(where the stochastic integral is defined in Ito’s sense). We prove the following fundamental
result concerning the conditional random variable z(T)|z(t).

Result A1. For T = t + τ > t, we have

z(T)|z(t) = µz(t, T) + σz εz(t, T) , (A2)

with

εz(t, T) := ea T
∫ T

t
e−a sdWz(s) ∼ N (0, vε(τ)) . (A3)

Therefore,
z(T)|z(t) ∼ N

(
µz(t, T), σ2

z vε(τ)
)

,

where the conditional mean is

µz(t, T) := E(z(T)|z(t)) = z(t) ea τ + b β(τ) , (A4)

with
β(τ) :=

ea τ − 1
a

,

hence depending only on z(t) and τ, and the conditional variance is

vz(t, T) := Var
(
z(T)|z(t)

)
= σ2

z
e2 a τ − 1

2 a
, (A5)

which depends only on τ.

Proof. We first apply a transformation providing an SDE with constant drift. Let u(z(t), t) =
z(t) e−a t. Differentiating:

du(z, t) = dz(t) e−a t − z(t) a e−a tdt

= (a z(t) + b) e−a t dt + σz e−a t dWz(t)− z(t) a ea tdt

= b e−a t dt + σz dWz(t) e−a t .

Then u(t) is described by the following SDE:

du(t) = b e−a t dt + σz e−a t dWz(t) .

For T = t + τ ≥ t,

u(T) = u(t) +
∫ T

t
du(s) ds

= u(t) + b
e−a t − e−a T

a
+ σz

∫ T

t
e−a sdWz(s) .
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Replacing u(t) with z(t) e−a t, we then have

z(T) = z(t) ea τ + b
ea τ − 1

a
+ σz

∫ T

t
ea (T−s)dWz(s) . (A6)

This gives expression (A2), with εz(t, T) given by (A3) and µz(t, T) given by (A4). Expres-
sion (A5) is immediately obtained by the following property:

Vart

(∫ T

t
f (x) dW(x)

)
=
∫ T

t
f 2(x) dx ,

which gives

vε(τ) := Vart
(
εz(t, T)

)
= e2 a T

∫ T

t
e−2 a sds =

e2 a τ − 1
2 a

. (A7)

Appendix A.2. Parameter Estimate for the Ornstein–Uhlembeck Process

Taking T− t = ∆t and interpreting expression (A6) as an iterative relation, we see that
the discrete equivalent of the SDE (A1) is the first-order autoregressive equation:

zt+∆t = β0 + β1 zt + εt , (A8)

with

β0 := b
ea ∆t − 1

a
, (A9)

β1 := ea ∆t , (A10)

and where the error terms εt are independent normal with zero mean and constant variance

Var(εt) := Ω2 = σ2 e2 a ∆t − 1
2 a

. (A11)

If a time series of observations of z(t) with time step ∆t is available, the standard linear
regression defined by (A8) provides the corresponding consistent estimates β̂0, β̂1 and Ω̂2.
By (A9)–(A11), we obtain

â =
log β̂1

∆t
, b̂ = β̂0

â
eâ ∆t − 1

, σ̂2 = Ω̂2 2 â
e2 â ∆t − 1

.

If Equation (4) is expressed in the form

dz(t) = α (γ− z(t)) dt + σ dW(t),

the estimates for α and γ are obtained as

α̂ = −â, γ̂ = b̂/α̂.

If time is measured in years and we have a daily (weekly, monthly) time series, then
we pose ∆t = 1/260 (∆t = 1/52, 1/12, resp.). Consequently, all the estimates will be
consistently expressed on annual basis.

Appendix A.3. Integral of the Ornstein–Uhlembeck Process

For T = t + τ > t, let us consider the stochastic integral:

Z(t, T) =
∫ T

t
z(s) ds , (A12)
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with z(t) described by (A1). The following fundamental result holds for the conditional
random variable Z(T)|z(t).

Result A2. For T = t + τ > t we have

Z(t, T)|z(t) = µZ(t, T) +
σz

a
(
εz(t, T)− δz(t, T)

)
, (A13)

with εz(t, T) given by (A3) and

δz(t, T) :=
∫ T

t
dWz(s) ∼ N (0, τ) .

