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Abstract: The interdependence between multiple lines of business has an important impact on
determining loss reserves and risk capital, which are crucial for the solvency of a property and
casualty (P&C) insurance company. In this work, we introduce the two-stage inference method
using the Sarmanov family of multivariate distributions to the actuarial literature. In fact, we study
rank-based methods using the Sarmanov distribution to adequately estimate the loss reserves and
properly capture the dependence between lines of business. An inadequate choice of the dependence
structure may negatively impact the estimation of the marginals and, hence, the reserve. Thus, we
propose a two-stage inference strategy in this research to address this, while taking advantage of the
flexibility of the Sarmanov distribution. We show that this strategy leads to a more robust estimation,
and better captures the dependence between the risks. We also show that it generates smaller risk
capital and a better diversification benefit. We extend the model to the multivariate case with more
than two lines of business. To illustrate and validate our methods, we use three different sets of real
data from both a major US property–casualty insurer and a large Canadian insurance company.

Keywords: rank-based methods; Sarmanov family of multivariate distributions; loss reserving;
dependence; risk capital

1. Introduction

Insurance companies have an inverted production cycle, where they receive the pre-
mium (product price) before knowing the cost (claims). As a result, insurers must estimate
these costs and set aside sufficient funds to meet their commitments to policyholders and
claimants, creating what is known as reserves. Traditional reserving methods often assume
independence among portfolio risk components. However, practical experience shows
that risks are frequently interconnected, and this interdependence, represented by corre-
lations between various lines of business, plays a crucial role in determining the overall
portfolio reserve.

Dependence modeling plays a pivotal role within the insurance industry and the
broader field of risk analysis. It is essential to comprehend the relationships among various
variables or events. Dependence modeling serves as a valuable tool for quantifying and
characterizing these relationships, ultimately enhancing the precision of risk assessments
by accounting for dependencies that can either magnify or mitigate risks.

Furthermore, it facilitates superior portfolio diversification by offering insights into
asset inter-dependencies, thereby reducing overall portfolio risk. Consequently, investors
and financial institutions rely on dependence modeling to evaluate the risks associated
with portfolios comprising multiple assets or financial instruments.

In domains such as financial markets, there exists a category of infrequent yet highly
impacting events known as “tail events”, which significantly influence risk. Dependence
modeling is instrumental in identifying these tail dependencies, a critical aspect of manag-
ing and mitigating tail risks.
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Insurance companies harness dependence modeling to establish premium rates and
effectively manage their risk exposure. Through an understanding of the correlations
between different events or claims, insurers can accurately price policies and allocate
capital to adequately cover potential losses.

Lastly, dependence modeling is of paramount importance in the realm of regulation
and stress testing. Stress tests are conducted to assess the performance of a system or
portfolio under adverse conditions. Dependence modeling is indispensable for crafting
realistic stress scenarios that consider the intricate interplay between various risk factors.

In the context of loss reserving, understanding dependencies aids in predicting the
necessary risk capital, which serves as a buffer for property and casualty (P&C) insurers
against potential losses stemming from extreme and adverse events.

To calculate loss reserves, we utilize aggregated data, referred to as loss triangles.
In these triangles, rows represent accident years, while columns represent development
periods. The lower section of the triangle, which we aim to predict, represents future
(unpaid) claims.

There are two main approaches used to capture the dependencies between different
loss triangles. The first one focuses on distribution-free multivariate reserving methods. For
example, Braun (2004) showed the effectiveness of the multivariate chain-ladder method
using simulated data, demonstrating an increased estimation accuracy of the prediction
error when accounting for the correlation between loss triangles. Merz and Wüthrich (2008)
also studied the prediction error of a modified multivariate chain-ladder model proposed
by Schmidt (2006) and incorporated a dependence structure into their model.

The other main approach for modeling dependence between business lines employs
parametric methods, based on various distributional families. One commonly used method
for parametric loss reserving is the copula model. For example, a Gaussian copula is used
by Brehm (2002) to model the joint distribution of unpaid losses. De Jong (2012) used a
Gaussian copula correlation matrix to model the dependence between lines of business.
Shi et al. (2012) used multivariate Gaussian copula to capture correlation due to accounting
years using loss triangles, while Merz et al. (2013) allowed the correlation matrix to vary
over time and produced a more accurate depiction of dependence. Abdallah et al. (2015)
used hierarchical Archimedean copulas to model dependence within and between lines of
business. More recently, Shi (2017) conducted an analysis of multiple inter-company loss tri-
angles using the Bayesian hierarchical model. Avanzi et al. (2016) introduced a multivariate
Tweedie approach to capture cell-wise dependence in loss reserving, while Araiza Iturria
et al. (2021) presented a stochastic model aimed at capturing dependencies between loss
triangles. In their work, they opted for a Tweedie-distributed double-generalized linear
model to represent the marginal distribution. Lally and Hartman (2018) used hierarchical
Bayesian Gaussian process regression to estimate loss reserves across a spectrum of product
lines. Additionally, Badounas and Pitselis (2020) explored the use of the quantile regression
technique in the context of loss reserves.

Bootstrapping is also another popular parametric approach used for loss reserving,
which involves resampling historical data to simulate and generate new (synthetic) datasets,
also called pseudo-responses. Kirschner et al. (2002) proposed a synchronized bootstrap,
which aimed to estimate the prediction error of a multivariate dependence model. Taylor
and McGuire (2007) modified their approach to account for the additional complexity
introduced by the generalized linear model framework. Shi and Frees (2011) used Frank
and Gaussian copula to model the dependence between lines of business and introduced a
parametric bootstrapping method to estimate the prediction error.

The contribution of this work to the actuarial literature in general, and to loss reserving
in particular, is twofold. Firstly, this work introduces rank-based methods to the Sarmanov
Family of distributions. This family is considered a richer and more flexible class of
distributions for modeling dependence between risks, thanks to its flexible structure that
nicely joins the marginals.
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Second, we suggest direct pairwise dependence modeling for both bivariate and trivari-
ate loss reserving analyses, using a rank-based Sarmanov for multivariate distributions
applied to more than two lines of business.

Sarmanov’s multivariate distribution, as described in Sarmanov’s seminal work by
Sarmanov (1966), has garnered significant attention in various corners of the actuarial litera-
ture. This distribution is noted for its tractability, its ability to accommodate a large array of
flexible dependence structures, and for linking different marginal distributions. This adapt-
ability has recently led to heightened interest across multiple realms of actuarial research.

Within the domain of rate-making, it has proven invaluable for in-depth severity
analysis, as exemplified by the works of Hernández-Bastida and Fernández-Sánchez (2012)
and Bahraoui et al. (2015). Additionally, it has been employed for frequency analysis, as
seen in the studies by Abdallah et al. (2016a) and Bolancé and Vernic (2019). Notably, it
has been instrumental in exploring the dependence between frequency and severity, as
evidenced in the research by Vernic et al. (2022).

In the context of reserving, Sarmanov’s distribution has been effectively utilized, as
highlighted by Abdallah et al. (2016b). This application enabled the capture of dependencies
between two lines of business through the incorporation of random effects. Sarmanov’s
distribution has also emerged as a valuable tool in analyzing ruin theory probabilities, as
demonstrated by its application in studies conducted by Yang and Yuen (2016), Guo et al.
(2017), and more recently, Chen et al. (2023).

Some of the referenced studies have demonstrated that, in comparison to alternative
distributions like copulas, the Sarmanov family of distributions offers a superior fit to actual
insurance data. For example, Bolancé and Vernic (2019) emphasize some disadvantages of
the copula approach (e.g., elliptical) compared with the Sarmanov distributions. Moreover,
Bahraoui et al. (2015) showed that the bivariate Sarmanov is more flexible than copulas in
modeling dependence. Additionally, the correlation coefficients of Sarmanov’s family of
distributions have wider ranges; see Bahraoui et al. (2015) and Lee (1996) for more details.
Bolancé et al. (2020) proposed a Sarmanov method with beta marginals and put it in use
for motor insurance pricing.

