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Abstract: This paper features an analysis of the relative effectiveness, in terms of the Adjusted R-
Square, of a variety of methods of modelling realized volatility (RV), namely the use of Gegenbauer
processes in Auto-Regressive Moving Average format, GARMA, as opposed to Heterogenous Auto-
Regressive HAR models and simple rules of thumb. The analysis is applied to two data sets that
feature the RV of the S&P500 index, as sampled at 5 min intervals, provided by the OxfordMan RV
database. The GARMA model does perform slightly better than the HAR model, but both models
are matched by a simple rule of thumb regression model based on the application of lags of squared,
cubed and quartic, demeaned daily returns.
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1. Introduction

This paper features the application of time series modelling techniques to the mod-
elling of RV. In this particular case, RV sampled at 5 min, as supplied by the OxfordMan
Institute (see: https://realized.oxford-man.ox.ac.uk/data, accessed on 22 March 2022), was
used. We compare the effectiveness of Gegenbauer processes in Auto-Regressive Moving
Average format, GARMA models, as opposed to Heterogenous Auto-Regressive HAR
models and other rules of thumb, based on demeaned squared, cubed and quartic daily
returns, as methods for modelling and forecasting daily 5 min RV. The aim of the paper is
to explore whether sophisticated models out-perform simple rules of thumb.

Over the past 100 years, considerable advances have been made in time series mod-
elling. Yule (1926) and Slutsky (1927) developed the stochastic analysis of time series and
developed the concepts of autoregressive (AR) and moving average (MA) models. Box and
Jenkins (1970) suggested methods for applying autoregressive moving average (ARMA)
or autoregressive integrated moving average (ARIMA) models to find the best fit of a
time-series model to past values of a time series.

A contrary view of the approriateness of this approach has been promoted by Comman-
deur and Koopman (2007), who suggested that the Box–Jenkins approach is fundamentally
problematic. They have championed the adoption of alternative state-space methods to
counter the contention that many real economic series are not truly stationary, despite
differencing.

In the 1980s, attention switched to the consideration of the issues related to stationarity
and non-stationary time series, fractional integration and cointegration. Granger and Joyeux
(1980) and Hosking (1981) focussed attention on fractionally integrated autoregressive
moving average (ARFIMA or FARIMA) processes. Unit root testing to assess the stationarity
of a time series became established via the application of the Dickey–Fuller test, following
the work of Dickey and Fuller (1979).
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Engle and Granger (1987) developed the concept of cointegration, whereby two time
series might be individually integrated and non-stationary I(1), but some linear combi-
nation of them might possess a lower order of integration and be stationary, in which
case the series are said to be cointegrated. Many of these conceptual developments have
important applications to economic and financial time series, and to economic theory in
these discipline areas.

One of the common features of many time series of financial data sets is that the vari-
ance of the series is not homoscedastic, and that these features concerned are autocorrelated.
The Autoregressive Conditional Heteroskedasticity (ARCH) model that incorporates all
past error terms was developed by Engle (1982). Bollerslev (1986) further generalised it
to GARCH by including lagged term conditional volatility. Therefore, GARCH predicts
that the best indicator of future variance is a weighted average of long-run variance, the
predicted variance for the current period, and any new information in this period, as
captured by the squared residuals. GARCH models provide an estimate of the conditional
variance of a financial price time series.

The concept of RV and associated metrics were developed by Andersen et al. (2001),
Andersen et al. (2003), and Barndorff-Nielsen and Shephard (2002). This alternative
approach measures the variance directly from the observed values of the price series. These
RV measures are theoretically sound, high-frequency, nonparametric-based estimators
of the variation of the price path of an asset during the times at which the asset trades
frequently on an exchange.

The modelling of the variance of financial time series and the use of RV is the focus of
this paper. In the empirical analysis, we use RV 5 min estimates from Oxford-Man for the
S&P500 Index as the RV benchmark. Their database contains daily (close to close) financial
returns and a corresponding sequence of daily realized measures rm1, rm2, . . . . . . , rmT .

Corsi (2009, p. 174) suggests “an additive cascade model of volatility components
defined over different time periods. The volatility cascade leads to a simple AR-type model
in the realized volatility with the feature of considering different volatility components
realized over different time horizons, and which he termed as being a “Heterogeneous
Autoregressive model of Realized Volatility”. We make use of the Corsi (2009) HAR model
to model RV in some of the empirical tests included in this paper.

However, the main focus of this paper is the application of Gegenbauer processes to
the modelling of RV. Gegenbauer processes were introduced by Hosking (1981) and further
developed by Anděl (1986) and Gray et al. (1989). The latter proposed the class of time
series models known as Gegenbauer ARMA, or, as abbreviated, GARMA processes, which
are the central focus of this paper.

In the current paper, we compare the effectiveness of GARMA models, as opposed
to HAR models and other rules of thumb, based on demeaned squared daily returns, as
methods for modelling and forecasting daily 5 min RV.