Hence,
Z(t, T)|z(t) ∼ N

(
µZ(t, T), vZ(t, T)

)
,

with conditional mean

µZ(t, T) := E
(
Z(t, T)|z(t)

)
= z(t) β(τ) +

b
a
(

β(τ)− τ
)

, (A14)

which depends only on z(t) and τ, and conditional variance

vZ(t, T) := Var
(
Z(t, T)|z(t)

)
=

σ2

2 a
β2(τ)− σ2

a2

(
β(τ)− τ

)
, (A15)

which depends only on τ.

Proof. The normality of Z(T) is an obvious consequence of the normality of z(T). Ex-
pression (A14) is obtained by integrating µz(t, T) in (A4). The stochastic term in (A13) is
obtained by integrating εz(t, s) in (A3). In fact, we have (using Fubini’s theorem)

σz

∫ T

t

(∫ s

t
ea (s−u)dWz(u)

)
ds = σz

∫ T

t

(∫ T

u
ea (s−u)ds

)
dWz(u)

=
σz

a

∫ T

t

(
ea (T−u) − 1

)
dWz(u)

=
σz

a
(
εz(t, T)− δz(t, T)

)
.

Expression (A15) for the variance can be obtained by computing the following integral:

Vart
(
Z(t, T)

)
=

σ2
z

a2

∫ T

t

(
ea (T−u) − 1

)2
du .

More interestingly, the same expression is obtained by observing that

Covt
(
εz(t, T), δz(t, T)

)
= β(τ) . (A16)

In fact, since Wz(t) is a zero-mean i.i.d. process,

Et

(∫ T

t
ea (T−s) dWz(s) ·

∫ T

t
dWz(s)

)
= Et

(∫ T

t
ea (T−s) dW2

z (s)

)

=
∫ T

t
ea (T−s) ds

=
ea τ − 1

a
= β(τ) .
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Then we have

Vart
(
Z(t, T)

)
=

σ2
z

a2 Vart
(
εz(t, T)− δz(t, T)

)
=

σ2
z

a2

(
Vart

(
εz(τ)

)
+ Vart

(
δz(t, T)

)
− 2Covt

(
εz(t, T), δz(t, T)

))
=

σ2
z

a2

(
vε(τ) + τ − 2 β(τ)

)
,

which gives (A15), observing that (A7) can be written as vε(τ) =
1
2 a β2(τ) + β(τ).

Appendix A.4. Log-Returns of the Price Index Process

Let us consider the process p(t) defined by the following SDE:

dp(t) = z(t) p(t)dt + σp p(t) dWp(t) ,

with z(t) given by (A1) and Cov
(

dWz, dWp

)
= ρ dt. Let us define the “log-return”, i.e., the

logarithm of the price ratio, on the time period [t, T]:

L(t, T) = log
p(T)
p(t)

.

We prove the following fundamental result for the random variable L(t, T)|
(
z(t), p(t)

)
.

Result A3. For T = t + τ > t, we have

L(t, T)|
(
z(t), p(t)

)
=µZ(t, T)− 1

2
σ2

pτ

+
σz

a

(
ε′z(t, T)− δ′z(t, T)

)
+
√

1− ρ2 σp δ′p(t, T) + ρ σp δ′z(t, T) ,

(A17)

with

ε′z(t, T) := ea T
∫ T

t
e−a sdW ′z(s), δ′z(t, T) :=

∫ T

t
dW ′z(s), δ′p(t, T) :=

∫ T

t
dW ′p(s),

and W ′p(t), W ′z(t) independent. Then

L(t, T)|
(
z(t), p(t)

)
∼ N

(
µL(t, T), vL(t, T)

)
,

with conditional mean

µL(t, T) := E
(

L(t, T)|z(t), p(t)
)
= z(t) β(τ) +

b
a
(

β(τ)− τ
)
− 1

2
σ2

p τ , (A18)

which depends only on z(t) and τ, and conditional variance

vL(t, T) :=Var
(

L(t, T)|z(t), p(t)
)

= σ2
p τ +

σ2
z

2 a
β2(τ)− σ2

z
a2

(
β(τ)− τ

)
+ 2

ρ σzσp

a
(

βz(τ)− τ
)

,
(A19)

which depends only on τ.
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Proof. We rewrite the stochastic dynamics of
(

z(t), p(t)
)

using a Cholesky decomposition

of the bivariate Wiener process
(

Wz(t), Wp(t)
)

. This givesdz(t) = (a y(t) + b) dt + σz dW ′z(t) ,

dp(t) = z(t) p(t) dt +
√

1− ρ2 σp p(t) dW ′p(t) + ρ σz dW ′z(t) ,
(A20)

where W ′z(t) and W ′p(t) are independent Wiener processes. By the second SDE in (A20), we
have, applying Ito’s lemma,

d log p(t) =
(

z(t)− 1
2

σ2
p

)
dt +

√
1− ρ2 σp dW ′p(t) + ρσp dW ′z(t) .