The adaptability and extensive utility of Sarmanov’s multivariate distribution have
positioned it as a cornerstone in contemporary actuarial research. Its ability to navigate
complex dependence structures has fostered a deeper understanding of dependencies and
risk assessment in various segments of the insurance landscape.

In this paper, we specifically employ the Sarmanov distribution as we transition from
the one-stage inference technique, where we simultaneously estimate both the marginals
and the dependence parameters, to a two-stage inference modeling approach. Indeed, alter-
ing the dependence structure can result in distinct parameter estimations for the marginals,
potentially leading to a different total reserve estimation. As a consequence, this method
has the undesired effect of violating the linearity property of the mean. Therefore, we
suggest employing a two-stage inference approach, commonly known as the rank-based
method, utilizing the Sarmanov family of multivariate distributions. In the initial step,
we fit generalized linear models (GLMs) to the individual marginals, establishing fixed
parameters for the marginals and reserve estimations. Subsequently, we establish connec-
tions between the dependencies of these GLMs using the rank-based method, employing
bivariate and trivariate Sarmanov distributions. It is worth noting that a similar approach
has previously been explored using copula models. For example, Genest and Nešlehová
(2014) discussed the rank-based methods for copula estimation, while Côté et al. (2016)
introduced the rank-based methods for loss reserving, using nested Archimedean copulas,
and a copula-based risk aggregation model.

The statistical properties of rank-based methods, including the consistency and asymp-
totic normality of estimators, were previously established by Genest et al. (1995). They
conducted a comprehensive examination of a semi-parametric approach for estimating de-
pendence parameters within a family of multivariate distributions. In this study, we show-
case the practical applications of these methods and extend their utility to the multivariate
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Sarmanov distribution family. In essence, our research demonstrates that the proposed
method more effectively captures the dependencies among lines of business (LOBs) and
yields lower risk capital estimates compared to traditional one-stage inference models.

Section 2 provides an overview of loss triangle modeling, introducing notations and
presenting a concise overview of the Sarmanov distribution. Section 3 introduces the
rank-based method to the Sarmanov family of multivariate distributions. For illustration
and validation, Section 4 applies the model to seven LOBs from different datasets, sourced
from a major US and a large Canadian property–casualty insurer. In Section 5, we analyze
the implications for risk capital and demonstrate the advantages of our methods in terms
of diversification benefits. Section 6 concludes the paper.

2. Preliminary
2.1. Modeling and Reserves

In this research, we use the generalized linear model (GLM) to model the marginals for
each LOB (see De Jong and Heller 2008 and McCullagh and Nelder 1989 for a full review).
GLMs provide the flexibility to choose the most adequate distribution for each LOB and
perform a regression analysis that captures linear and non-linear relationships between the
response and predictor variables.

In our case, the response variable is the incremental loss, while the accident year (rows)
and development period (columns) are the predictor variables or covariates.

In fact, in a loss triangle, the row represents the year when an accident occurred, while
the column represents each year that has passed (lag) since the accident happened. We use i
and j to indicate the accident year and development period, respectively. Let ` ∈ {1, . . . , L}
represent the LOB, then we denote X(`)

ij as the incremental payment for the ith accident

year and the jth development period. Also, let p(`)
i be the premium for the `th LOB and ith

accident year. As earned premiums vary by accident year, and to take into account the
volume of each LOB, we work with standardized payments, Y(`)

ij , such as

Y(`)
ij = X(l)

ij /p(`)
i .

Y(`)
ij is called the incremental loss ratio, and it is a key performance metric used to measure

the profitability of a P&C insurance company.
In order to fit the GLM, we perform the same procedure used by Abdallah et al. (2016b).

Let s(`)
i be the effect of the accident year and t(`)

j be the effect of the development period,

i, j ∈ {1, 2, . . . , n}, then the systematic component for the `th LOB can be written as:

η
(`)
ij = u(`) + s(`)

i + t(`)
j ,

where u(`) is the intercept; for parameter identification, we set s(`)
i and t(`)

j to 0 for i, j = 1.
Throughout the remainder of this paper and in our empirical illustration, we use both

log-normal and gamma distributions for the different marginals and LOBs. More details
about the fit and model selection are provided in Section 4.

When the log-normal distribution is assumed for the marginals, and to ease calcula-
tions, the incremental loss ratios is denoted by Z(`)

ij instead of Y(`)
ij , i.e., Z(`)

ij ∼ LN (a(`)
ij , b(`)),

and then we use the change of variables Y(`)
ij = log(Z(`)

ij ) ∼ N (a(`)
ij , b(`)). We consider

a(`)
ij = η

(`)
ij ,



Risks 2023, 11, 187 5 of 37

with the location (log-scale) parameter a(`)
ij and shape parameter (standard deviation) b(`).

As for the Gamma distribution, we have Y(`)
ij ∼ G(α(`), τ

(`)
ij ) and use the exponential link to

ensure positive means
τ

(`)
ij = exp(η(`)

ij )/α(`),

where the non-zero α(`) is the shape parameter and τ
(`)
ij is the scale parameter. For parameter

estimation, We use the maximum likelihood estimation (MLE), which is often favored over
other classical estimation methods for its efficiency and asymptotic properties, as well as
for the consistency and invariance of the estimators. Furthermore, MLE naturally gives rise
to likelihood ratio tests, which serve as potent tools for conducting hypothesis tests and
making informed decisions in model selection. These tests assist us in evaluating whether
one model significantly outperforms another in our empirical illustration.

With the estimated parameters, the total reserve can be obtained as follows:

L

∑
`=1

n

∑
i=1

n

∑
j=1

p(`)
i E(y(`)

ij ), (1)

where E(y(`)
ij ) is the projected unpaid loss ratio. More specifically, for log-normal distribu-

tion, we have

E(y(`)
ij ) = exp

î
a(`)

ij +
(b(`))2

2

ó
,

while for the gamma distribution, we have

E(y(`)
ij ) = τ

(`)
ij α(`).

2.2. Sarmanov Distribution

Sarmanov (1966) introduced Sarmanov’s bivariate distribution to the literature, and
Cohen (1984) suggested a more general form of bivariate Sarmanov in physics. A multi-
variate version was proposed by Lee (1996), who found applications in the medical area.
As Sarmanov’s distribution has a flexible structure, it attracted the attention of a wide
range of applied studies. Johnson and Kott (1975) introduced the multivariate Farlie–
Gumbel–Morgenstern (FGM) distribution, while Tank and Gebizlioglu (2004) proposed
the Sarmanov class with FGM distribution properties for dependent risks. A bivariate
Sarmanov model was used by Schweidel et al. (2008) to capture the relationship between
a customer’s waiting time and the actual service duration. Miravete (2009) used the Sar-
manov model to compare the tariff plans between two related cellular telephone companies,
and Danaher and Smith (2011) discussed some applications of Sarmanov to marketing.
Bairamov et al. (2011) introduced a class of bivariate distributions, which generalizes the
Sarmanov class.

In the insurance field, Sarmanov distributions have been used for pricing, reserving,
and evaluating ruin probabilities. Detailed contributions to actuarial science were presented
earlier in Section 1.

In this paper, we use the Sarmanov distribution to capture the pairwise dependence
between two or more LOBs, in a loss-reserving context, which is presented in this section.
We introduce the rank-based methods to the Sarmanov distribution, which is described in
the next section.

2.2.1. Bivariate Sarmanov Distribution

In the case of two LOBs (L = 2), with Y(`)
ij denoting the incremental loss ratios from

each LOB (` ∈ {1, 2}), let f (`) be the univariate probability density function, and ψ(`)(y(`)
ij )

be non-constant functions, such that
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∫ ∞

−∞
ψ(`)(t) f (`)(t)dt = 0.

