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Abstract: This article presents a comparative analysis of machine learning models for business
failure prediction. Bankruptcy prediction is crucial in assessing financial risks and making informed
decisions for investors and regulatory bodies. Since machine learning techniques have advanced,
there has been much interest in predicting bankruptcy due to their capacity to handle complex data
patterns and boost prediction accuracy. In this study, we evaluated the performance of various
machine learning algorithms. We collect comprehensive data comprising financial indicators and
company-specific attributes relevant to the Pakistani business landscape from 2016 through 2021.
The analysis includes AdaBoost, decision trees, gradient boosting, logistic regressions, naive Bayes,
random forests, and support vector machines. This comparative analysis provides insights into
the most suitable model for accurate bankruptcy prediction in Pakistani companies. The results
contribute to the financial literature by comparing machine learning models tailored to anticipate
Pakistani stock market insolvency. These findings can assist financial institutions, regulatory bodies,
and investors in making more informed decisions and effectively mitigating financial risks.

Keywords: bankruptcy prediction; machine learning models; comparative analysis; Pakistani compa-
nies; financial risk assessment

1. Introduction

Business failure prediction is an essential area of finance that helps identify the prob-
ability of organizations failing and eventually going bankrupt. The failure of a business
can cause significant losses for creditors and stockholders; the principal investors in any
company. As a result, many users of financial statements place a high value on their capac-
ity to anticipate insolvency. These users include, for instance, businesses, investors, credit
rating organizations, auditors, and regulators. Using a model to predict bankruptcy and
identify early warning signs becomes increasingly essential during a financial and economic
crisis. Many studies have been conducted over the years, developing various statistical and
machine learning models to predict bankruptcy (Qu et al. 2019; Tunio et al. 2021).

In emerging economies like Pakistan, predicting whether a company will fail finan-
cially is a significant challenge for stock market investors. In the past, traditional statistical
models were used to predict bankruptcy. However, they often have limitations, such as
assuming a linear relationship between variables and relying on a subjective selection of
variables. Meanwhile, machine learning models have gained popularity for this task due
to their ability to analyze large amounts of data and identify complex patterns that may be
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difficult for humans to detect (Islam et al. 2022). Machine learning models are increasingly
being used because they can continuously improve accuracy by learning from and adapting
to new data in real-time. Machine learning models can handle non-linear correlations
and automatically select the most significant predictor variables. Decision trees, random
forests, neural networks, and support vector machines are some widely used machine
learning models that can predict whether a business will fail. Using machine learning
models for predicting bankruptcies can result in more accurate and reliable predictions
when applied extensively.

Different fundamentals apply to emerging economies like Pakistan, such as the limited
availability of historical data, lax bankruptcy laws, volatile stock markets, and unstable po-
litical and economic environments. By utilizing advanced algorithms to effectively analyze
extensive data, machine learning models can assist in overcoming some of these difficulties.
These algorithms can spot patterns and connections in the data that previous statistical
analyses like multiple discriminant analysis (MDA) might miss, giving information about
potential hazards and opportunities in the financial world. Hence, machine learning models
provide an essential tool for predicting financial failure in developing nations like Pakistan,
allowing investors and related financial institutions to make better judgments and more
successfully manage risk against the financial failures of the companies.

For several reasons, understanding the intricacies of bankruptcy prediction in emerg-
ing markets is crucial for a global readership. Firstly, with the increasing interconnectedness
of global financial systems, comprehending risks in one market can have broader impli-
cations for international investors, financial institutions, and policymakers. Additionally,
international investors often seek diversification by investing in emerging markets, and
insights from studies in this context can aid in better risk assessments and informed
decision-making (Li et al. 2021). Furthermore, extending the application of established
models to emerging markets enriches the academic discourse, either by strengthening the
general applicability of the models or highlighting their limitations (Patel et al. 2022). Lastly,
while the focus may be on Pakistani companies, the challenges faced in emerging markets
are often similar, making the findings potentially transferable to other emerging or frontier
markets (Wang et al. 2021).

By juxtaposing machine learning models, which are widely accepted in developed
contexts, against the backdrop of a quintessential emerging market like Pakistan, our study
aims to bridge a significant gap in the literature. The insights, challenges, and lessons
drawn from this analysis are relevant to local stakeholders and resonate with a global
audience seeking a comprehensive understanding of global financial landscapes (Khan
et al. 2021). This research contributes to the existing body of knowledge and offers valuable
insights for academia, practitioners, and policymakers alike.

Prior research has extensively evaluated bankruptcy prediction, but mainly in the
context of established economies, potentially rendering them less applicable to emerging
markets (Papana and Spyridou 2020). Predicting bankruptcy in such environments is
complicated due to data paucity, unpredictable stock markets, and a fluid political land-
scape (Kliestik et al. 2020). The research leverages advanced machine learning to decipher
intricate data patterns, eclipsing traditional statistical methods. The goal is to discern
the most efficient model and relevant financial ratios tailored to the Pakistani backdrop,
providing invaluable insights to investors and lenders. This work innovates by holistically
assessing machine learning models for bankruptcy predictions within Pakistan, aiming to
bolster informed decision-making and fortify the nation’s financial milieu (Kanapickienė
et al. 2023).

This study aims to identify the most effective method for predicting business failure in
Pakistani non-financial firms by applying multiple machine learning models to 36 financial
ratios to answer two critical questions: the suitability of model selection and the selection
of the most appropriate ratios. Before investing or lending money, stakeholders such
as shareholders, managers, banks, and creditors must evaluate a company’s financial
condition. This study seeks to contribute to the literature on business failure prediction by
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shedding light on the most effective methods for predicting business failure in Pakistan.
This study also has practical implications for investors, lenders, and regulators, who can
use the findings to make informed judgments regarding investing in or lending money to
non-financial companies in Pakistan.

2. Literature Review

Bankruptcy studies began in the 1930s with ratio analyses to predict future bankruptcy
and continued through the mid-1960s using single factor/ratio analyses for comparison
purposes. Beaver (1966) introduced a univariate analysis in the late 1960s, which provided
the first statistical justification for the ability of financial ratios to account for defaults.
It employed MDA techniques to estimate the likelihood of bankruptcy in a sample of
enterprises. In the early phases of bankruptcy prediction, Altman utilized discriminant
analysis in 1968, a widely used method for model development (Altman 1968). Following
this, various bankruptcy prediction studies were encountered, each with unique models
and factors in their quantity and variation. Altman’s (1968) original model is a five-factor
multivariate discriminant analysis model, whereas Jo et al.’s (1997) model has 57 factors.
In other models, the number of factors considered ranges from one to 57. Since then,
creditors, tribunals, auditors, accountants, and researchers have all come to adopt the
Z-score methodology (Deakin 1972; Edmister 1972; Altman et al. 1977; Laitinen 1991; Grice
and Ingram 2001). However, the multinormality hypothesis was ultimately refuted in
favor of the hypothesis that explanatory variables have distinct distributions. In order to
anticipate bankruptcy, the logit (Ohlson 1980) and probit models were frequently used
(Zmijewski 1984).