The solution of this SDE for T = t + τ ≥ t, given p(t), is

log p(T) = log p(t) +
∫ T

t
z(s)ds− 1

2
σ2

p τ +
√

1− ρ2σp

∫ T

t
dW ′p(s) + ρσp

∫ T

t
dW ′z(s).

For the log-price-ratio L(t, T), we then have

L(t, T) = Z(t, T)− 1
2

σ2
p τ +

√
1− ρ2σp

∫ T

t
dW ′p(s) + ρ σp

∫ T

t
dW ′z(s) ,

which is obviously normal. Expression (A18) is immediately obtained, since E(L(t, T)|z(t),
p(t)) = µZ(t, T)− 1

2 σ2
p τ, with µZ(t, T) given by (A14). Expression (A19) is easily proven

considering that, by (A13),

Vart
(
Z(t, T)

)
= Vart

(
σz

a

(
ε′z(t, T)− δ′z(t, T)

))
.

Then, by the independence of W ′z and W ′p:

vL(t, T) :=Vart

(
σz

a
ε′z +

(
ρ σp −

σz

a

)
δ′z

)
+ (1− ρ2) σ2

p Vart

(
δ′p

)
.

That is,

vL(t, T) =
σ2

z
a2 Vart(ε

′
z) +

(
ρσp −

σz

a

)2
Vart(δ

′
z) + 2

σz

a

(
ρσp −

σz

a

)
Cov(ε

′
z, δ′z)

+ (1− ρ2) σ2
p Vart

(
δ′p

)
=

σ2
z

a2 vε′(τ) +

(
ρσp −

σz

a

)2
τ + 2

σz

a

(
ρσp −

σz

a

)
β(τ) + (1− ρ2) σ2

p τ ,

where we used (A16). Since vε′(τ) = 1
2 a β2(τ) + β(τ), as in (A7), expression (A19) is

obtained.

A useful alternative expression for vL(t, T) is obtained by computing the covariance
between L(t, T) and Z(t, T). By the representation (A17), we have

Covt(L, Z) = Vart(Z) + 2
ρ σzσp

a
Covt

((
ε′z − δ′z

)
, δ′z

)
= Vart(Z) + 2

ρ σzσp

a

(
Covt

(
ε′z, δ′z

)
−Vart(δ

′
z)

)
= vZ(t, T) + 2

ρ σzσp

a
(

βz(τ)− τ
)

.

(A21)
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Using (A15) and comparing with (A19), we then obtain

Vart
(

L(t, T)
)
= σ2

p τ + Covt
(

L(t, T), Z(t, T)
)

. (A22)

Appendix B. The General Valuation Equation in the Nominal Economy

Let us consider at time t a real ZCB which provides at time T ≥ t a real payoff XT
which is defined as a specified function contractually specified of x(T), y(T) and p(T).
Then the price V(t) of this bond is a function V(t, x(t), y(t), p(t)) of all three risk factors. By
the hedging argument, V(t) is obtained as the solution of the following general valuation
equation:

1
2

g2
x

∂2V
∂x2 +

1
2

g2
y

∂2V
∂y2 +

1
2

g2
p

∂2V
∂p2 + ρgygp

∂2V
∂y∂p

+ ( fx − φx)
∂V
∂x

+ ( fy − φy)
∂V
∂y

+ ( fp − φp)
∂V
∂p

+
∂V
∂t

= x V ,

(A23)

with terminal condition V(T) = XT . By the Feynman–Kac theorem, this solution is given by

V(t) = ĚR
t

(
e−
∫ T

t x(s)ds XT

)
,

where ĚR
t is taken with respect to the three-dimensional risk-neutral distribution P̌R. The

valuation Equation (9) and the corresponding solution for V = v, given by (14) after φx
has been specified as in (12), is immediately obtained as a particular case of (A23) if one
requires XT = 1̄, since in this case, V(t) only depends on x(t).