The paper is a further companion piece to two previous studies in the topic’s general
area, namely, Allen and McAleer (2020) and Allen (2020), that compared the effectiveness
of stochastic volatility (SV), vanilla GARCH and HAR models, as opposed to simple rules
of thumb, in their effectiveness as tools for capturing the RV of major stock market indices.

The current paper concentrates on the S&P500 index and examines whether GARMA,
HAR or simple rules of thumb better capture the RV sampled at 5 min intervals, as provided
by Oxford-Man, of the S&P500 Index. Thus, the central concern is what is the best method
of capturing the long memory properties of a historical time series of RV5 for the S&P500
index. This is in contrast with the two previously mentioned studies, which contrasted the
effectiveness of the volatility models per se.

The benchmark is provided by the estimates of RV5, in a sample of daily estimates of
RV5, running from 8 May 1997 to 30 August 2013 with 4096 observations, plus a longer-period
sample of RV5, also based on the S&P500 Index, running from 4 January 2000 to 30 April 2020,
comprising 5099 observations. This is the same data set as used in Allen (2020).
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The motivation for this paper is provided by Poon and Granger (2005, p. 507), who
observed that: “as a rule of thumb, historical volatility methods work equally well com-
pared with more sophisticated ARCH class and SV models.” This paper similarly seeks to
explore whether simple rules of thumb, in this case based on the use of a regression model
featuring squared demeaned daily returns, with the subsequent addition of cubed and
quartic powers of them, perform as well as more sophisticated time series models.

The paper is divided into four sections: Section 2 reviews the literature and econometric
methods employed. Section 3 presents the results, and Section 4 presents the conclusions.

2. Previous Work and Econometric Models

Recent reviews of the literature on the nature and applications of Gegenbauer pro-
cesses are provided by Hunt et al. (2021) and Dissanayake et al. (2018). Peiris et al. (2005)
and Peiris and Thavaneswaran (2007) considered long memory models driven by het-
eroskedastic GARCH errors. Peiris and Asai (2016) returned to this topic, and Guegan
(2000) combined Gegenbauer processes with integrated GARCH (GIGARCH) to include
the attributes of long memory, seasonality and heteroskedasticity at the same time, in the
modelling of volatility.

2.1. The Basic GEGENBAUER Model

Let {Xt, t = 1, 2, . . . ,} be a stationary random process with the autocovariance γ(k) =
Cov(Xt, Xt+|k|), and the autocorrelation function ρ(k) = γ(k)/γ(0), where k = 1, 2 . . ..
The spectral density function (sdf) is denoted by:

f (ω) =
1

2π

∞

∑
k=−∞

ρ(k)e−ωk, −π ≤ ω ≤ π,

where ω is the Fourier frequency.
There are various ways in which the long memory component of the Gegenbauer

model can be specified, as discussed in Dissanayake et al. (2018). In the analysis that
follows, we utilise the R package GARMA, as developed by Hunt (2022a).

A Gegenbauer process is a long memory process generated by the dynamic equation:

(1− 2uB + B2)δXt = εt, (1)

where | u |< 1, δ ∈ (0, 0.5) and εt is a short memory process characterised by a positive
and bounded spectral density, fε(ω). If εt ∼ WN

(
0, σ2), (1) is a Gegenbauer process of

order δ or a GARMA (0, δ, 0, u) process. Dissanayake et al. (2018) mention that (1) complies
with the definition of a long memory process at the frequency ω0arccos(u). According to
(1), Xt arises from filtering the process εt by the infinite impulse response

(1− 2uB + B2)−δ =
∞

∑
j=0

Cδ
j (u)Bj.

It can be shown that a stationary Gegenbauer process contains an unbounded spectrum
at ω0 and is long memory when 0 < δ < 1

2 . This special frequency ω0 is called the
Gegenbauer or G-frequency, as outlined by Dissanayake et al. (2018, p. 416).

The k-factor GARMA model as fit by the GARMA package, as in Hunt (2022a), is
specified as:

φ(B)
k

∏
i=1

(1− 2uiB + B2)di (1− B)δ(Xt − u) = θ(B)εt (2)

• where φ(B) represents the short-memory autoregressive component of order p,
• θ(B) represents the short memory moving average component of order q,

•
(
1− 2uiB + B2)di represents the long-memory Gegenbauer component (there may in

general be k of these),
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• d represents integer differencing (currently only = 0 or 1 is supported),
• Xt represents the observed process,
• εt represents the random component of the model—these are assumed to be uncorre-

lated but identically distributed variates,
• B represents the Backshift operator, defined by BXt = Xt−1.

When k = 0, then this is just a short memory model, as would be represented by an
ARIMA model.

Dissanayake (2015) considered a class of Gegenbauer processes generated by Gaussian
white noise and GARCH errors and suggested that many other models could be nested
within this framework. He explored a number of related issues and used state space
modelling to explore seasonal Gegenbauer processes.