In the 1990s, neural networks (Lennox 1999) and the genetic algorithm (Shin and Lee
2002) from the machine learning subfield of artificial intelligence were introduced. They
generated compelling forecasting results without requiring statistical restrictions. Using
data from 1985 to 2013, Barboza et al. (2017) compared the accuracy of five machine learning
models for predicting bankruptcy to more established statistical methods (discriminant
analysis and logistic regression). Comparing the new machine learning techniques to
traditional ones significantly increased the accuracy of bankruptcy forecasts and provided
greater precision than the statistical methods (Aziz and Dar 2006).

The model and its financial ratios must be appropriately chosen to predict bankruptcy
accurately (Tang and Chi 2005). Statisticians have devised numerous techniques for se-
lecting relevant predictor variables, such as principal components analysis (PCA), MDA,
and the least absolute shrinkage and selection operator (LASSO) technique (Pompe and
Bilderbeek 2005). The initial list of explanatory variables may include up to 50 ratios
derived from detailed information obtained from balance accounts and income statements.
However, typically, only 5 to 10 ratios are chosen for the model (Tian et al. 2015). Variable
selection procedures may differ depending on the data used, such as annual or quarterly
financial data or ratios averaging several years before the bankruptcy (Fan and Li 2001).
The effects of model accuracy during periods of economic decline have been studied, and
bankruptcy prediction models for SMEs and publicly traded companies have been devel-
oped (Du Jardin 2015). However, these models need more access to the necessary data of
some businesses (Karas and Režňáková 2014; Ciampi 2015).

Shi and Li (2019) show that logit and neural network models are the most popular
and extensively researched methods for predicting bankruptcy. Mai et al. (2019) evaluated
conventional learning machine models with convolutional neural networks on an extensive
database of public corporations and discovered that the simplified models performed
reliably. Hosaka (2019) discovered that convolutional neural networks provide more accu-
rate predictions. However, there has yet to be an agreement on how to use convolutional
neural networks to predict bankruptcy. In recent years, artificial intelligence algorithms
and machine learning models have demonstrated promising results in predicting business
failure without requiring statistical assumptions. Numerous researchers have compared
the accuracy of traditional statistical models to machine learning techniques and discovered
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that machine learning techniques function more effectively. However, consensus on the
most influential business failure prediction model is still needed. This paper seeks to
investigate the existing models and techniques used to predict business failure and to
determine the most effective approach.

Logistic regression has been recognized as a straightforward and comprehensible
model that has demonstrated strong performance in the context of binary classification tasks
(Mood 2010). Nevertheless, it is worth noting that the model may encounter challenges
in dealing with intricate non-linear relationships and can be influenced by the exclusion
of factors, even if these variables are not directly related to the independent variables in
the model. Random forests (RFs) have been demonstrated to be beneficial in managing
high-dimensional data and large datasets while also exhibiting resilience against overfitting.
Nevertheless, they compromise a certain degree of interpretability. The simplicity and
efficiency of naive Bayes have been demonstrated, particularly in text classification.

Shetty et al. (2022) conducted a comprehensive study comparing the bankruptcy
prediction power of five machine learning models with traditional statistical techniques.
Using North American firms’ data from 1985 to 2013, they found that machine-learning
models outperformed discriminant analysis and logistic regression in accuracy. Their
results demonstrated the potential of machine learning techniques in enhancing bankruptcy
prediction.

Another study by Kitowski et al. (2022) focused on identifying symptoms of bankruptcy
risk based on bankruptcy prediction models in Poland. They employed various machine
learning techniques, including extreme gradient boosting (XGBoost), support vector ma-
chines (SVMs), and deep neural networks. By utilizing easily obtainable financial ratios,
they achieved 82–83% global accuracy in predicting bankruptcies for Polish enterprises.
Their model proved simple yet accurate, providing a user-friendly tool for discriminat-
ing between bankrupt and non-bankrupt firms. In the agricultural sector, they explored
bankruptcy risk prediction to ensure the sustainable operation of agriculture companies.
They applied different Z-score models and calculated bankruptcy probabilities on a sample
of agricultural companies listed on the Belgrade Stock Exchange. Their research high-
lighted the importance of bankruptcy prediction in maintaining the sustainability of agri-
cultural businesses.

Lombardo et al. (2022) developed a dataset and benchmarks for bankruptcy prediction
in the context of the American stock market. Their study focused on machine learning
techniques and their application in predicting bankruptcy in the American stock market.
They investigated the design and application of different machine learning models for esti-
mating survival probabilities over time and default prediction using time-series accounting
data. The dataset used in their experiments included 8262 different public companies listed
on the American stock market between 1999 and 2018.

Furthermore, Kainth and Wahlstrøm (2021) investigated the impact of International
Financial Reporting Standards (IFRS) on bankruptcy prediction for privately held Swedish
and Norwegian companies. Their study examined the transparency promoted by IFRS and
its influence on bankruptcy prediction.

Nevertheless, the method assumes naive independence among characteristics. De-
cision trees provide transparency and versatility (Liang et al. 2016). Nevertheless, it is
essential to acknowledge that these models are susceptible to overfitting and instability. The
performance of machine learning algorithms, such as AdaBoost and GBT, was enhanced
with the integration of weak learners, as demonstrated by Bühlmann and Hothorn (2007).
Nevertheless, these models exhibit sensitivity to noisy data and necessitate hyperparameter
adjustment.

3. Data Design and Methodology

The Pakistan Stock Exchange (PSX) provided the data for this investigation. The
imperative to comprehend the nuanced fluctuations in the economic landscape is not only
an exercise in intellectual curiosity but also a matter of practical necessity. This research
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delves into the financial health of firms by leveraging a dataset from the PSX spanning the
years 2016 to 2021. This period was crucial, enabling us to discern patterns that indicate
either an ascent or descent in the broader economic context of Pakistan.

For our sample constitution, rigorous criteria were indispensable. We began with a
focus on non-financial firms with a continuous listing on the PSX, leading to the inclusion
of 385 publicly traded entities. These companies, diverse in their economic sectors, were
the bedrock of our analysis. Essential to our approach was the extraction of 36 financial
ratios from their financial disclosures. These ratios, when integrated, functioned as the
independent variables in our machine learning algorithms. Moreover, to uphold the
integrity of our study, firms with ambiguous or incomplete financial data within the
selected duration were systematically excluded.