If we skip to the corresponding nominal economy setting, the general valuation
equation for the nominal price V(t) is derived by Equation (A23) by posing V = V/p
and computing the corresponding derivatives. Making the calculations and rearranging,
we obtain

1
2

g2
x

∂2V
∂x2 +

1
2

g2
y

∂2V
∂y2 +

1
2

g2
p

∂2V
∂p2 + ρgygp

∂2V
∂y∂p

+ ( fx − φx)
∂V
∂x

+ ( fy − φy −
ρgygp

p
)

∂V
∂y

+ ( fp − φp −
g2

p

p
)

∂V
∂p

+
∂V
∂t

=

(
x +

fp − φp

p
−

g2
p

p2

)
V ,

or

1
2

g2
x

∂2V
∂x2 +

1
2

g2
y

∂2V
∂y2 +

1
2

g2
p

∂2V
∂p2 + ρgygp

∂2V
∂y∂p

+ ( fx − φx)
∂V
∂x

+ ( fy − φN
y )

∂V
∂y

+ ( fp − φN
p )

∂V
∂p

+
∂V
∂t

=

(
x +

fp − φp

p
−

g2
p

p2

)
V ,

(A24)

with

φN
y := φy +

ρgygp

p
=

ρgygp

p
, φN

p = φp +
g2

p

p
=

g2
p

p
.

These expressions for the nominal risk premia for y and p can also be obtained by
computing the corresponding covariance w.r.t. the nominal wealth W∗ := p W∗. This is
carried out in a footnote in Section 2.4.5.
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Let us specify the price V(t) as the price v(t, T) of the nominal unit ZCB maturing at
time T. By the Fisher relation we know that v(t, T) = v(t, T) u(t, T), where v(t) depends
only on x. By the independence assumption, u(t) is independent of x. Moreover, as
shown in Section 2.4.3, u(t) is also independent of p. Hence, we have v

(
t, x(t), y(t)

)
=

v
(
t, x(t)

)
u
(
t, y(t)

)
. As a consequence of this separation property, the nominal valuation

Equation (A24) provides two separated equations, one for v, corresponding again to
Equation (9), and the other for u, having the following form:

1
2

g2
y

∂2u
∂y2 + ( fy − φN

y )
∂u
∂y

+
∂u
∂t

=

(
fp − φN

p

p
−

g2
p

p2

)
u .

Using our specifications for fy, gy and φN
y , we have

1
2

σ2
y

∂2u
∂y2 +

[
(αyγy − ρσyσp)− αy y

]∂u
∂y

+
∂u
∂t

= y∗ u ,

with y∗ := y− σ2
p . Since deriving with respect to y∗ is the same as deriving with respect to

y, this equation can be written as

1
2

σ2
y

∂2u
∂y2 +

[
(αyγy − αyσ2

p − ρσyσp)− αy y∗
]∂u

∂y
+

∂u
∂t

= y∗u ,

or

1
2

σ2
y

∂2u
∂y2 +

(
αyγ̌y − αy y∗

)∂u
∂y

+
∂u
∂t

= y∗ u ,

with γ̌y = γy − σ2
p − ρσyσp/αy. The solution of this equation, under terminal condition

u(T, T) = 1, is given by u(t, T) = ĚN
(

e−
∫ T

t y∗(s)ds
)

, which gives (42).

Appendix C. Applying the Hull and White Model

This section largely mimics Appendix B in DFM23. In order to have a perfect fit to the
market discount factors at the valuation date, we consider the Hull and White extension
of the Vasicek model for the z(t) process (Hull and White 1990). As usual, z(t) can be
interpreted as x(t) or y(t) in the main text of the paper. Correspondingly, the discount
factor v which will be used in this appendix can be interpreted as v or u, respectively. In
Section 3.3.3, the first interpretation is used.

In the Hull and White model, the long-term rate γ̌ is assumed to be time-dependent
and z(t) is expressed by

z(t) = ω(t) + ϕ(t), z(0) = z0 ,

where ω(t) is the following OU process:

dω(t) = −α ω(t) dt + σ dW(t), ω(0) = 0

and ϕ(t) is a deterministic function with ϕ(0) = z0. Time 0 is the reference date when z
and ϕ are equal and it is also the date where we observe on the market the discount factors
vM(0, τ) for τ ≥ 0. For 0 ≤ t ≤ T = t + τ our aim is to derive an expression vHW

0 (t, t + τ)
which for t = 0 perfectly fits the observed term structure

{
vM(0, τ)

}
.