Phillip (2018) applied a Gegenbauer long memory stochastic volatility model with
leverage and a bivariate Student’s t-error distribution to describe the innovations of the
observation and latent volatility jointly and demonstrated its effectiveness in applications
to Cryptocurrency time series. He demonstrated by means of MCMC runs for various
values of [u; d], that when d is low, and as u→ 0. the convergence of u to its true value
gets slower. This is an expected result, since as d→ 0, the process has less information and
becomes “less long-memory”.

2.2. Heterogenous Autoregressive Model (HAR)

Corsi (2009, p. 174) suggests “an additive cascade model of volatility components
defined over different time periods. The volatility cascade leads to a simple AR-type model
in the realized volatility with the feature of considering different volatility components
realized over different time horizons and which he termed as a Heterogeneous Autoregres-
sive model of Realized Volatility”. Corsi (2009) suggests that his model can reproduce the
main empirical features of financial returns (long memory, fat tails, and self-similarity) in a
parsimonious way. He writes his model as:

σ
(d)
t+1d = c + β(d)RV(d)

t + β(w)RV(w)
t + β(m)RV(m)

t + ω̃
(d)
t+1d, (3)

where σ(d) is the daily integrated volatility, and RV(d)
t , RV(w)

t and RV(m)
t are, respectively,

the daily, weekly, and monthly (ex post) observed realized volatilities.

2.3. Historical Volatility Model (HISVOL)

Poon and Granger (2005) discuss various practical issues involved in forecasting
volatility. They suggest that the HISVOL model has the following form:

σ̂t = φ1σt−1 + φ2σt−2 + . . . + φτσt−τ , (4)

where σ̂t is the expected standard deviation at time t, φ is the weight parameter, and σ is
the historical standard deviation for periods indicated by the subscripts. Poon and Granger
(2005) suggest that this group of models include the random walk, historical averages,
autoregressive (fractionally integrated) moving average, and various forms of exponential
smoothing that depend on the weight parameter φ.

We use a simple form of this model in which the estimate of σ is the previous day’s
demeaned squared return. Poon and Granger (2005) review 66 previous studies and suggest
that implied standard deviations appear to perform best, followed by historical volatility
and GARCH, which have roughly equal performance.

Barndorff-Nielsen and Shephard (2003) point out that taking the sums of squares of
increments of log prices has a long tradition in the financial economics literature. See, for
example, Poterba and Summers (1986), Schwert (1989), Taylor and Xu (1997), Christensen
and Prabhala (1998), Dacorogna et al. (1998), and Andersen et al. (2001). Shephard and
Sheppard (2010) p. 200, footnote 4) note that: “Of course, the most basic realized measure
is the squared daily return”. We utilise this approach as the basis of our historical volatility
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model. Furthermore, Perron and Shi (2020) show how the squared low-frequency returns
can be expressed in terms of the temporal aggregation of a high-frequency series in relation
to volatility measures.

3. Results
3.1. The Data Sets

To expedite a direct comparison with previous work on the HAR model, we use the R
library package ’HARModel’ by Sjoerup (2019). This contains data featuring RV measures
from the SP500 index from April 1997 to August 2013, and we use the RV5 measures on the
S&P500 Index sampled at 5 min intervals.

Table 1 provides a statistical description of this RV5 data set, together with that of
another slightly longer data set, taken from 2000 to 2020, also featuring S&P500 index RV5
data taken from Allen and McAleer (2020). Both data sets feature RV5 estimates taken from
the Oxford-Man Realized library.

Table 1. Descriptive statistics RV5 data sets.

Descriptor S&P500 1997–2013 S&P500 2000–2020

Number of Observations 4096 5099
Minimum 0.04329 0.00000122
Maximum 60.56 0.0074

median 0.6294 0.0000471
mean 1.1752 0.000112

Standard Deviation 2.3151 0.000269
NB: The data taken from the R library package HARModel on RV5 was scaled up in the package.

One of the features of estimates of RV is that the data time series displays long-memory
characteristics. Long memory refers to the association between observations in a time series
that are ever larger sample intervalling and is also referred to as long-range dependence. It
basically refers to the level of statistical dependence between two points in the time series
sampled at increasing intervals.

Figure 1 displays the long memory characteristics of the two RV5 time series that we
analyse. The first panel in the two plots displays the basic series of RV5, and the two large
spikes in RV5 correspond to the effects on volatility of the Global Financial Crisis (GFC)
that occurred in 2008. The two panels marked ACF and PACF refer to the autocorrelation
and partial autocorrelation statistics.

The R GARMA package, Hunt (2022a), was used to generate the two graphs. The
program was instructed to use 100 lags of daily observations. The blue lines in the bottom
two sets of panels display the standard error bands. The long memory properties of RV5
are apparent in both sets of diagrams in that the ACF statistics remain well outside the
error bands for 100 lags, and the PACF is outside the error bands for up to 30 lags.