Our methodological rigor was further enhanced using a paired sampling technique.
This method entailed contrasting firms boasting positive cash flows or operational profits
over five years with those manifesting a hostile trajectory. Such an approach was strategic,
especially considering the overarching economic disturbances, notably the disruptions
caused by the COVID-19 pandemic.

Guided by the pivotal work of Piatt and Piatt (2002), our study embraced a binary clas-
sification approach. A company’s financial vulnerability was characterized by its incapacity
to address fiscal responsibilities, significantly when marred by negative operating income,
which is often a precursor to bankruptcy or insolvency. These financial tribulations could
emanate from internal oversights or shifting external market dynamics, such as regulatory
changes, amplified competition, or other externalities. Based on our criteria, firms with a
negative trajectory in net operating income and operating cash flows for three successive
years were identified as financially unstable.

In widening our analytical lens, Nehrebecka (2021) guided us to consider scenarios
influenced by external shocks. While insights were gleaned from the financial outlines of
dominant market entities as of March 2020, our methodology consciously bypassed firms
from sectors profoundly affected by the reverberations of COVID-19. This crisis was crucial
to ensure our analysis centered on companies whose trajectories were more influenced by
intrinsic determinants than sweeping externalities like the pandemic.

For a thorough investigation, we meticulously extracted 36 financial ratios from the
financial statements of these companies. The ratios were categorized into six classes, each
fulfilling a particular analytical objective.

The initial course, profitability measures (Class 1), comprises a set of eight measures
specifically formulated to assess the profitability and operational effectiveness of the or-
ganization. The statistics encompass net profit margin, asset turnover, return on assets,
financial leverage, return on equity, gross profit margin, operating return on assets, and
return on capital employed.

In the second class (Class 2), liquidity ratios, the emphasis is placed on evaluating
a corporation’s short-term financial well-being by examining three primary indicators:
current ratio, quick ratio, and cash current liabilities ratio.

Cash flow ratios, specifically those discussed in (Class 3), encompass a collection
of five ratios: cash flow from operations to sales, cash return on assets, cash return on
equity, cash to income, and debt coverage ratio. These ratios offer valuable insights into the
company’s cash flow management and capacity to maintain long-term financial stability.

Class 4, which focuses on activity ratios, encompasses a comprehensive set of eight
ratios. These ratios include the inventory turnover ratio, number of days in inventory,
receivables turnover ratio, number of days in receivables, payable turnover ratio, number of
days in payable, working capital turnover, and cash conversion cycle. These measurements
provide insights into the effectiveness of the company’s operational actions.

The fifth category (Class 5), valuation variables, encompasses seven variables essential
for evaluating a company’s market and investment appeal. The ratios encompass the
paid-up value of shares, market price per share, basic earnings per share, price–earnings
ratio, dividend payout ratio, cash dividend per share, and book value per share.
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Finally, Class 6 encompasses four fundamental solvency ratios: the debt equity ratio,
debt-to-assets ratio, debt-to-capital ratio, and interest cover ratio. These ratios provide
valuable insights into the company’s capacity to fulfil its long-term financial commitments.

The utilization of a systematic classification of financial ratios offers a methodical
framework for assessing many aspects of firms’ financial performance and stability. This
process serves as the fundamental basis for our comprehensive examination, facilitating
the derivation of significant conclusions and insights from the collected data.

Ensuring that models are resilient and generalizable is paramount in the expansive
realm of modelling. A meticulous methodology was employed in building a predictive
model for discerning between bankrupt and non-bankrupt entities.

Central to our strategy was the k-fold cross-validation technique. This method subdi-
vided the dataset into ‘k’ distinct subsets or ‘folds’. Each fold, in turn, was systematically
designated for validation, with the model being trained on the remaining k − 1 folds. The
rigorous iterative cycle was repeated k times, guaranteeing that every fold was used a vali-
dation set once. The culmination of these iterations was the computation of an aggregate
performance metric, such as accuracy or F1-score, derived from the average across all the
validation iterations. The advantage of this approach is its inclusivity: every data point is
used both in a validation set once and in a training set k − 1 times. This comprehensive
evaluation starkly contrasts the traditional train–test division, offering a broader and more
nuanced assessment of model performance.

Our adherence to rigor continued. The selection of explanatory variables was executed
with unparalleled precision, ensuring a foundation built on theoretical and empirical
robustness. Critical variables were spotlighted by harnessing code capabilities to perform
feature selection based on the relative mean differences between the bankrupt and non-
bankrupt firms. This discernment was bolstered through Monte Carlo hypothesis testing,
ensuring the statistical significance of the observed mean differences. Drawing inspiration
from time-tested methodologies, such as the Altman Z-score, we included only specific
independent variables in our model, aligning with the best practices from prior research.

Given the criticality of addressing overfitting, multiple strategies were employed.
Regularization techniques, applicable to algorithms like logistic regression and SVMs,
were integral in thwarting the development of overly intricate models. For decision trees,
pruning was our tool of choice to reduce the model’s complexity. Ensemble methods like
random forests and gradient boosting became our bulwark against overfitting, offering the
strength of multiple base estimators.

Furthermore, a grid search and cross-validation fusion guided us to the most suitable
hyperparameters. Such meticulous tuning was vital not just for model performance but
also as a bulwark against overfitting. Iterative models, specifically gradient boosting, were
endowed with early stopping; a mechanism to halt training once no further improvements
in validation error were observed. Recognizing the importance of data volume, we endeav-
ored to incorporate a rich dataset, and for model simplification, only the most pertinent
features were retained.

A holistic analysis was conducted, with hyperparameter selection being a pivotal
aspect. This endeavor allowed the model complexity to be for precisely calibrated against
accuracy, ensuring impeccable tailoring to our specific objective. Our exploration was
thorough, examining various hyperparameters across multiple machine learning algo-
rithms. To further strengthen our model, techniques like Synthetic Minority Oversampling
Technique (SMOTE) were used to address data imbalance issues, and PCA was employed
for dimensionality reduction.

Overall, our commitment to a judicious approach, rooted in both empirical evidence
and theoretical robustness, culminated in a predictive model of exceptional reliability,
resilience, and relevance.
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3.1. Support Vector Machine Model

Support Vector Machines (SVMs) are supervised machine learning algorithms used for
classification analysis. SVMs function by locating the optimal hyperplane that distinguishes
classes in a dataset. The goal of SVMs is to find a hyperplane that maximizes the margin
between the two classes in a binary classification problem given a set of training data xi, yi,
where xi is the input vector and yi is the corresponding binary output label (+1 or −1). The
margin separates the nearest data points for each class and the hyperplane.