Then the probability density function of the bivariate Sarmanov distribution is defined
by

f S(y(1)
ij , y(2)

ij ) = f (1)(y(1)
ij
)

f (2)(y(2)
ij
)(

1 + ω1,2ψ(1)(y(1)
ij )ψ(2)(y(2)

ij )
)
, (2)

with the mixing function:

ψ(`)(y(`)
ij ) = exp(−y(`)

ij )− L(`)(1), (3)

as proposed in Corollary 2 by Lee (1996), where L(`) is the Laplace transform of f (`),
evaluated at 1. In (2), ω1,2 is the dependence parameter between LOBs 1 and 2.

When the marginal distribution follows a Gamma distribution, i.e., Y(`)
ij ∼ G(α(`), τ

(`)
ij ),

then the mixing function is expressed as follows:

ψ(`)(y(`)
ij ) = exp(−y(`)

ij )− (1 + τ
(`)
ij )−α(`)

, ` = 1, 2.

When the marginal distribution follows a log-normal distribution, as mentioned in
Section 2.1, we have Y(`)

ij = log(Z(`)
ij ) ∼ N (a(`)

ij , b(`)). Consequently, the mixing function can
be obtained as follows:

ψ(`)(y(`)
ij ) = exp(−y(`)

ij )− exp
Ä
− a(`)

ij +
(b(`))2

2

ä
, ` = 1, 2.

The variable ω1,2 in (2) should be a real number that requires the constraint

1 + ω1,2ψ(1)(y(1)
ij )ψ(2)(y(2)

ij ) ≥ 0,

for all y(1)
ij , y(2)

ij .

For convenience, from now on, we denote a(`)
ij as a`, b(`) as b`, α(`) as α`, and τ

(`)
ij as τ`.

As shown by Abdallah et al. (2016b), the bounds of the dependence parameter ω1,2 of
the Sarmanov bivariate distribution, in the case of normal and gamma marginals for LOBs
1 and 2, respectively, are obtained as follows

− 1
b1exp(−a1 + b2

1/2)
√

α2τ2(1 + τ2)−α2−1
≤ ω1,2 ≤

1
b1exp(−a1 + b2

1/2)
√

α2τ2(1 + τ2)−α2−1
.

Similarly, if the two LOBs both follow gamma distribution, then ω1,2 is bounded
as follows

− 1
√

α1τ1(1 + τ1)−α1−1√α2τ2(1 + τ2)−α2−1 ≤ ω1,2 ≤
1

√
α1τ1(1 + τ1)−α1−1√α2τ2(1 + τ2)−α2−1 .

The proof of these results directly follows from Theorem 2 by Lee (1996).

2.2.2. Trivariate Sarmanov Distribution

The Sarmanov distribution can easily be generalized to the trivariate case thanks to
its flexible structure. In this section, we introduce the Sarmanov distribution to capture
dependence between more than two LOBs to the loss reserving literature. As such, we
now work with three LOBs, with Y(`)

ij , ` ∈ {1, 2, 3}. The probability density function is then
given as follows
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f S(y(1)
ij , y(2)

ij , y(3)
ij ) = f (1)(y(1)

ij ) f (2)(y(2)
ij ) f (3)(y(3)

ij )

×
(
1 + ω1,2ψ(1)(y(1)

ij )ψ(2)(y(2)
ij ) + ω1,3ψ(1)(y(1)

ij )ψ(3)(y(3)
ij )

+ ω2,3ψ(2)(y(2)
ij )ψ(3)(y(3)

ij ) + ω1,2,3ψ(1)(y(1)
ij )ψ(2)(y(2)

ij )ψ(3)(y(3)
ij )
)
,

(4)

which is proposed by Theorem 4 by Lee (1996).
Additionally, as proposed by Drouet Mari and Kotz (2001) and mentioned by

Ratovomirija et al. (2017), it is often assumed that ω1,...,L = 0 for ` ≥ 3. Therefore, (4)
is simplified to

f S(y(1)
ij , y(2)

ij , y(3)
ij ) = f (1)(y(1)

ij ) f (2)(y(2)
ij ) f (3)(y(3)

ij )×
Ä

1 + ω1,2ψ(1)(y(1)
ij )ψ(2)(y(2)

ij )

+ ω1,3ψ(1)(y(1)
ij )ψ(3)(y(3)

ij ) + ω2,3ψ(2)(y(2)
ij )ψ(3)(y(3)

ij )
ä

.
(5)

The mixing function ψ(`)(y(`)
ij ) is the same as (3). The dependence parameters ω1,2, ω1,3,

and ω2,3 in (5) should be real numbers that require the following condition:

1 + ω1,2ψ(1)(y(1)
ij )ψ(2)(y(2)

ij ) + ω1,3ψ(1)(y(1)
ij )ψ(3)(y(3)

ij ) + ω2,3ψ(2)(y(2)
ij )ψ(3)(y(3)

ij ) ≥ 0,

as shown by Ratovomirija et al. (2017). Also, Bolancé and Vernic (2019) showed that each
bivariate case condition still needs to be applied. As such, we add the following restrictions
for trivariate distribution:

1 + ωc,dψ(c)(y(c)
ij )ψ(d)(y(d)

ij ) ≥ 0, 1 ≤ c < d ≤ 3.

2.3. One-Stage Inference for the Dependence Structure

For the bivariate case, the one-stage inference method estimates the two marginals
and the dependence parameter ω1,2 simultaneously using maximum likelihood estimation.
The log-likelihood of the bivariate Sarmanov distribution is given as follows:

L =
n

∑
i=1

n+1−i

∑
j=1

log ( f (1)(y(1)
ij ) f (2)(y(2)

ij )) +
n

∑
i=1

n+1−i

∑
j=1

log h(y(1)
ij , y(2)

ij ; ω1,2),

where
h(y(1)

ij , y(2)
ij ; ω1,2) = 1 + ω1,2ψ(1)(y(1)

ij )ψ(2)(y(2)
ij )

is the probability density function of the Sarmanov distribution dependence component.
Similarly, the one-stage inference method for trivariate Sarmanov distribution can be

performed using the following log-likelihood function

L =
n

∑
i=1

n+1−i

∑
j=1

log f (1)(y(1)
ij ) f (2)(y(2)

ij ) f (3)(y(3)
ij ) +

n

∑
i=1

n+1−i

∑
j=1

log h(y(1)
ij , y(2)

ij , y(3)
ij ; ~ω), (6)

where

h(y(1)
ij , y(2)

ij , y(3)
ij ; ~ω) = 1 + ω1,2ψ(1)(y(1)

ij )ψ(2)(y(2)
ij )

+ ω1,3ψ(1)(y(1)
ij )ψ(3)(y(3)

ij ) + ω2,3ψ(2)(y(2)
ij )ψ(3)(y(3)

ij ),

is the probability density function of the Sarmanov distribution dependence component
and ~ω = (ω1,2, ω1,3, ω2,3).

Again, from the trivariate log-likelihood function above, we estimate the dependence
parameters ~ω and the marginal parameters, simultaneously.
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3. Rank-Based Sarmanov
3.1. Rank-Based Method and Risk Analysis

Rank-based methods offer numerous advantages over one-step inference techniques
in statistical analysis. They exhibit exceptional resilience to outliers and extreme data
values, minimizing the impact of data anomalies, which is a valuable trait when handling
atypical data. Additionally, rank-based methods operate with fewer strict distributional
assumptions or without them altogether. This versatility enables their effective application
even when dealing with complex or undisclosed data distributions.