These long memory characteristics are used in Corsi’s (2009) HAR model and will be
a feature of the Gegenbauer models that we fit to the data sets.
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Figure 1. Plots of the RV5 samples for the S&P500 index and their long-range dependence. (Dashed
blue line represents error bands).

3.2. The Basic HAR Model

Table 2 provides summary descriptions of the HAR models fitted to the two RV5 data
sets, and Figure 2 provides plots of the fits. The results presented in Table 2 show that the
basic HAR model does an excellent job of capturing the time series properties of RV5. All
the estimates are significant at a one percent level, as are the F statistics, and the Adjusted
R-squares are 52 percent for the period 1997–2013 and 56 percent for the period 2000–2020,
respectively.

Table 2. Summary of the HAR models fitted to the RV5 data sets.

Coefficient Estimate Standard Error t. Value

S&P500 1997–2013 RV5

beta0 0.11231 0.03065 3.664 ***
beta1 0.22734 0.01870 12.157 ***
beta5 0.49035 0.03144 15.595 ***

beta22 0.18638 0.02813 6.624 ***
Adjusted R-squared 0.5221

F-Statistic 1484 ***

S&P500 2000–2020 RV5

beta0 1.218 × 10−5 2.877 × 10−6 4.235 ***
beta1 2.703 × 10−1 1.704 × 10−2 15.858 ***
beta5 5.295 × 10−1 2.633 × 10−2 20.108 ***

beta22 9.134 × 10−2 2.225 × 10−1 4.105***
Adjusted R-squared 0.5608

F-Statistic 2162 ***
Note: *** Indicates significant at the 1% level.

The plots in Figure 2 confirm this but do suggest that the large periodic peaks in RV5
are not captured so effectively by the HAR model. The question remains as to whether the
Gegenbauer model will perform more effectively.
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3.3. Gegenbauer Results

The R library package (GARMA), Hunt (2022a), was used to fit GARMA models to the
RV5 series for the S&P500 index as sourced from the Oxford-Man library. This shorter RV
series, for the S&P500 from 1997 to 2013, was taken from the HARmodel R library package,
Sjoerup (2019).

A detailed summary of the methods used in the GARMA package is available in Hunt
(2022b). The GARMA package provides the ability to fit stationary, univariate GARMA
models to a time series and to forecast from those models. The garma() function in the
GARMA package is the main function for estimating the parameters of a GARMA model.
It provides three methods of parameter estimation: the Whittle method, (Whittle 1953),
the conditional sum-of-squares (CSS) method, (for a discussion, See Hunt (2022b) chp.
2, eq. 2.3.2) and the WLLS method. The latter, the Whittle Log Least-Squares method,
was proposed by Hunt (2022b, chp. 3). The Whittle method was used in the estimations
reported in the paper.

A summary of the Gegenbauer model estimated for this data is shown in Table 3. A
potential advantage of the Gegenbauer model is that it is non-linear and more flexible than
the HAR model.

The results of a regression of the fit from the Gegenbauer model for this data on the
actual RV5 estimates for the S&P500 index for this period are shown in Table 4. The HAR
model regression for this period, shown in the first half of Table 2, had an Adjusted R-
squared of 0.52. The result for the Gegenbauer model estimation is an Adjusted R-squared
of 0.567, and so the non-linear model does show an increased explanatory power.

We also fitted the Gegenbauer model to the longer time-period of RV estimates running
from 2000 to 2020 and present the results in Table 5.

We regressed the actual daily RV5 series for the longer period from 2000 to 2020, and
the results are shown in Table 6. The slope coefficient is significant at the 1 per cent level and
is very close to 1, whilst the Adjusted R-square is 0.59, and the F statistics for the regression,
with a value of 7326, is also significant at the 1 percent level. The Adjusted R-square for the
HAR model for the same period was 0.56, so the Gegenbauer model provides a marginally
better fit than the HAR model.
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Table 3. Gegenbauer estimation for RV5 with GARMA for the S&P500 from 1997–2013, constant
included with no trend.

Series Intercept U1 δ1 ar1 ar2 ar3 ar4 ar5

coefficient 1.139 × 10−4 0.9794239 0.33368 −0.27435 2.215 × 10−11 −5.991 × 10−11 0.09145 0.08230

S.E. 7.430 × 10−8 0.0001457 0.03893 0.07677 5.745 × 10−2 3.259 × 10−2 0.02167 0.01137

Series ar6 ar7 ar8 ar9 ar10 ar11 ar12 ar13

coefficient −0.02743 9.408 × 10−11 0.02743 0.2469 0.16461 0.08230 0.1097 0.10974

S.E. 0.01075 1.034 × 10−2 0.01050 0.0118 0.02678 0.02949 0.0260 0.02663

Series ar14 ar15 ar16 ar17 ar18 ar19 ar20 ar21

coefficient 0.02743 0.0823 0.0823 0.02743 1.320 × 10−10 1.125 × 10−10 −6.332 × 10−12 −0.03658