As a trivial extension of Result A1 in Appendix A.1, z(T)|z(t) and ω(T)|ω(t) are
normal, with conditional moments:

E(ω(T)|ω(t)) = ω(t) e−α τ , E(z(T)|z(t)) = z(t) e−α τ + ϕ(t),
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and

Var
(
ω(T)|ω(t)

)
= Var

(
z(T)|z(t)

)
= σ2 1− e−2 α τ

2 α
.

In this model, we have

vHW
0 (t, T) = Ět

(
e−
∫ T

t z(s)ds
)
= e−

∫ T
t ϕ(s)ds Ět

(
e−
∫ T

t ω(s)ds
)

,

where the expectation is taken w.r.t. the appropriate risk-neutral measure. By the usual
calculations, we obtain ∫ T

t
ω(s)ds ∼ N

(
ω(t) B(τ), V(τ)

)
,

with

V(τ) =
σ2

α̌2

(
τ +

2
α̌

e−α̌ τ − 1
2α̌

e−2 α̌ τ − 3
2 α̌

)
and

B(τ) =
1− e−α̌ τ

α̌
.

Hence,

Ět

(
e−
∫ T

t ω(s)ds
)
= e

1
2 V(τ) e−ω(t) B(τ) .

We also obtain

exp

{
−
∫ T

t
ϕ(s)ds

}
=

vM(0, T)
vM(0, t)

exp
{
−1

2
(
V(T)−V(t)

)}
.

Therefore,

vHW
0 (t, T) =

vM(0, T)
vM(0, t)

AHW(t, T) e−ω(t) B(τ) , (A25)

with
AHW(t, T) = e

1
2 (V(τ)−V(T)+V(t)) .

For t = 0 we have V(0) = 0, V(T) = V(τ) and vM(0, 0) = 1; therefore, since ω(0) = 0,
(A25) provides vHW

0 (0, T) = vM(0, T), i.e., perfect fitting, as desired.
At time 0, the future discount factor vHW

0 (t, T), with T = t + τ ≥ t ≥ 0, is lognormal,
with moments (under the natural distribution):

E0
(
log vHW

0 (t, t + τ)
)
= log

vM(0, t + τ)

vM(0, t)
+

1
2
(
V(τ)−V(t + τ) + V(t)

)
,

since E0
(
ω(t)

)
= 0, and:

Var
(
log vHW

0 (t, t + τ)
)
= σ2 1− e−2 α t

2 α
B2(τ) .

Therefore computation of expectation only requires the risk-adjusted parameter α̌, while
for the computation of variance both α and α̌ are required.

It can be shown that if these moments are computed under the risk-neutral measure
the corresponding expressions fulfil the theoretical property Ě0[v(t, t + τ)] < v(0, t, t + τ).

Notes
1 To simplify notation we shall denote by Et

(
G(t, T)

)
, where G(t, T) is a random variable depending on the sample path in (t, T] of

a given stochastic process x(t), the conditional expectation of G(t, T) given Ft, where Ft is the σ-field generated by x(t) up to
time t.
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2 Actually, in this risk-neutral setting we may not have real mean-reversion, because αx − π could be negative.
3 This is immediately seen by observing that in the nominal economy the optimally allocated wealth is measured in money unit

and is then given by W∗(t) = p(t)W∗(t). Since the market risk premia are given by the covariance of changes in the relevant risk
factor with percentage changes in W∗(t), we obtain:

φN
p (p(t), t) = Cov

 d
(

p(t)W∗(t)
)

p(t)W∗(t) dt
, dp(t)

 = σ2
p p ,

φN
y (y(t), t) = Cov

 d
(

p(t)W∗(t)
)

p(t)W∗(t) dt
, dy(t)

 = ρ σyσp ,

where φN
p and φN

y are the market risk premia for p and y, respectively, in the nominal economy setting.
4 The ECB risk-free yield curves are slightly different from the yield curves provided by EIOPA, since EIOPA yield curves are

primarily derived from observed interest rate swaps (after appropriate adjustment for credit risk), inter/extrapolated by the
Smith-Wilson method. However, these differences have little relevance to our estimation problem.

5 As it is well-known, in a one-factor model rates of return of different maturities are perfectly correlated. This property is clearly
unrealistic, but could be considered acceptable for maturities that are very close to each other.
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