Furthermore, rank-based methods reduce the need for rigid model assumptions,
granting greater flexibility to model intricate data relationships accurately. In multivariate
analysis, rank-based methods shine by adeptly capturing dependencies between variables,
especially in scenarios where these dependencies are nonlinear or non-monotonic.

In the context of risk analysis, where financial data can be influenced by outliers and
extreme events, rank-based methods maintain their robustness. Their reduced sensitivity
to extreme values makes them a robust choice for capturing the overall risk profile of
portfolios and investments. Moreover, when constructing risk models, rank-based methods
ease the burden of strict model assumptions, allowing for adaptability to various risk
scenarios. In risk simulations and stress testing, rank-based methods prove invaluable
for generating scenarios and evaluating the repercussions of extreme events, essential for
effective risk management and capital allocation. The accessible and explicable nature of
rank-based methods also facilitates comprehension by risk analysts and decision-makers,
empowering them to make well-informed and timely decisions based on the results.

Also, risk analysis often deals with financial data that can be influenced by outliers
and extreme events. Rank-based methods are less sensitive to extreme values, making them
more robust at capturing the overall risk profile of a portfolio or investment. Risk models
often involve assumptions about asset returns and correlations. Rank-based methods
reduce the need for strict model assumptions, providing flexibility to adapt to different
risk scenarios. Assessing tail risk, such as extreme losses, is a critical aspect of risk analysis.
Rank-based methods are particularly effective at estimating tail risk measures, like value-
at-risk (VaR) and tail value-at-risk (TVaR). In risk simulations and stress testing, rank-based
methods are valuable for generating scenarios and assessing the impact of extreme events,
which are essential for risk management and capital allocation. Rank-based methods often
result in transparent and interpretive risk assessments, making it easier for risk analysts and
decision-makers to understand the results and take appropriate actions. The risk capital
implications are examined in Section 5.

In this section, we will leverage another crucial advantage of the rank-based method in
risk analysis, specifically in the context of estimating reserves: its robustness in total reserve
estimation. In fact, when using the one-stage inference method described in the previous
section, the total reserve estimate in the presence of dependence does not equate to the
sum of the marginal reserves estimated assuming independence. This is an aftereffect of
the simultaneous estimation of the marginal and dependence parameters. An inadequate
choice of the marginals may have an undesirable effect on the estimation of the dependence
structure, and vice versa. Therefore, as mentioned in Section 2.1, once we estimate the
parameters from the independence model, the total reserve can be calculated as follows

L

∑
`=1

n

∑
i=1

n

∑
j=1

p(`)
i E[y(`)

ij ].

However, in the one-stage inference, the marginal parameters in the presence of
dependence may change, and deviate from those obtained with the independence model.
This violates the linear property of the mean, as

E[
L

∑
`=1

n

∑
i=1

n

∑
j=1

y(`)
ij ]
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produced using the dependence model does not equal the total reserve

L

∑
`=1

n

∑
i=1

n

∑
j=1

E[y(`)
ij ]

obtained with independence.
This paper addresses this inferential issue using the Sarmanov family of multivariate

distributions. Thus, we propose using an alternative two-stage inference strategy, in which
generalized linear models (GLMs) are first fitted to the marginals; in that way, we can
fix the estimates of the reserves. In the second step, standardized residuals from those
models are linked through a Sarmanov distribution to estimate the dependence structure
using rank-based methods. This rank-based general approach has already been used in
the copula modeling literature, we refer the reader to Genest and Favre (2007) or Genest
and Nešlehová (2014) for a full review. However, to our knowledge, these techniques have
never been applied to the Sarmanov family of multivariate distributions.

Therefore, we present a more robust estimation approach employing rank-based
methods. We compare its outcomes with those of the one-stage inference strategy and
evaluate its influence on both dependence estimation and risk capital analyses.

3.2. Rank-Based Method for Multivariate Sarmanov Distribution

As described above, using rank-based methods requires a two-stage inference method.
First, we estimate the parameters of the marginals by maximizing the following log-
likelihood of the marginals for the bivariate case

Lmarginals =
2

∑
`=1

n

∑
i=1

n+1−i

∑
j=1

log f (`)(y(`)
ij ). (7)

Next, we use the rank of residuals Rij to estimate the dependence parameter, sep-
arately. The residuals of both log-normal and gamma distributions are expressed as
follows, respectively,

r(`)
ij =

log(y(`)
ij )− a(`)

ij

b(`) ,

and

r(`)
ij =

y(`)
ij

τ
(`)
ij

.

Starting from the residuals, we obtain the following rank of residuals

R(`)
ij =

1
55 + 1

10

∑
i∗=1

11−i∗
∑

j∗=1
1(r(`)

i∗j∗ ≤ r(`)
ij ), (8)

with 1(A) denoting the indicator function.
Consequently, the rank-based estimate ω̂1,2 of the Sarmanov dependence parameter

ω1,2 can be obtained from the loss-triangle data by maximizing the pseudo-log-likelihood:

L(ω1,2) =
n

∑
i=1

n+1−i

∑
j=1

log h(R(1)
ij , R(2)

ij ; ω1,2), (9)

with
h(R(1)

ij , R(2)
ij ; ω1,2) = (1 + ω1,2ψ(1)(R(1)

ij )ψ(2)(R(2)
ij )),

and
ψ(`)(R(`)

ij ) = exp(−R(`)
ij )− L(`)(1). (10)
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Therefore, the bound of the parameter ω1,2 becomes

1 + ω1,2ψ(1)(R(1)
ij )ψ(2)(R(2)

ij ) ≥ 0.

Similarly, for the trivariate rank-based Sarmanov distribution, we first use the maxi-
mum likelihood estimation for the parameters of the marginal

Lmarginals =
3

∑
`=1

n

∑
i=1

n+1−i

∑
j=1

log f (`)(y(`)
ij ). (11)

Then, we calculate the rank of residuals as described earlier, and then optimize the
following pseudo-likelihood of the trivariate Sarmanov distribution to obtain the estimation
of ~ω = (ω1,2, ω1,3, ω2,3)

L(~ω) =
n

∑
i=1

n+1−i

∑
j=1

log h(R(1)
ij , R(2)

ij , R(3)
ij ; ~ω), (12)

with

h(R(1)
ij , R(2)

ij , R(3)
ij ; ~ω) = 1 + ω1,2ψ(1)(R(1)

ij )ψ(2)(R(2)
ij )

+ ω1,3ψ(1)(R(1)
ij )ψ(3)(R(3)

ij ) + ω2,3ψ(2)(R(2)
ij )ψ(3)(R(3)

ij ).

The mixing function for the trivariate case is the same as in (10).
Additionally, the bounds of the ω, for each ωc,d, 1 ≤ c < d ≤ 3, need to satisfy the

following constraints

1 + ω1,2ψ(1)(R(1)
ij )ψ(2)(R(2)

ij ) + ω1,3ψ(1)(R(1)
ij )ψ(3)(R(3)

ij ) + ω2,3ψ(2)(R(2)
ij )ψ(3)(R(3)

ij ) >= 0,

and
1 + ωc,dψ(c)(R(c)

ij )ψ(d)(R(d)
ij ) ≥ 0, 1 ≤ c < d ≤ 3.

4. Empirical Analysis for Models Estimation
4.1. Data

To calibrate and validate our methods, we implement the models proposed in the
previous sections with two sets of real data. For illustration, the model is first applied to
two LOBs from a major US property–casualty insurer, and then to five LOBs from a large
Canadian insurer.

4.1.1. US Schedule P Data

The first dataset comes from Schedule P of the National Association of Insurance
Commissioners (NAIC) database, and was already used in the actuarial literature; see, e.g.,
Shi and Frees (2011) and Abdallah et al. (2016b). It consists of two loss triangles, from both
personal and commercial automobile LOBs, respectively.