S.E. 0.02655 0.0205 0.0208 0.02007 1.578 × 10−2 1.237 × 10−2 1.103 × 10−2 0.01056

Series ar22 ar23 ar24 ar25 ar26 ar27 ar28 ar29

coefficient −0.02743 −0.10974 0.04572 −0.02743 −0.02743 0.02743 4.256 × 10−11 −4.386 × 10−11

S.E. 0.01127 0.01226 0.01763 0.01204 0.01327 0.01359 1.129 × 10−2 1.117 × 10−2

Series ar30 Gegenbauer
frequency

Gegenbauer
period

Gegenbauer
Exponent

coefficient 0.02743 0.0323 30.9197 0.3337

S.E. 0.01050

Table 4. Regression of RV5 on Gegenbauer model estimates, 1997–2013.

Coefficient S.E.

Constant 0.0003596 0.0287058
RV5 0.9994219 *** 0.0136477

Adjusted RSQ 0.567
F. Statistic 5363

Note: *** Indicates significant at the 1% level.

Table 5. Gegenbauer estimation for RV5 with GARMA for the S&P500 from 2000 to2020, constant
included with no trend.

Series Intercept U1 δ1 ar1 ar2 ar3 ar4 ar5

coefficient 1.175 0.9776774 0.12974 0.09841 0.18564 −0.06645 0.11861 0.1606

S.E. 8.315 0.0004903 0.03286 0.06504 0.02608 0.01162 0.01376 0.0119

Series ar6 ar7 ar8 ar9 ar10 ar11 ar12 ar13

coefficient −0.01016 −0.02717 0.02901 0.23708 −0.02952 0.01219 0.05422 0.05570

S.E. 0.01662 0.01295 0.01187 0.01259 0.02260 0.01466 0.01351 0.01408

Series ar14 ar15 ar16 ar17 ar18 ar19 ar20

coefficient −0.02716 0.05100 0.05079 −0.04578 −0.03084 0.01445 0.04350

S.E. 0.01417 0.01183 0.01241 0.01240 0.01136 0.01165 0.01133

Series Gegenbauer
Frequency

Gegenbauer
period

Gegenbauer
Exponent

coefficient 0.0337 29.6812 0.1297

Table 6. Regression of RV5 on Gegenbauer model estimates, 2000–2020.

Coefficient S.E.

Constant 6.72543 × 10−7 2.77936 × 10−6

RV5 0.993054 *** 0.0116015
Adjusted RSQ 0.589660

F. Statistic 7326.850 ***
Note: *** Indicates significant at the 1% level.
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3.4. How Do Rule of Thumb Approaches Perform?

The next issue is how squared demeaned end-of-day returns perform as a simple
rule-of-thumb method to explain RV5. Table 7 presents the results of the regression of RV5
for the longer period of 2000 to 2020 on 20 lags of squared demeaned daily returns.

Table 7. Regression of RV5 on squared demeaned daily returns for 2000 to 2020; OLS, using observa-
tions 21–5099 (T = 5079); Dependent variable: rv5.

Variable Coefficient Std. Error t-Ratio p-Value

const 0.0000302614 0.00000284505 10.64 0.000 ***
SQSPRET_1 0.174294 0.00555060 31.4 0.000 ***
SQSPRET_2 0.0935967 0.00558548 16.76 0.000 ***
SQSPRET_3 0.0527928 0.00587581 8.99 0.000 ***
SQSPRET_4 0.0280810 0.00587693 4.78 0.000 ***
SQSPRET_5 0.0591188 0.00587284 10.07 0.000 ***
SQSPRET_6 0.0386591 0.00589632 6.56 0.000 ***
SQSPRET_7 0.0127360 0.00592375 2.15 0.031 **
SQSPRET_8 0.0125674 0.00590739 2.127 0.033 **
SQSPRET_9 0.0460141 0.00590538 7.79 0.000 ***

SQSPRET_10 0.0109619 0.00588044 1.86 0.062 *
SQSPRET_11 −0.0125986 0.00588112 −2.14 0.032 **
SQSPRET_12 0.00679795 0.00590660 0.15 0.249
SQSPRET_13 0.000835242 0.00590814 0.14 0.888
SQSPRET_14 −0.00784497 0.00592586 −1.32 0.186
SQSPRET_15 −0.00255057 0.00589736 −0.433 0.665
SQSPRET_16 −0.0109373 0.00587609 −1.861 0.063
SQSPRET_17 0.00499043 0.00587928 0.848 0.396
SQSPRET_18 0.0124227 0.00592245 2.098 0.036 **
SQSPRET_19 0.0124595 0.00563006 2.213 0.027 **
SQSPRET_20 −0.00716919 0.00559011 −1.282 0.12

Mean dependent var 0.000112 S.D. dependent var 0.000269
Sum squared resid 0.000168 S.E. of regression 0.000182

R2 0.543145 Adjusted R2 0.541339
F(20, 5058) 300.6678 p-value(F) 0.000000

Log-likelihood 36531.92 Akaike criterion −73021.83
Schwarz criterion −72884.64 Hannan–Quinn −72973.79

ρ̂ 0.281412 Durbin–Watson 1.437144
Note: ***, ** and * denotes significance at 1%, 5% and 10%.