The equation of a hyperplane in a SVM is given by:

wTxb = 0, (1)

where w is a vector perpendicular to the hyperplane, b is the bias term, and x is the input
vector. The distance between a point x and the hyperplane is given by:

d =

∣∣wTx + b
∣∣

||w|| , (2)

where the denominator is the norm of the vector w.
SVMs are used in quadratic optimization problems to identify the best hyperplane.

The objective function is given by:

min 1/2 ||w||2 + C ∑ ξi, (3)

subject to:
yi

(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0, (4)

where C regulates the trade-off between maximizing the margin and other factors and
minimizing the classification. ξi is the slack variable that allows for some misclassification,
and yi(wTxi + b) is the decision function that divides the two classes.

Lagrange multipliers can be used to solve the optimization problem, and the solution
can be described in terms of the support vectors, which are the data points that lie closest
to the hyperplane. One possible way to express the decision function is as follows:

f (x) = sgn(∑ αiyi K(xi, x) + b), (5)

where αi are the Lagrange multipliers, K(xi, x) is the kernel function that maps the input
vectors to a higher-dimensional feature space, and sgn is the sign function that returns +1
or −1 depending on the sign of the argument. This function transfers the input vectors to a
higher-dimensional feature space.

SVMs excel in high-dimensional spaces and are effective in datasets with abundant
features, but they have limitations that need to be considered. Their training time increases
significantly with larger datasets, and they do not provide direct probability estimates. The
choice of the kernel function is also critical and requires expertise in the specific domain.
Researchers and practitioners should carefully evaluate these factors when using SVMs in
their applications.

3.2. Logistic Regression Model

Logistic regression is renowned for its unique capability to offer a transparent prob-
abilistic interpretation of its outputs, enabling straightforward adjustments of decision
thresholds. Its design inherently incorporates regularization techniques, which serve as
a protective measure against overfitting. Moreover, logistic regression is adaptable when
integrating new data, mainly through techniques like stochastic gradient descent. However,
its limitation lies in assuming a linear decision boundary, rendering it unsuitable for han-
dling non-linear complexities. This linear constraint often results in inferior performance
compared to more advanced algorithms that handle intricate patterns.
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Logistic regression (LR) a practical tool for predicting a company’s financial failure
using binary data. It estimates the likelihood of an outcome using one or more prediction
factors. Bankruptcy prediction uses financial ratios or other criteria to predict bankruptcy.
LR uses a logistic function to convert the linear combination of predictor variables into an
outcome probability.

Logistic functions are S-shaped curves that reflect event probability from 0 to 1. The
logistic equation is as follows:

P(Y = 1) =
1

(1 + e(−z))
, (6)

where P(Y = 1) is the likelihood that a bankruptcy will occur, z is the linear combination
of predictor variables, and e is the base of the natural logarithm.

An expression for the linear combination of predictor variables is:

z = b0 + b1X1 + b2X2 + . . . + bpXp, (7)

where b0 is the intercept and b1, b2, . . ., bp are the coefficients of the predictor variables X1,
X2, . . ., Xp.

After training, the model can predict firm bankruptcy based on financial measures
and other indicators. A threshold probability can predict a company’s bankruptcy. If the
likelihood of bankruptcy exceeds 0.5, the firm will likely fail. The threshold can be changed
to balance false positives and negatives.

3.3. Random Forest Model

Random forests are highly regarded for their versatility and ability to handle large
datasets with high dimensionality effectively. One of their notable strengths is their ro-
bustness in managing missing values, ensuring that accurate predictions can still be made
despite significant data gaps. However, these advantages come with inevitable trade-offs.
The complex structure of the random forest model can result in slower evaluation speeds,
which may be a consideration in time-sensitive applications. Additionally, while random
forests are generally adaptable, there is a risk of overfitting when dealing with particularly
noisy datasets. It is essential to carefully consider these factors when utilizing random
forests in practical applications.

Random forest (RF) is a machine learning approach that may be utilized for classifi-
cation and regression problems. It is a type of strategy known as an ensemble that builds
several different decision trees and then adds up all their predictions to produce a single
result.

Given below is a representation of the statistical equation for the RF model:

h(x) = ∑ wj Itree(x, θj), (8)

for each split node j.

3.4. Naive Bayes Model

The naive Bayes classifier is lauded for its computational efficiency and straightfor-
wardness, enabling effective parameter estimations even with limited training data and
demonstrating aptitude in multi-class prediction scenarios. However, its foundational pre-
sumption of feature independence often misaligns with real-world complexities, potentially
compromising its predictive accuracy. Furthermore, the model’s propensity to assign a
zero probability to previously unobserved categories during testing presents a noteworthy
limitation in dynamic contexts.

The naive Bayes (NB) classifier is a probabilistic algorithm that employs Bayes’ theorem
to forecast the probability of a specific event based on prior knowledge of the conditions
connected to that event. This probability prediction is accomplished using Bayes’ theorem
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to analyze the conditions associated with the event. In the context of bankruptcy prediction,
NB can compute the probability that a firm will declare bankruptcy based on its financial
ratios. This can be done by comparing the company in question to its peers.

The following statistical equations are utilized when applying the NB method:

P(
Y
X
) = P(

X
Y
)× P(Y)

P(X)
, (9)

where Y represents the class variable (“bankrupt” or “non-bankrupt”), X represents the
feature vector (“financial ratios”), P(Y|X) represents the probability of Y given X, P(X|Y)
denotes the likelihood of X given Y, P(Y) embodies the prior probability of Y, and P(X)
characterizes the prior probability of X.

3.5. Decision Tree Model

Decision trees are esteemed for their transparent structure, enabling lucid visualization
and interpretation of the data-driven decision-making process. Their inherent versatility
allows for nominal data preprocessing, adeptly managing a mix of numerical and categori-
cal variables. Nonetheless, these models display a proclivity for overfitting in the absence
of judicious tuning, mainly when training on constrained datasets. Their sensitivity to
minuscule data perturbations can manifest in pronounced structural divergences, and
empirically, their predictive prowess can be eclipsed by more sophisticated algorithms.