The NAIC is an organization created and governed by the head of insurance regulators
from the whole US. It was created in 1871 to be used as a forum for information exchange
and is one of the largest insurance regulatory databases. Schedule P presents losses and
aggregated claims over a 10-year period, which can be arranged into loss triangles. It also
provides the unpaid losses and premiums earned for all LOBs.

Each triangle contains data for accident years 1988–1997 and ten development years.
The loss triangles of this dataset can be found in Appendix A, in Tables A1 and A2.

Shi and Frees (2011) assumed that the personal auto line follows a log-normal distribu-
tion and the commercial auto line follows a gamma distribution. The authors used visual
and statistical tests to demonstrate the model fit for the marginals. We work with their
conclusion and use the same distributions for each LOB.
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Having changed the parametrization, we re-performed the Akaike information cri-
terion (AIC) (see Akaike 1974) and the Kolmogorov–Smirnov (KS) goodness-of-fit test
(see Berger and Zhou 2014) for the residuals of the personal auto line with the log-normal
distribution, and the commercial auto line with the gamma distribution (log link). If the
p-value for the KS test is bigger than the significance level, there is not enough evidence
that the data do not come from the given distribution. In fact, Table A3 in Appendix A
shows that there is no strong evidence against stating that the personal auto line follows a
log-normal distribution and the commercial auto line follows a gamma distribution with a
log link, although the fit of the commercial auto is borderline.

As a preliminary assessment of the dependence between the two LOBs, we use
Kendall’s τ. As shown by Genest et al. (2011), the formula used to calculate Kendall’s τ for
multiple datasets, such as residuals of multiple LOBs, is given below

τL,m =
1

2L−1 − 1

ñ
− 1 +

2L

m(m− 1) ∑
(i,j) 6=(i∗,j∗)

1
Ä

r(1)
i∗j∗ ≤ r(1)

ij , . . . , r(L)
i∗j∗ ≤ r(L)

ij

äô
, (13)

where L is the number of datasets (LOBs) and m is the data number (loss ratios) in each set.
To investigate the dependence between LOBs, we use Kendall’s τ coefficient instead

of the correlation coefficient throughout the remainder of this paper. This choice is partic-
ularly pertinent in the context of loss triangles because Kendall’s τ coefficient effectively
isolates and eliminates the influences of the accident year and/or development year effects.
Indeed, Kendall’s τ is a correlation measure based on ranks, evaluating the degree of
association between variables by considering the order of their values rather than their
specific numerical values. Furthermore, Kendall’s τ offers a more robust assessment of
association, as it is less susceptible to the influence of outliers when compared to certain
other correlation coefficients, such as Pearson’s correlation coefficient. Finally, it is worth
noting that Kendall’s τ is scale-insensitive, which proves advantageous in our illustration
as we compare data and LOBs with varying volumes.

Kendall’s τ between personal and commercial auto lines is presented in Table 1, which
shows a negative dependence between the two LOBs.

Table 1. Kendall’s τ for personal and commercial auto LOBs.

LOBs Personal and Commercial

Kendall’s τ −0.1556

The results imply that the negative correlation between personal and commercial auto
lines should not be dismissed, and the Sarmanov distribution can effectively account for
this negative correlation, which is further demonstrated in the upcoming section. This
carries significant implications from a risk management standpoint, as elaborated upon in
Section 5.

4.1.2. Canadian Insurer Data 1

The second dataset comes from a large P&C Canadian insurer and was also already
used in the actuarial literature, see Côté et al. (2016). It consists of two LOBs of an auto
insurance product (` = Auto) and a home insurance product (` = Home) in all provinces
combined. The data are in Appendix B and a descriptive summary of the two LOBs is
presented in Table 2 below.

Table 2. Descriptive summary of two LOBs from a Canadian insurance company.

LOB Region Product Coverage

Auto West Auto Bodily injury

Home Country-wide Home Liability
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The auto LOB provides bodily injury (BI) coverage in Western Canada. BI coverage
offers compensation to policyholders who are injured or killed in automobile accidents
caused by uninsured vehicle owners or unidentified vehicles. Western Canada includes
the provinces of Manitoba, Saskatchewan, Alberta, and British Columbia, as well as the
Northwest Territories, Yukon, and Nunavut.

The Home LOB encompasses the company’s nationwide personal and commercial
home insurance offerings. Liability insurance within this LOB safeguards policyholders
against legal liabilities arising from injuries or damage caused to others.

Côté et al. (2016) showed that both LOBs follow a gamma distribution using the AIC
and KS goodness-of-fit test. The results are reproduced in Table A7 in Appendix B.

For the exploratory dependence analysis, we work with Kendall’s τ, for the reasons
mentioned earlier. The results are presented in Table 3 and show a positive dependence
between these LOBs.

Table 3. Kendall’s τ for auto and home LOBs.

LOBs Auto and Home

Kendall’s τ 0.2848

The fact that the two LOBs are positively correlated is partly due to exogenous com-
mon factors, such as inflation and interest rates. Furthermore, strategic decisions can
impact several lines within the insurance product, e.g., the acceleration of payments on
all lines of the auto insurance sector could induce some positive dependence across the
whole portfolio.

4.1.3. Canadian Insurer Data 2

The third dataset is also sourced from a prominent Canadian property and casualty
(P&C) insurer and has been previously utilized in actuarial research, see Côté et al. (2016).
We focus on the three automobile insurance LOBs from the province of Ontario and apply
both the bivariate and trivariate Sarmanov models. The three LOBs consist of Ontario
bodily injuries (` = BI), Ontario accident benefits excluding disability income (` = AB),
and Ontario accident benefits with disability income (` = DI). The data are in Appendix C
and a descriptive summary of the three LOBs is presented in Table 4 below.

Table 4. Descriptive summary of three LOBs from a Canadian insurance company.

LOB Region Product Coverage

BI Ontario Auto Bodily injury

AB Ontario Auto Accident benefits excluding disability income

DI Ontario Auto Accident benefits: disability income only

BI coverage is described earlier; the accident benefits (AB) coverage provides com-
pensation for injury or death involved in a vehicle collision, regardless of fault, if you,
your passengers, or pedestrians are injured or killed due to the accident. Disability income
provides compensation if the accident results in a disability and the insured is not able to
work at their regular employment anymore.

The three LOBs again follow a gamma distribution, which we showed using the AIC
and KS goodness-of-fit test. The results are provided in Table A12 in Appendix C.

For the preliminary investigation of dependence, we work with Kendall’s τ, which
are presented in Table 5 and show positive dependence between these LOBs.
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Table 5. Kendall’s τ for the BI, AB, and DI LOBs.

LOB Line BI and AB Line BI and DI AB and DI BI, AB, and DI

Kendall’s τ 0.2444 0.2094 0.2000 0.2180

The positive correlation among the three LOBs can be attributed to shared strategic
decisions, external factors discussed in relation to the dependence between auto and home
LOBs mentioned earlier, as well as legislative changes within the province of Ontario. More-
over, when we delve into the granular level, the positive relationship between Ontario’s
AB and BI can be elucidated by the frequent occurrence of the same accidents triggering
claims in both coverage types.

4.2. One-Stage Inference Analysis
4.2.1. US Schedule P Data Calibration

As a starting point, we use the one-stage estimation method in this section, to estimate
the ω dependence parameter for the bivariate Sarmanov model for the personal and
commercial auto lines from the US Schedule P data. The results are shown in Table 6.

Table 6. Estimated omega for the bivariate Sarmanov model with personal and commercial LOBs
using the one-stage inference method.

LOB Estimated Omega Log-Likelihood

Personal and Commercial −4.4296 348.6252

As elucidated in Section 3 of Lee (1996), the sign of the ω dependence parameter
for Sarmanov distribution is contingent upon the interdependence observed between the
LOBs. Notably, Kendall’s τ in Table 1 signifies negative dependence between personal and
commercial LOBs. Consequently, Table 6 presents a negative dependence parameter ω
for the bivariate Sarmanov distribution of these two LOBs, which is corroborated by the
negative dependence identified using Kendall’s τ.