It can be seen in Table 7 that 20 lags of squared demeaned returns do not perform
quite as well as the Gegenbauer or HAR models but still have an Adjusted R-Square of
54 percent, which is a marginal 2 percent less than the HAR model and 5 percent less than
the Gegenbauer model. Only 4 of the 20 lags used in this rule-of-thumb approach are
insignificant. The Durbin–Watson statistic of 1.43 suggests that a considerable amount of
autocorrelation remains in the residuals.

The application of Ramsey Reset tests (Ramsey 1969), suggests that squares and cubes
of the explanatory variable could add to the power of the regression. Table 8 reports the
results of adding 10 lags of cubed demeaned SPRET and 10 lags of demeaned SPRET to the
power 4.

This is essentially another non-linear model, but admittedly, we now have 40 ex-
planatory variables in the model in the form of lags of three explanatory variables. The
Adjusted R-Square now increases to over 59 percent, which matches the power of the
Gegenbauer model. Admittedly, the Durbin–Watson statistic is still a relatively low 1.54.
This suggests that there is still autocorrelation in the residuals, which could be exploited
further in enhanced modifications of the model.

The above regression is quite clumsy and contains some redundant terms. An anony-
mous reviewer suggested that we apply a lasso technique to reduce the size of the regression.
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This is not entirely consistent with using a ‘rule of thumb’ approach, and it would be a
simple matter to drop the redundant terms in the regression above.

Table 8. Regression of RV5 on squared, cubed and quartic daily demeaned returns for 2000 to 2020;
OLS, using observations 21–5099 (T = 5079); variable: rv5.

Coefficient Std. Error t-Ratio p-Value

const 0.000082971 0.0000303009 1.594 0.1110
SQSPRET_1 0.231351 0.00958455 24.14 0.000 ***
SQSPRET_2 0.110377 0.00959229 11.51 0.000 ***
SQSPRET_3 0.118282 0.00966599 12.24 0.000 ***
SQSPRET_4 0.0666821 0.00969419 6.879 0.000 ***
SQSPRET_5 0.0642053 0.00980063 6.551 0.000 ***
SQSPRET_6 0.0669488 0.00989797 6.764 0.000 ***
SQSPRET_7 0.0345805 0.00995553 3.473 0.0005 ***
SQSPRET_8 0.0169334 0.00994948 1.702 0.0888 *
SQSPRET_9 0.0254747 0.00993460 2.564 0.0104 **

SQSPRET_10 0.0227310 0.00975198 2.331 0.0198 **
SQSPRET_11 −0.00478774 0.00583425 −0.8206 0.4119
SQSPRET_12 0.0213587 0.00588183 3.631 0.0003 ***
SQSPRET_13 0.00934631 0.00582412 1.605 0.1086
SQSPRET_14 −0.00178946 0.00578095 −0.3095 0.7569
SQSPRET_15 −0.000564490 0.00574051 −0.09833 0.9217
SQSPRET_16 −0.00229510 0.00575739 −0.3986 0.6902
SQSPRET_17 0.00247291 0.00572209 0.4322 0.6656
SQSPRET_18 0.00617666 0.00576039 1.072 0.2837
SQSPRET_19 0.00692568 0.00554060 1.250 0.2114
SQSPRET_20 −0.0188372 0.00539186 −3.494 0.0005 ***
CUSPRET_1 −0.534907 0.0592631 −9.026 0.0000 ***
CUSPRET_2 −0.574605 0.0614957 −9.344 0.0000 ***
CUSPRET_3 −0.542658 0.0625408 −8.677 0.0000 ***
CUSPRET_4 −0.421881 0.0625029 −6.750 0.0000 ***
CUSPRET_5 −0.581211 0.0623480 −9.322 0.0000 ***
CUSPRET_6 −0.406321 0.0625585 −6.495 0.0000 ***
CUSPRET_7 −0.306419 0.0622486 −4.923 0.0000 ***
CUSPRET_8 −0.0728304 0.0624320 −1.167 0.2434
CUSPRET_9 0.0440999 0.0614311 0.7179 0.4729