The decision tree (DT) model is a well-known approach in the field of machine learning
that may be applied to problems involving classification and regression. The decision tree
approach can be used in the context of bankruptcy prediction to classify enterprises as either
bankrupt or not bankrupt, depending on the values of some predictor criteria. The decision
tree determines this classification. The decision tree algorithm is based on recursively
splitting the data based on the predictor variables to generate a decision tree-like structure
that predicts the outcome variable. The core principle behind the algorithm is described in
the next paragraph.

The equation that is used to train the decision tree model in the manner described
below is as follows:

h(x) = T(x, θ), (10)

where h(x) is the model’s prediction for data point x, T represents the decision tree structure,
and θ encompasses the parameters, including the thresholds at each node and the chosen
feature for each split. Each node might represent a specific financial indicator for bankruptcy
prediction, such as the liquidity ratio, debt ratio, or profit margin. The thresholds at each
node are optimized to discern potential bankruptcies. For instance, a node might inquire if
the liquidity ratio is below a specific critical value, directing firms with lower liquidity to
a branch as more indicative of bankruptcy. The leaf nodes represent the final predictions
(either ‘bankrupt’ or ‘solvent’).

3.6. Adaptive Boosting Model

The AdaBoost algorithm is distinguished by its adeptness at delineating complex deci-
sion boundaries, stemming from its capacity to amalgamate multiple weak predictors into a
potent predictive ensemble, inherently resisting overfitting. Nevertheless, its susceptibility
to noisy data and anomalies presents potential pitfalls in accuracy. Furthermore, achieving
optimal performance necessitates rigorous hyper-parameter tuning, potentially elongating
the model’s training duration.

Adaptive boosting (AdaBoost) is a boosting algorithm that combines numerous weak
learners into one powerful learner. In AdaBoost, weak learners are often decision trees
that only have one possible branch, and these trees are referred to as decision stumps. This
approach functions by repeatedly training weak learners on the dataset, primarily focusing
on the examples of misclassification made by earlier iterations of weak learners. The result
is a weighted total of the weak learners, each given a weight based on their performance in
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the previous tests. The AdaBoost method is a robust one that has been demonstrated to be
successful in a wide variety of different situations.

Training the AdaBoost model can be accomplished using the following equation:

f (x) = sign ∑ αjhj(x), (11)

For bankruptcy prediction, the sign will determine whether a firm is predicted to go
bankrupt (negative) or not (positive).

3.7. Gradient Boosting Model

Gradient boosting machines (GBMs) are heralded in the machine learning domain
for their exemplary precision across diverse applications. Exhibiting profound adapt-
ability, they seamlessly accommodate an assortment of predictor variables and facilitate
customization concerning various loss functions. Nonetheless, GBMs are full of challenges.
A pertinent concern is their predisposition towards overfitting, particularly in the absence
of judicious hyper-parameter optimization. Furthermore, the training phase, characterized
by its sequential nature, can be computationally onerous. Additionally, data noise can
compromise the model’s efficacy in some scenarios. It is imperative to recognize that these
general observations on GBMs’ strengths and potential pitfalls should be contextualized
within any given application’s specifics and associated dataset.

The gradient boosting (GB) algorithm is an example of an ensemble learning algo-
rithm. It takes several weak learners and combines them into a single powerful learner. It
constructs the model in stages, each consisting of the following steps: first, a weak learner
is trained to minimize the loss function using the gradient descent method; next, the model
is updated by adding this weak learner; and finally, the model is evaluated. The procedure
is repeated iteratively, with each consecutive learner concentrating on fixing the mistakes
committed by the prior learner.

The gradient boosting model should be trained using the equation below:

f (x) = ∑ γjhj(x) (12)

Here, hj(x) denotes the weak learner, and γj represents the associated weight. This
equation underscores the cumulative nature of GB, where each component learner con-
tributes to the overarching predictive model. Given the volatility and dynamics of Pak-
istan’s corporate sector, utilizing GB’s strengths could offer more precise insights into
impending bankruptcies, aiding stakeholders in preemptive decision-making.

4. Results of the Comparative Analysis
4.1. Descriptive Analysis

Based on the descriptive statistics (e.g., mean and standard deviation), the accompa-
nying tables (Tables 1 and 2) reflect the financial ratios under examination. The failing
businesses’ had a significantly lower return on assets (ROA) compared to the successful
businesses, suggesting that the failed businesses needed to be more effective at turning
their assets into earnings. Companies with a high return on investment (ROI) outperformed
those with a low ROI. The operating return on assets (OROA) of the failing enterprises
was much lower than that of the successful businesses, showing that the failing businesses
needed to be more efficient at converting their assets into profits. The successful enterprises
had significantly higher OROAs than the unsuccessful ones.

The debt coverage ratios of the failed enterprises were much lower than those of the
successful firms, demonstrating that they could not pay their debts. The debt coverage
ratios of successful businesses were far more significant than those of the failing businesses.
The successful businesses had a much lower debt-to-assets ratio than the failed businesses.
The cash return on assets (CROA) of the failing enterprises was significantly lower than that
of successful ones, indicating that they were less efficient at converting their assets into cash
flow. Profitable businesses have much greater CROAs than those that fail. The businesses
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that failed had considerably lower quick ratios than the successful ones, demonstrating a
reduced capacity to satisfy short-term financial obligations.

Table 1. Descriptive statistics for bankrupt firms.

Statistics ROA Operating
ROA

Debt to
Assets Cash ROA Profit per

Share
Debt

Coverage
Asset

Turnover
Quick
Ratio

Mean −8.21 −4.93 0.84 −1.70 −11.21 −0.08 0.70 0.27
Std. Dev. 12.33 11.87 0.69 11.03 21.14 0.78 0.60 0.39

Min −160.30 −143.08 0.04 −71.34 −176.60 −14.58 0.00 0.00
Max 0.00 11.52 5.77 58.64 0.00 0.48 4.23 3.01

Source: authors’ estimations.

Table 2. Descriptive statistics for non-bankrupt firms.

Statistics ROA Operating
ROA

Debt to
Assets

Cash
ROA

Profit per
Share

Debt
Coverage

Asset
Turnover

Quick
Ratio

Mean 8.10 12.80 0.54 7.32 23.50 0.31 1.14 0.72
Std. Dev. 11.85 13.06 0.27 13.71 57.87 0.29 0.63 0.96

Min −20.48 −16.00 0.04 −49.47 0.00 −0.14 0.01 0.00
Max 337.92 343.05 5.54 221.18 811.55 2.78 4.82 17.32

Source: authors’ estimations.

In contrast to the enterprises that ultimately failed, the successful ones had a much
higher quick liquidity ratio. The strength of this study resides in the fact that it provides
empirical support for the hypothesis that specific financial indicators are related to a
company’s propensity to file for bankruptcy. According to the study, there were significant
differences between the firms that ultimately failed and those that did not with regards to
their primary financial measures. These differences could be early indicators of imminent
financial difficulties.