We use several inference tests to check the significance of the dependence parameter.
From the AIC result in Table 7, we can see that it shows that the bivariate Sarmanov model
using a one-stage inference method for personal and commercial auto lines is better than
the independent case. The smaller AIC is presented in bold. We also use the likelihood-ratio
test (see Woolf 1957) to check whether the ω dependence parameter is significant.

Table 7. AIC for the bivariate Sarmanov model with personal and commercial LOBs using the
one-stage inference method.

Model for Personal and Commercial AIC

Independence −613.1788

Bivariate Sarmanov with one-stage inference −615.2503

In Table 8, we see that the p-value is lower than 0.05, which indicates that we can
reject the null (independence) hypothesis at a 5% level. This agrees with the AIC result and
shows that the ω dependence parameter of the bivariate Sarmanov model is significant and
this model captures the dependence between personal and commercial LOBs.
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Table 8. Significance tests for the bivariate Sarmanov model with personal and commercial LOBs
using the one-stage inference method.

Significance Tests Likelihood-Ratio Test

Test statistic 4.0639

p-value 0.0438

After obtaining the estimated parameters for one-stage inference for personal and
commercial LOBs, we use them to calculate the estimated total reserve as denoted in (1),
and the results are detailed in Table 9.

Table 9. Reserve calculation of the one-stage inference method vs. independence for personal and
commercial LOBs.

Models/Reserve LOB Pers. LOB Comm. Total

Independence Pers. and Comm. 6,464,075 490,652 6,954,727
Bivariate Pers. and Comm. 6,465,679 513,622 6,979,302

Notably, Table 9 reveals that the total reserve computed using the one-stage inference
method departs from the independent case, violating the linearity property of the mean, as
discussed in Section 3.1. From a practical perspective, this also represents an undesirable
outcome, as it means that the reserve of one LOB is influenced by the reserve of another.

4.2.2. Canadian Insurer Data 1 Calibration

We now use the second dataset, which consists of the auto and home pair LOBs,
described in the previous section, to calibrate the bivariate Sarmanov model with a one-
stage inference strategy. Table 10 presents the ω dependence parameter estimation for this
pair of LOBs.

Table 10. Estimated omega for the bivariate Sarmanov model with auto and home LOBs using the
one-stage inference method.

LOB Estimated Omega Log-Likelihood

Auto and Home 256.0006 335.3081

As discussed in Section 4.1.2, the home and auto LOBs are positively dependent. This
positive relationship is corroborated by the estimated positive value of the ω dependence
parameter within Table 10 for the bivariate Sarmanov model.

Once more, we employ both the Akaike information criterion (AIC) and the likelihood-
ratio test (LRT) as the initial tools to evaluate the presence of statistically significant depen-
dence within these pairs.

The AIC results presented in Table 11 indicate that the independence model outper-
forms the one-stage inference bivariate model for the auto and home pair, as evidenced
by its lower AIC value, which is shown in bold. This observation is further substantiated
by the LRT results, as demonstrated in Table 12, which reveal that, for the auto and home
pair, the null hypothesis of independence cannot be rejected at the 5% significance level.
Consequently, we conclude that the bivariate Sarmanov model with one-stage inference
falls short in capturing the dependence between the auto and home LOBs.
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Table 11. AIC for the bivariate Sarmanov model with auto and home LOBs using the one-stage
inference method.

Model for Auto and Home AIC

Independence −590.1085

Bivariate Sarmanov with one-stage inference −588.6163

Table 12. Significance tests for the bivariate Sarmanov model with auto and home LOBs using the
one-stage inference method.

Significance Tests Likelihood-Ratio Test

Test statistic 0.5078

p-value 0.4761

Similarly, following the estimation of parameters for the one-stage inference method
for home and auto LOBs, we apply these estimates to compute the expected total reserve,
as outlined in (1). The resulting insights are presented in Table 13.

Table 13. Reserve calculation of the one-stage inference method vs. independence for auto and
home LOBs.

Models/Reserve LOB Auto LOB Home Total

Independence Auto and Home 78,665 98,929 177,594
Bivariate Auto and Home 77,789 101,603 179,392

Analogous to the previous analysis in Section 4.2.1, Table 13 a deviation in the total
reserve determined using the one-stage inference method compared to the independent
case, thereby contradicting the linearity property of the mean and industry best practices.

4.2.3. Canadian Insurer Data 2 Calibration

We now use the third dataset, from a large Canadian insurer, to calibrate both bivariate
and trivariate Sarmanov models with a one-stage inference approach. Table 14 presents
the ω dependence parameter estimation for the BI and AB, BI and DI, and AB and DI LOB
pairs described in the previous section.

Table 14. Estimated omega for the bivariate Sarmanov model with the BI and AB, BI and DI, and AB
and DI LOBs using the one-stage inference method.

LOB Estimated Omega Log-Likelihood

BI and AB 436.9040 315.1206

BI and DI 424.5868 397.3058

AB and DI 730.9298 400.3068

In Table 14, the ω dependence parameters of all three pairs agree with Kendall’s τ
statistics in Section 4.1.3, showing positive dependencies for each pair of LOBs.

Again, we use the AIC as well as the likelihood-ratio test (LRT) to first assess whether
there is any significant dependence between these pairs.

The AIC results in Table 15 show that the bivariate Sarmanov model with the one-
inference method for the BI and AB pair provides a better fit than the independence case.
However, the results for the BI and DI, and AB and DI pairs show that the independence
model has a smaller AIC than the one-stage inference bivariate model. We indicate the
smaller AICs in bold. These findings are confirmed with the LRT.



Risks 2023, 11, 187 16 of 37

Table 15. AIC for the bivariate Sarmanov model with BI and AB, BI and DI, and AB and DI LOBs
using the one-stage inference method.

LOB Model AIC

BI and AB Independence −546.3281
Bivariate Sarmanov with one-stage inference −548.2413

BI and DI Independence −714.1499
Bivariate Sarmanov with one-stage inference −712.6117

AB and DI Independence −720.1422
Bivariate Sarmanov with one-stage inference −718.6135

Table 16 shows that, for the BI and AB pair, the null (independence) hypothesis is
rejected at the 5% level, but cannot be rejected for BI and DI and AB and DI. We then
conclude that the bivariate Sarmanov model with one-stage inference only captures the
dependence between the BI and AB LOBs.

Table 16. Significance tests for the bivariate Sarmanov model with BI and AB, BI and DI, AB, and DI
LOBs using the one-stage inference method.

LOB/Likelihood-Ratio Test Test Statistics p-Value

BI and AB 3.91314 0.04791

BI and DI 0.46678 0.49447

AB and DI 0.47131 0.49239

For the trivariate case, we use the three LOBs—BI, AB, and DI—from the Canadian
insurer dataset. We first need to estimate the dependence parameters ω1,2, ω1,3, and ω2,3
from (5), using the one-stage inference method. We then maximize the log-likelihood
function presented in (6). The results are shown in Table 17.

Table 17. Estimated omega for the trivariate Sarmanov model with BI, AB, and DI LOBs using the
one-stage inference method.

Lines BI, AB, and DI ωBI,AB ωBI,DI ωAB,DI

Estimated omega 374.7942 −110.3272 −165.7813

Log-likelihood 556.4291

Table 17 reveals that not all of the dependence parameters exhibit positive values,
which contradicts the initial findings from the dependence analysis presented in Table 5.
This suggests that the obtained dependence parameters may not be statistically significant.
Therefore, we proceed with the likelihood-ratio test (LRT) to evaluate the significance of
these parameters.