CUSPRET_10 −0.143643 0.0603871 −2.379 0.0174
sq_SQSPRET_1 −11.1016 0.991204 −11.20 0.0000 ***
sq_SQSPRET_2 −5.00005 0.992337 −5.039 0.0000 ***
sq_SQSPRET_3 −10.1474 1.01023 −10.04 0.0000 ***
sq_SQSPRET_4 −7.20797 1.01302 −7.115 0.0000 ***
sq_SQSPRET_5 −2.06748 1.01765 −2.032 0.0422 **
sq_SQSPRET_6 −5.51711 1.01948 −5.412 0.0000 ***
sq_SQSPRET_7 −4.90765 02938 −4.768 0.0000 ***
sq_SQSPRET_8 −0.981766 1.03193 −0.9514 0.3415
sq_SQSPRET_9 2.00887 1,02378 1.962 0.0498 **
sq_SQSPRET_10 −2.40620 1.00723 −2.389 0.0169 **

Mean dependent var 0.000112 S.D. dependent var 0.000269
Sum squared resid 0.000148 S.E. of regression 0.000172

R2 0.596908 Adjusted R2 0.593707
F(40, 5038) 186.5095 p-value(F) 0.000000

Log-likelihood 36849.86 Akaike criterion −73617.72
Schwarz criterion −73349.87 Hannan–Quinn −73523.92

ρ̂ 0.228344 Durbin–Watson 1.543216
Note: ***, ** and * denotes significance at 1%, 5% and 10%.

The adaptive lasso regression uses different penalties (weights) for different regressors
when running a lasso regression. Under certain conditions, as applied to those weights, the
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results will have the so-called oracle property, see Zou (2006) as opposed to the standard
lasso approach.

Zou (2006) derives a necessary condition for the lasso variable selection to be consistent.
His version of the lasso, the adaptive lasso, employs adaptive weights that are used for
penalizing different coefficients in the λ1 penalty. He demonstrates that the adaptive lasso
enjoys oracle properties, namely, that it performs as well as if the true underlying model
were given in advance. Zou (2006) suggests that y = (y1, . . ., yn)T is the response vector and
xj= (x1j, . . ., xnj)T, j = 1, . . ., p, are the linearly independent predictors. He lets X = [x1,. . .,xp]
be the predictor matrix. He assumes that E[y|x] = β*1x1 + ··· + β*pxp. The data are assumed
to be centred so the intercept is not included in the regression equation. He lets A = {j: βj

∗

6= 0} and then assumes that |A| = p0 < p. This implies that the true model depends only on
a subset of the predictors.

If we denote by
_
β (δ), the coefficient estimator is produced by a fitting procedure δ.

Then, the arguments of Fan and Li (2001) can be adopted and δ can be termed as being an

oracle procedure if
_
β (δ) (asymptotically) has the following oracle properties:

• Identifies the right subset model, {j:
_
β j 6= 0} = A

• Has the optimal estimation rate,
√

n
_
β ((δ)A − β*A) → d N(0,Σ*), where Σ* is the

covariance matrix knowing the true subset model.

The lasso is a regularization technique for simultaneous estimation and variable
selection Tibshirani (1996). The lasso estimates are defined as:

_
β (lasso) =

arg min
β
‖y−

p

∑
j=1

xjβ j‖
2

+ λ
p

∑
j=1

∣∣β j
∣∣

where λ is a nonnegative regularization parameter. The second term in the expression
above is the so-called “`1 penalty,” which is crucial for the success of the lasso. The lasso
continuously shrinks the coefficients toward 0 as λ increases, and some coefficients are
shrunk to exactly 0 if λ is sufficiently large.

Zou proposes the adaptive lasso, in which adaptive weights are used for penalizing
different coefficients in the `1 penalty and he demonstrates that the adaptive lasso enjoys

the oracle properties. He employs
_
β (ols) to construct the adaptive weights in the adaptive

lasso; and suggests that the computation procedure involves the employment of the LARS
algorithm (Efron et al. 2004).

We implemented this version of the adaptive lasso technique using a GRETL function
package containing code submitted by Schreiber (2023). Table 9 shows the regression
screening results chosen by the technique as applied to the variables in Table 8.

Table 9. Regressors chosen by the adaptive lasso technique applied to the variables in Table 8.

Variable Weight

sq_DMSPRET_1 0.23908
sq_DMSPRET_2 0.12086
sq_DMSPRET_3 0.12002
sq_DMSPRET_4 0.063485
sq_DMSPRET_5 0.059401
sq_DMSPRET_6 0.067899
sq_DMSPRET_7 0.026704
sq_DMSPRET_9 0.012712
sq_DMSPRET_12 0.012814

CUSPRET_1 −0.50290
CUSPRET_2 −0.54575
CUSPRET_3 −0.48000
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Table 9. Cont.