4.2. Correlation Matrix

Table 3 presents the association between the grouping variable and the final selected
ratios, e.g., cash return on assets (CROA), Debt coverage ratio, quick ratio, asset turnover, re-
turn on assets (ROA), operational return on assets (OROA), debt-to-assets ratio, and profits
per share. The correlation coefficients range from −1 to 1, with −1 being a perfect negative
correlation, 0 denoting no association, and 1 reflecting a perfect positive correlation.

Table 3. Correlation matrix between financial ratios of bankrupt and non-bankrupt firms.

Ratios ROA Operating
ROA

Debt to
Assets

Cash
ROA

Profit per
Share

Debt
Coverage

Asset
Turnover

Quick
Ratio

Bankrupted
firms

ROA 1 0.763 −0.143 −0.048 0.384 0.658 0.090 0.025

Non-
bankrupted

firms

Operating ROA 0.777 1 −0.113 −0.052 0.352 0.667 0.150 0.024
Debt to assets 0.191 0.199 1 −0.170 0.065 0.068 −0.081 −0.274

Cash ROA 0.597 0.613 −0.019 1 −0.053 −0.077 −0.079 0.141
Profit per share 0.317 0.347 −0.002 0.308 1 0.167 −0.119 −0.038
Debt coverage 0.485 0.500 −0.445 0.357 0.279 1 0.053 −0.119
Asset turnover 0.166 0.235 0.156 0.146 0.214 0.066 1 0.101

Quick ratio 0.120 0.105 −0.398 0.098 0.087 0.544 0.0003 1

Source: authors’ estimations.

The ROA (0.366) and operational return on assets (0.373) had the most extensive
positive correlations in the bankrupt group, indicating that these variables may predict
bankruptcy. These correlations were highest for the bankrupt group. Furthermore, there
was a strong correlation between the debt coverage ratio (0.348) and basic earnings per share
(0.318). The debt-to-assets ratio displayed a slightest positive connection (0.852) among all
the variables. The CROA (0.387), the only variable with a stronger positive correlation in
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the bankrupt group than the non-bankrupt group, and debt-to-assets ratio (0.044), which
also had the weakest correlation with the non-bankrupt group, were the variables that had
the weakest correlations with the grouping (bankruptcy) variable. Additionally, the groups
not filing for bankruptcy had the weakest relationships with both characteristics.

4.3. Results of the Machine Learning Models

The following table (Table 4) presents the performance of various classifiers of machine
learning models on the given dataset. A measure of the classifier’s performance is given in
each table column, and each row in the table represents a separate classifier. The applicable
name of the classification model is shown in the first column. The classifier represents the
number of features that the model utilizes in the next column. The first block selects the top
10 columns from the training and test sets. It assigns them to the corresponding variables,
X_train_10 and X_test_10. The second block chooses the first 50 columns from the training
and test sets and puts them into the corresponding variables X_train_50 and X_test_50. The
third block chooses the first 70 columns from the training and test sets and assigns them
to the corresponding variables X_train_70 and X_test_70. Reducing the dimensionality of
the data and enhancing the performance of the machine learning models are the goals of
choosing a subset of features. The accuracy is the proportion of instances that are accurately
divided into bankrupt and non-bankrupt enterprises from all the instances in the dataset.
The F1-measure is the harmonic mean of precision and recall, which measures the balance
between precision and recall. Recall is a different metric that measures the proportion of
positive events in the dataset that were accurately identified as positive. The percentage of
correctly identified predicted positive cases among all the predicted positive instances in
the dataset is shown in the last column of the table, labeled ‘Precision’.

Table 4. Model-wise classification.

Model Classifier Accuracy F1-Measure Recall Precision

SVM
SVM_10 89% 89% 87% 91%
SVM_50 99% 99% 97% 100%
SVM_70 99% 99% 97% 100%

LR
LR_10 92% 92% 92% 91%
LR_50 99% 99% 99% 100%
LR_70 99% 99% 99% 100%

RF
RF_10 100% 100% 100% 100%
RF_50 100% 100% 100% 100%
RF_70 100% 100% 100% 100%

NB
NB_10 58% 70% 96% 55%
NB_50 70% 76% 96% 64%
NB_70 70% 76% 96% 64%

DT
DT_10 99% 99% 99% 100%
DT_50 100% 100% 100% 100%
DT_70 100% 100% 100% 100%

AdaBoost
AdaBoost_10 100% 100% 100% 100%
AdaBoost_50 100% 100% 100% 100%
AdaBoost_70 100% 100% 100% 100%

GBT
GBT_10 100% 100% 99% 100%
GBT_50 100% 100% 100% 100%
GBT_70 100% 100% 100% 100%

Source: authors’ estimations.

Table 4 shows that all the models achieved a high level of accuracy, with most models
achieving 100% accuracy. The models with the highest accuracy were the decision tree,
AdaBoost, and gradient boosting ones. Depending on how many features were utilized,
the SVM and logistic regression models also did well, obtaining accuracy rates of 89 to
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99 percent. The accuracy of the naive Bayes model, which varied from 58 to 70 percent
depending on the number of characteristics utilized, was the lowest. The models’ overall
high precisions, recalls, and F1-measure scores show that they performed exceptionally
well at correctly identifying the bankrupt and non-bankrupt enterprises in the dataset.

The receiver operating characteristics (ROC) curve (Figure 1) reveals the sensitivity–
specificity balance at different thresholds. The ROC analysis can assess a model’s discrim-
inatory capacity and determine the ideal operating point based on the user’s goals and
tolerance for false positives and negatives. Most models have a 100% accuracy, indicating
exceptional precision. The decision tree, AdaBoost, and gradient boosting models were the
most accurate. The SVM and logistic regression models performed well depending on the
feature count. The naive Bayes was less accurate than the other models.
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5. Discussion

This study offers a comprehensive evaluation of several machine learning models for
bankruptcy prediction, and the outcomes garnered pave the way for profound insights. The
results of this study involved consistently high levels of accuracy across models, elucidating
their potential for effective bankruptcy prediction. Distinctly, the decision tree, AdaBoost,
and gradient boosting classifiers reached an impressive pinnacle, with an accuracy of
100%. Such a feat emphasizes their robustness and sets a benchmark for future studies in
similar domains.