Table 18 validates that the three dependence parameters lack statistical significance,
with p-values exceeding 10% for each of them.

Additionally, we use the AIC and LRT to check if the model is significant.
The results from Table 19 show that the trivariate Sarmanov model using the one-stage

inference method is not better than the independence model for lines BI, AB, and DI, i.e., it
does not show significant dependence for the LOB triplet (BI, AB, and DI). The smaller AIC
is highlighted in bold. This finding is also confirmed by the likelihood-ratio test in Table 20.
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Table 18. Significance test for the trivariate Sarmanov model with the BI, AB, and DI lines using the
one-step inference method.

Likelihood-Ratio Test ωBI,AB ωBI,DI ωAB,DI

Test statistic 2.2803 −0.1351384 1.061
p-value 0.1310 1.00 0.3030

Table 19. AIC for the trivariate Sarmanov model with BI, AB, and DI LOBs using the one-stage
inference method.

Model for Line BI, AB, and DI AIC

Independence −1026.6996

Trivariate Sarmanov with one-stage inference −986.8582

Table 20. Significance tests for the trivariate Sarmanov model with BI, AB, and DI LOBs using the
one-stage inference method.

Significance Tests Likelihood-Ratio Test

Test statistic 2.5506

p-value 0.4662

Therefore, we conclude from the results above that the Sarmanov one-stage inference
model fails to capture the dependence among the triplet BI, AB, and DI.

Once we obtain the estimated parameters, we use them to compute the predicted total
reserve, expressed in (1), and the results are reported in Table 21.

Table 21. Reserve calculation of the one-stage inference method vs. independence for the BI, AB,
and DI LOBs.

Models/Reserve LOB BI LOB AB LOB DI Total for 3 Lines

Independence BI, AB, and DI 132,918 73,220 18,288 224,426
Bivariate BI and AB 129,397 71,457 (18,288) 219,144
Bivariate BI and DI 131,148 (73,220) 18,739 223,107
Bivariate AB and DI (132,918) 72,144 18,123 223,185

Trivariate BI, AB, and DI 135,061 70,857 18,752 224,671

As the dependence parameter of the bivariate Sarmanov for the BI and DI and AB and
DI pairs, as well as the trivariate Sarmanov for the triplet BI, AB, and DI, are not significant,
their corresponding total estimated reserve aligns closely with the independence case.
However, when the dependence becomes significant, as with the bivariate Sarmanov
for the BI and AB pairs, the corresponding total reserve deviates more from the reserve
obtained in the independence case.

4.3. Rank-Based Method Analysis

For the rank-based method, we first use Kendall’s test to check whether there is any
significant dependence between the residuals of the different LOBs.

The calculation of Kendall’s τ has already been presented in (13). Under the null
hypothesis of multivariate independence, the mean of τL,m is 0, and its sample variance can
be calculated as follows:

Var(τL,m) =
m(22L+1 + 2L+1 − 4 ∗ 3L) + 3L(2L + 6)− 2L+2(2L + 1)

3L(2L−1 − 1)2m(m− 1)
,
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and the distribution of τL,m is assumed to be asymptotically Gaussian. As Kendall’s test
uses the chi-square test to determine the p-value, the latter is expressed as

p = 2 ∗
Ç

1− cd fnormal

Ä
|τL,m/

»
Var(τL,m)|

äå
.

Next, we report the results for both datasets in the two following subsections, respectively.

4.3.1. US Schedule P Data Calibration

Here, we first start by checking the dependence between the residuals of the personal
and commercial auto line from the US Schedule P data.

Based on the p-value of Kendall’s test presented in Table 22, we conclude that the
null hypothesis of independence is rejected at the 10% level. Therefore, we can say that
there exists a significant (but small) negative dependence between the two LOBs. In the
case of negative association, it is preferred to work with the anti-ranks (negative of rank
of residuals) for the second LOB when estimating ω1,2, as suggested by Côté et al. (2016).
Thus, we optimize the following pseudo-likelihood function:

L =
n

∑
i=1

n+1−i

∑
j=1

log h(R(1)
ij ,−R(2)

ij , ω1,2).

This allows us to obtain the estimated ω1,2 in Table 23.

Table 22. Kendall’s τ for personal and commercial LOBs.

LOB Personal and Commercial Auto Line

Kendall’s τ −0.1556

Kendall’s test p-value 0.09355

Table 23. Estimated omega for the bivariate Sarmanov model with personal and commercial LOBs
using the rank-based method.

LOB Estimated Omega

Personal and Commercial −10.14954

The sign of the estimated ω dependence parameter in Table 23 also confirms the
negative dependency between personal and commercial LOBs.

When we work with rank-based methods and pseudo-likelihood functions, the di-
agnostic tools for dependence significance that were used with the one-stage inference
methods, such as AIC and LRT, cannot be used anymore. However, bootstrapping can be
used to check whether a parameter is significant, as pointed out by Côté et al. (2016). If we
simulate and estimate the parameter 5000 times, then we can check if the 95% confidence
interval of the 5000 estimation includes 0. If it does not include 0, then the estimated
parameter is significant.

We use the bootstrapping method to check whether the ω dependence parameter is
significant. We simulate dependent loss triangles from the estimated ω using the rank-
based bivariate Sarmanov and re-estimate the corresponding dependence parameter ω∗

from each simulated pair of loss triangles. The simulation and bootstrapping procedures
are illustrated thoroughly in the next section.

Figure 1 shows the approximate distribution of the ω based on 5000 bootstrap replicates.
The blue line in Figure 1 represents the 95% confidence interval for the parameter and

we can see that the confidence interval does not include 0. This indicates that the estimation
of ωP,C is significant in the bivariate Sarmanov model using the rank-based method for
personal and commercial auto lines.
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Figure 1. The 5000 ω∗P,C rank-based bootstrap estimations for bivariate Sarmanov with Pers. and
Comm. LOBs.

4.3.2. Canadian Insurer Data 1 Calibration

Now, we perform the same procedure for the first dataset from the Canadian insurer,
which consists of auto and home LOBs. Table 24 presents Kendall’s τ test between the two
LOBs.

Table 24. Kendall’s τ for auto and home LOBs.

LOB Auto and Home Lines

Kendall’s τ 0.2848

Kendall’s test p-value 0.0021

As depicted in Table 24, a positive dependence exists between the two LOBs. In fact,
the p-value obtained from Kendall’s test underscores a robust dependency between these
two lines of business.

Once more, we use the Sarmanov bivariate model and apply (7) and (8) for the gamma–
gamma case to calculate the rank of residuals, which we subsequently insert into (9) to
estimate the dependence parameter, denoted as ω. The outcome of the ω estimation
through the rank-based method for the auto and home LOBs is presented in Table 25.

Table 25. Estimated omega for the bivariate Sarmanov model with personal and commercial LOBs
using the rank-based method.

LOB Estimated Omega

Auto and Home 155.115

The estimated ω in Table 25 agrees with Kendall’s τ test above, showing positive
dependencies between auto and home LOBs.

Once again, we can employ the bootstrapping method to assess the significance of
the ω values. To achieve this, in a similar manner, we simulate synthetic (dependent) loss
triangles using the dependence parameters acquired from Table 25 through the bivariate
rank-based Sarmanov model. Subsequently, we re-estimate the new ω∗ values for each
iteration; the results are presented in Figure 2.

In Figure 2, the blue lines represent the 95% confidence interval. It is evident from the
figure that the blue lines do not encompass the value 0 for the parameters. This indicates
that the estimation of ω values holds significance in the bivariate Sarmanov model when
employing the rank-based method for the auto and home LOBs.
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Figure 2. The 5000 ω∗A,H rank-based bootstrap estimations for bivariate Sarmanov with auto and
home LOBs.