Variable Weight

CUSPRET_4 −0.36132
CUSPRET_5 −0.55055
CUSPRET_6 −0.32513
CUSPRET_7 −0.26524
CUSPRET_9 0.026202

CUSPRET_10 −0.074585
sq_sq_DMSPRET_1 −11.184
sq_sq_DMSPRET_2 −5.4840
sq_sq_DMSPRET_3 −9.7038
sq_sq_DMSPRET_4 −6.4668
sq_sq_DMSPRET_5 −1.3524
sq_sq_DMSPRET_6 −4.7695
sq_sq_DMSPRET_7 −3.7897
sq_sq_DMSPRET_8 1.0471
sq_sq_DMSPRET_9 2.6983

These variables chosen were then applied in a new variant of the rule of thumb OLS
regression of RV5 on the various lags of squared, cubed and quartic demeaned returns
chosen by the adaptive lasso technique. The results are shown in Table 10.

The results of the application of the adaptive lasso technique shown in Table 10
confirm the previous findings reported in Table 8, namely, that a rule-of-thumb method
using squared, cubed, and quartic end-of-day returns in the explanation of RV5 matches
those obtained by application of the Gegenbauer technique.

Table 10. Regression of RV5 on squared, cubed and quartic daily demeaned returns for 2000 to 2020
as chosen by the adaptive lasso technique.

Coefficient Std. Error t-Ratio p-Value

Const 0.00000637199 0.00000298585 2.134 0.0329 **

sq_DMSPRET_1 0.232117 0.00945099 24.56 6.33 × 10−126 ***

sq_DMSPRET_2 0.117260 0.00937219 12.51 2.15 × 10−35 ***

sq_DMSPRET_3 0.118641 0.00943350 12.58 9.71 × 10−36 ***

sq_DMSPRET_4 0.0668396 0.00939540 7.114 1.28 × 10−12 ***

sq_DMSPRET_5 0.0652956 0.00954500 6.841 8.81 × 10−12 ***

sq_DMSPRET_6 0.0725886 0.00967025 7.506 7.14 × 10−14 ***

sq_DMSPRET_7 0.0420426 0.00958814 4.385 1.18 × 10−5 ***

sq_DMSPRET_9 0.0243582 0.00964983 2.524 0.0116 **

sq_DMSPRET_12 0.0203625 0.00534193 3.812 0.0001 ***

CUSPRET_1 −0.523256 0.0581730 −8.995 3.29 × 10−19 ***

CUSPRET_2 −0.577212 0.0587275 −9.829 1.35 × 10−22 ***

CUSPRET_3 −0.525699 0.0607949 −8.647 7.00 × 10−18 ***

CUSPRET_4 −0.399551 0.0586792 −6.809 1.10 × 10−11 ***

CUSPRET_5 −0.600792 0.0592911 −10.13 6.67 × 10−24 ***

CUSPRET_6 −0.360412 0.0582064 −6.192 6.41 × 10−10 ***

CUSPRET_7 −0.307560 0.0577694 −5.324 1.06 × 10−7 ***

CUSPRET_9 0.0320326 0.0565113 0.5668 0.5709

CUSPRET_10 −0.0800320 0.0544286 −1.470 0.1415
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Table 10. Cont.

Coefficient Std. Error t-Ratio p-Value

sq_sq_DMSPRET_1 −10.9763 0.978161 −11.22 7.02 × 10−29 ***

sq_sq_DMSPRET_2 −5.62131 0.964744 −5.827 6.00 × 10−9 ***

sq_sq_DMSPRET_3 −9.91128 0.993007 −9.981 3.02 × 10−23 ***

sq_sq_DMSPRET_4 −7.04655 0.991848 −7.104 1.38 × 10−12 ***

sq_sq_DMSPRET_5 −2.34791 1.00553 −2.335 0.0196 **

sq_sq_DMSPRET_6 −5.40256 1.00500 −5.376 7.97 × 10−8 ***

sq_sq_DMSPRET_7 −5.33317 1.00213 −5.322 1.07 × 10−7 ***

sq_sq_DMSPRET_8 0.835833 0.550288 1.519 0.1289

sq_sq_DMSPRET_9 1.69941 0.996423 1.706 0.0882 *

Mean dependent var 0.000112 S.D. dependent var 0.000269

Sum squared resid 0.000149 S.E. of regression 0.000172

R-squared 0.594745 Adjusted R-squared 0.592578

F(27, 5051) 274.5461 p-value(F) 0.000000

Log-likelihood 36,836.27 Akaike criterion −73,616.54

Schwarz criterion −73,433.62 Hannan-Quinn −73,552.48

rho 0.223409 Durbin-Watson 1.553007
Note: ***, ** and * denotes significance at 1%, 5% and 10%.

4. Conclusions

In this paper, we have explored the use of the Gegenbauer process or GARMA model to
capture the behaviour of RV5 volatility of the S&P500 index, as reported by the OxfordMan
database. The results suggest that the non-linear Gegenbauer model performs slightly better
than the HAR model in capturing RV5. However, a simplified rule of thumb model based on
the use of lagged, squared, cubed, and quartic, demeaned daily returns performed equally
well. These results, for the S&P500 index, suggest that non-linear models perform better
than linear ones in the capture of long memory properties of RV5 and that sophisticated
models do not necessarily dominate rules of thumb.
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