While these models achieved perfect accuracy, the SVM and logistic regression models
also garnered commendable results. Their accuracy fluctuated between 89% and 99%,
depending on the feature count employed. It is noteworthy that as the number of features
increased, the accuracy of these models tended to edge closer to perfection. This trend un-
derscores the pivotal role of feature selection, corroborating earlier findings by Shetty et al.
(2022) that advocate for the judicious choice of features to optimize model performance.

In stark contrast, though consistent across different feature counts, the naive Bayes
model’s performance remained suboptimal compared to its counterparts. Its accuracy,
ranging from 58% to 70%, raises questions regarding its suitability for such datasets,
emphasizing the need for further exploration. However, it is imperative to note that the
high recall scores for the naive Bayes model suggest its strength in identifying bankrupt
enterprises, even if its overall accuracy is less.
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Comparatively, traditional models like Altman’s Z-Score and Taffler’s models have
been widely recognized in the financial realm (Altman 1968). For instance, Altman’s
model demonstrated an 82–94% accuracy rate. However, our study reveals that specific
machine learning models can surpass even these commendable benchmarks. One primary
distinction between the two approaches is their adaptability. Due to their inherent design,
machine learning models are inherently adaptable to changing financial landscapes. In
contrast, while transparent and interpretable, traditional models like the Z-Score model
possess fixed characters and require periodic modifications, as evidenced by Altman’s
subsequent revisions.

Our study bridges the gap between theory and practice, drawing from empirical
results to provide stakeholders with actionable insights. The high accuracy rates, especially
among models like decision trees, AdaBoost, and gradient boosting, signify not only the
potential of these tools for reliable bankruptcy prediction but also emphasize the importance
of machine learning in contemporary financial forecasting. Furthermore, juxtaposed against
traditional models, our findings underscore the evolving nature of bankruptcy prediction
tools and the need for continuous innovation in this domain.

Conclusively, while the tested models demonstrated a promising avenue for bankruptcy
prediction, it is vital to approach their deployment with a nuanced understanding of their
strengths and limitations. Further research, building upon our findings, can aid in hon-
ing these tools for even more precise predictions in the dynamic landscape of Pakistani
enterprises.

6. Conclusions

This study aimed to evaluate Pakistani enterprises using machine learning techniques
to predict their financial difficulties and likelihood of bankruptcy. The results of this study
indicate that several financial ratios, such as return on assets, operating return on assets,
debt coverage ratio, asset turnover, earnings per share, debt-to-assets ratio, Cash return
on assets, and quick ratio, can be used to predict whether or not a company will file
for bankruptcy.

Overall, this study on bankruptcy prediction using machine learning techniques and
financial ratios has the potential to contribute to the field of financial risk management
by improving risk assessment, serving as an early warning system, enhancing risk man-
agement practices, informing regulatory considerations, and inspiring future research
and innovation.

According to the empirical evidence supporting the study, financial ratios can be used
to predict insolvency in Pakistani enterprises. The machine learning models’ results show
the best options for predicting financial distress and insolvency in Pakistani enterprises.
This study also underlines the need to use financial indicators to predict bankruptcy, which
can help financial analysts, investors, and regulators make more informed decisions.

The results of these models are essential to financial analysts, investors, and stake-
holders who want accurate bankruptcy predictions. The decision tree, AdaBoost, and
gradient boosting models performed well, obtaining a 100% accuracy. The SVM and logis-
tic regression models showed exceptional flexibility in feature selection settings, with 89
to 99% accuracy rates depending on the selected characteristics. The Naive Bayes model
performed poorly, with 58% to 70% accuracy. However, its utility for specific feature sets
must be considered. These models’ high precision, recall, and F1-measure scores show
their ability to distinguish bankrupt from non-bankrupt enterprises, making them useful
for industry experts who need accurate and fast bankruptcy identification.

The results of this study may have significant effects on Pakistan’s non-financial sector.
Policymakers and regulatory authorities may find the study’s insights helpful in creating
and working to achieve effective frameworks and laws to reduce systemic risks in the
financial sector. By identifying the financial ratios that contribute to bankruptcy prediction,
regulators can establish thresholds or guidelines for monitoring the financial health of
companies and enforcing appropriate measures when necessary. Financial institutions can
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utilize bankruptcy prediction models to proactively manage their exposure to potentially
risky borrowers, leading to a more resilient banking system. Additionally, businesses can
use these findings to monitor their financial health and make the required modifications to
prevent financial bankruptcy. This study also emphasizes the value of applying machine
learning techniques to bankruptcy forecasting, which can help to increase prediction
accuracy and lower the risks associated with financial investments.

Future studies may need to be revised to select and implement machine learning
algorithms used in the comparative analysis. The choice of algorithms may influence the
performance and outcomes of the bankruptcy prediction models. The models’ efficacies
and capacities to forecast bankruptcy in Pakistani enterprises may be constrained by biases
in the data utilized for training and evaluation. The findings and conclusions of this study
may be specific to the context of Pakistani companies, limiting their generalizability to
other regions or industries.
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Karas, Michal, and Mária Režňáková. 2014. To What Degree Is the Accuracy of a Bankruptcy Prediction Model Affected by the
Environment? The Case of the Baltic States and the Czech Republic. Procedia—Social and Behavioral Sciences 156: 564–68. [CrossRef]

Khan, Shahzad, Sahibzada Tasleem Rasool, and Syed Imran Ahmed. 2021. Role of Cardiac Biomarkers in COVID-19: What Recent
Investigations Tell Us? Current Problems in Cardiology 46: 100842. [CrossRef]

Kitowski, Jerzy, Anna Kowal-Pawul, and Wojciech Lichota. 2022. Identifying Symptoms of Bankruptcy Risk Based on Bankruptcy
Prediction Models—A Case Study of Poland. Sustainability 14: 1416. [CrossRef]

Kliestik, Tomas, Katarina Valaskova, George Lazaroiu, Maria Kovacova, and Jaromir Vrbka. 2020. Remaining Financially Healthy and
Competitive: The Role of Financial Predictors. Journal of Competitiveness 12: 74–92. [CrossRef]

Laitinen, Erkki K. 1991. Financial Ratios and Different Failure Processes. Journal of Business Finance & Accounting 18: 649–73. [CrossRef]
Lennox, Clive S. 1999. The Accuracy and Incremental Information Content of Audit Reports in Predicting Bankruptcy. Journal of

Business Finance & Accounting 26: 757–78. [CrossRef]
Li, Guofa, Yifan Yang, Tingru Zhang, Xingda Qu, Dongpu Cao, Bo Cheng, and Keqiang Li. 2021. Risk Assessment Based Collision

Avoidance Decision-Making for Autonomous Vehicles in Multi-Scenarios. Transportation Research Part C: Emerging Technologies
122: 102820. [CrossRef]

Liang, Deron, Chia Chi Lu, Chih Fong Tsai, and Guan An Shih. 2016. Financial Ratios and Corporate Governance Indicators in
Bankruptcy Prediction: A Comprehensive Study. European Journal of Operational Research 252: 561–72. [CrossRef]

Lombardo, Gianfranco, Mattia Pellegrino, George Adosoglou, Stefano Cagnoni, Panos M. Pardalos, and Agostino Poggi. 2022. Machine
Learning for Bankruptcy Prediction in the American Stock Market: Dataset and Benchmarks. Future Internet 14: 244. [CrossRef]

Mai, Feng, Shaonan Tian, Chihoon Lee, and Ling Ma. 2019. Deep Learning Models for Bankruptcy Prediction Using Textual Disclosures.
European Journal of Operational Research 274: 743–58. [CrossRef]

Mood, Carina. 2010. Logistic Regression: Why We Cannot Do What We Think We Can Do, and What We Can Do about It. European
Sociological Review 26: 67–82. [CrossRef]

Nehrebecka, Natalia. 2021. COVID-19: Stress-Testing Non-Financial Companies: A Macroprudential Perspective. The Experience of
Poland. Eurasian Economic Review 11: 283–319. [CrossRef]

Ohlson, James A. 1980. Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research 18: 109. [CrossRef]
Papana, Angeliki, and Anastasia Spyridou. 2020. Bankruptcy Prediction: The Case of the Greek Market. Forecasting 2: 505–25.

[CrossRef]
Patel, Charmi, Dominic Pilon, Deepshekhar Gupta, Laura Morrison, Marie Hélène Lafeuille, Patrick Lefebvre, and Carmela Benson.

2022. National and Regional Description of Healthcare Measures among Adult Medicaid Beneficiaries with Schizophrenia within
the United States. Journal of Medical Economics 25: 792–807. [CrossRef] [PubMed]

Piatt, Harlan D., and Marjorie B. Piatt. 2002. Predicting Corporate Financial Distress: Reflections on Choice-Based Sample Bias. Journal
of Economics and Finance 26: 184–99. [CrossRef]

Pompe, Paul P. M., and Jan Bilderbeek. 2005. The Prediction of Bankruptcy of Small- and Medium-Sized Industrial Firms. Journal of
Business Venturing 20: 847–68. [CrossRef]

Qu, Yi, Pei Quan, Minglong Lei, and Yong Shi. 2019. Review of Bankruptcy Prediction Using Machine Learning and Deep Learning
Techniques. Procedia Computer Science 162: 895–99. [CrossRef]

Shetty, Shekar, Mohamed Musa, and Xavier Brédart. 2022. Bankruptcy Prediction Using Machine Learning Techniques. Journal of Risk
and Financial Management 15: 35. [CrossRef]

Shi, Yin, and Xiaoni Li. 2019. An Overview of Bankruptcy Prediction Models for Corporate Firms: A Systematic Literature Review.
Intangible Capital 15: 114–27. [CrossRef]

Shin, Kyung Shik, and Yong Joo Lee. 2002. A Genetic Algorithm Application in Bankruptcy Prediction Modeling. Expert Systems with
Applications 23: 321–28. [CrossRef]

Tang, Tseng Chung, and Li Chiu Chi. 2005. Predicting Multilateral Trade Credit Risks: Comparisons of Logit and Fuzzy Logic Models
Using ROC Curve Analysis. Expert Systems with Applications 28: 547–56. [CrossRef]

Tian, Shaonan, Yan Yu, and Hui Guo. 2015. Variable Selection and Corporate Bankruptcy Forecasts. Journal of Banking & Finance 52:
89–100. [CrossRef]

Tunio, Fayaz Hussain, Yi Ding, Amad Nabi Agha, Kinza Agha, and Hafeez Ur Rehman Zubair Panhwar. 2021. Financial Distress
Prediction Using Adaboost and Bagging in Pakistan Stock Exchange. The Journal of Asian Finance, Economics and Business 8: 665–73.
[CrossRef]

https://doi.org/10.1016/j.ejor.2014.09.059
https://doi.org/10.1016/S0957-4174(97)00011-0
https://doi.org/10.3390/jrfm14030123
https://doi.org/10.3390/risks11050097
https://doi.org/10.1016/j.sbspro.2014.11.241
https://doi.org/10.1016/j.cpcardiol.2021.100842
https://doi.org/10.3390/su14031416
https://doi.org/10.7441/joc.2020.01.05
https://doi.org/10.1111/J.1468-5957.1991.TB00231.X
https://doi.org/10.1111/1468-5957.00274
https://doi.org/10.1016/j.trc.2020.102820
https://doi.org/10.1016/j.ejor.2016.01.012
https://doi.org/10.3390/fi14080244
https://doi.org/10.1016/j.ejor.2018.10.024
https://doi.org/10.1093/esr/jcp006
https://doi.org/10.1007/s40822-020-00163-0
https://doi.org/10.2307/2490395
https://doi.org/10.3390/forecast2040027
https://doi.org/10.1080/13696998.2022.2084234
https://www.ncbi.nlm.nih.gov/pubmed/35635250
https://doi.org/10.1007/BF02755985
https://doi.org/10.1016/j.jbusvent.2004.07.003
https://doi.org/10.1016/j.procs.2019.12.065
https://doi.org/10.3390/jrfm15010035
https://doi.org/10.3926/ic.1354
https://doi.org/10.1016/S0957-4174(02)00051-9
https://doi.org/10.1016/j.eswa.2004.12.016
https://doi.org/10.1016/J.JBANKFIN.2014.12.003
https://doi.org/10.13106/JAFEB.2021.VOL8.NO1.665


Risks 2023, 11, 176 17 of 17

Wang, Na, Juanwen Chen, Mankin Tai, and Jingyuan Zhang. 2021. Blended Learning for Chinese University EFL Learners: Learning
Environment and Learner Perceptions. Computer Assisted Language Learning 34: 297–323. [CrossRef]

Zmijewski, Mark E. 1984. Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting
Research 22: 59–82. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/09588221.2019.1607881
https://doi.org/10.2307/2490859

	Introduction 
	Literature Review 
	Data Design and Methodology 
	Support Vector Machine Model 
	Logistic Regression Model 
	Random Forest Model 
	Naive Bayes Model 
	Decision Tree Model 
	Adaptive Boosting Model 
	Gradient Boosting Model 

	Results of the Comparative Analysis 
	Descriptive Analysis 
	Correlation Matrix 
	Results of the Machine Learning Models 

	Discussion 
	Conclusions 
	References