4.3.3. Canadian Insurer Data 2 Calibration

Now, we perform the same procedure for the BI, AB, and DI LOBs from the other
Canadian insurer dataset. Table 26 presents Kendall’s τ tests for all three LOBs.

Table 26. Kendall’s τ for the BI, AB, and DI LOBs.

LOB Line BI and AB Line BI and DI Line AB and
DI Line BI, AB, and DI

Kendall’s τ 0.2444 0.2094 0.2000 0.2180

Kendall’s test
p-value 0.0084 0.0240 0.0311 4.7064 × 10−5

Table 26 shows that the three LOBs are positively correlated. The p-value of Kendall’s
test shows that there is a strong dependence between the three lines together.

We first consider the bivariate dependence between the BI and AB, BI and DI, and AB
and DI pairs, and we examine the trivariate case afterward.

In the bivariate model, we use (7) and (8) in the gamma–gamma case to compute the
rank of residuals that we plug in (9) to estimate the omega dependence parameter. Table 27
presents the result of the ω estimation using a rank-based method for the following pairs:
BI and AB, BI and DI, and AB and DI.

Table 27. Estimated omega for the bivariate Sarmanov model with the following pairs: BI and AB, BI
and DI, AB and DI, using a rank-based method.

LOB Estimated Omega

BI and AB 24.524

BI and DI 31.482

AB and DI 1374.157

The estimated ω in Table 27 also shows that there are positive dependencies between
each pair of LOBs.

Again, we can use the bootstrapping method to check the significance of the ω. As
such, similarly, we simulate the synthetic (dependent) loss triangles using the dependence
parameters obtained in Table 27 with the bivariate rank-based Sarmanov and re-estimate
the new ω∗’s each time.
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Similarly, Figures 3–5 present the omega estimates of the bootstrap result, where the
blue lines denote the 95% confidence interval, and we can see from the figure that the blue
lines do not include 0 for the parameters. This means that the ω estimation is significant
in the bivariate Sarmanov model using the rank-based method for the BI and AB, BI and
DI, and AB and DI pairs. These figures give some indications that the distribution of
the estimated parameters may not be normal, this could be because of the bounds while
estimating the ω.
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Figure 3. The 5000 ω∗BI,AB rank-based bootstrap estimations for the bivariate Sarmanov with the BI
and AB LOBs.
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Figure 4. The 5000 ω∗BI,DI rank-based bootstrap estimations for the bivariate Sarmanov with the BI
and DI LOBs.

For the trivariate case, we estimate the three dependence parameters ω1,2, ω1,3, and
ω2,3, from (12) after calculating the rank of residuals using (11) and (8). The estimated ωs
are presented in Table 28.

As shown in Table 26, Kendall’s test shows that the three LOBs are positively depen-
dent on each other, which is confirmed by the signs of the estimated dependence parameter
ω in Table 28. We again use the bootstrapping method to check the significance of the three
dependence parameters.

Table 28. Estimated omega for the trivariate Sarmanov model with the triplet BI, AB, and DI using
the rank-based method.

Lines BI, AB, and DI ωBI,AB ωBI,DI ωAB,DI

Estimated omega 25.2962 30.4092 61.4528
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Figure 5. The 5000 ω∗AB,DI rank-based bootstrap estimations for the bivariate Sarmanov with the AB
and DI LOBs.

The estimated omegas of bootstrap results are presented in Figures 6–8.
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Figure 6. The 5000 ω∗BI,AB rank-based bootstrap estimations for bivariate Sarmanov with BI, AB, and
DI LOBs.
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Figure 7. The 5000 ω∗BI,DI rank-based bootstrap estimations for bivariate Sarmanov with BI, AB, and
DI LOBs.
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Figure 8. The 5000 ω∗AB,DI rank-based bootstrap estimations for bivariate Sarmanov with BI, AB, and
DI LOBs.

From Figures 6–8, we can conclude that the dependence parameters are all significant
for the trivariate Sarmanov distribution using the rank-based method, as the 95% confi-
dence interval (blue lines) does not include 0 for each figure. Interestingly, this trivariate
dependence was not captured with the classical one-stage inference method.

4.4. Models Estimation Summary

Table 29 displays a summary of the comparison between the Sarmanov rank-based
model and the classical one-stage inference model for all seven LOBs, considering both
bivariate and trivariate cases. The results clearly demonstrate that the rank-based method
more effectively captures the dependencies among the LOBs. This enhanced understanding
of dependencies leads to a more comprehensive risk capital analysis and greater diversifi-
cation benefits, which are elaborated in the following section.

Table 29. Summary table for the comparison of the one-stage inference method and rank-based
method.

Significance of Models/Methods One-Stage Inference Method Rank-Based Method

Bivariate Personal and Commercial X X

Bivariate Auto and Home × X

Bivariate BI and AB X X

Bivariate BI and DI × X

Bivariate AB and DI × X

Trivariate BI, AB, and DI × X

5. Risk Capital Implications

In addition to reserves, companies also need to set aside additional funds as a buffer
in case of potential losses caused by adverse scenarios or extreme events; it is called risk
capital. It represents the amount of money that the companies can lose without causing
significant harm to the financial situation. In practice, companies calculate their risk capital
by summing up the risk capital of each LOB separately. This is called the “Silo” method;
it was introduced by Ajne (1994). However, this method implicitly assumes that risks are
perfectly correlated, and does not allow any forms of diversification.

Therefore, we address this issue by using a dependence model through the Sarmanov
family of multivariate distributions, with both the one-stage inference and rank-based
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methods. This section then examines and compares both approaches and assesses their
impacts on the risk capital and diversification benefits.

In order to calculate the risk capital, risk measures, such as the value-at-risk (VaR) and
tail value-at-risk (TVaR), are used. VaRk is calculated as the 100(1− k) percentile of the
loss distribution, where k ∈ (0, 1) is the risk tolerance.

TVaR is the expected loss, given that the loss is greater than the VaR level. Namely,
we have

TVaRk(S) = E[S|S > VaRk(S)],

where S is the total unpaid loss for the portfolio.
In our case, we use the TVaR, which is a coherent risk measure, unlike the VaR for

which the sub-additive property is, in general, not guaranteed. The capital allocation
approach determines the share of the risk capital to be allocated to each LOB. It was first
introduced by Tasche (1999) and is summarized by Bargès et al. (2009).

5.1. Simulation Procedure

To calculate the risk capital, we need a predictive distribution of reserves, which can
be obtained by simulation, as these distributions cannot be obtained explicitly.

The simulation algorithm is the same for both one-stage inference and rank-based
methods. In fact, to generate realizations from the Sarmanov distribution, we use the
inversion method, based on the conditional cumulative distribution function, as described
by Pelican and Vernic (2013). The simulation method has the following steps for both the
bivariate and trivariate cases:

• Generate y(1)
ij from the marginal distribution of the first LOB: Y(1)

ij ∼ G(α1, τ1) or

Y(1)
ij ∼ LN (a1, b1).

• Generate y(2)
ij from the conditional cumulative distribution function F

Y(2)
ij |Y

(1)
ij

of a ran-

dom variable (Y(2)
ij |Y

(1)
ij = y(1)

ij ), as below:

F
Y(2)

ij |Y
(1)
ij

(y) = F
(
y
)
+ ω1,2ψ(1)(y(1)

ij )
∫ y

−∞
f (2)(y(2)

ij
)
ψ(2)(y(2)

ij ) dy(2)
ij .

For the trivariate Sarmanov, the simulation procedure continues as follows:

• Generate y(3)
ij from the conditional cumulative distribution function F

Y(3)
ij |Y

(1)
ij ,Y(2)

ij
of a

random variable (Y(3)
ij |Y

(1)
ij = y(1)

ij , Y(2)
ij = y(2)

ij ), expressed as below:

FY(3)
ij |Y

(1)
ij ,Y(2)

ij
(y)

= F(y) +
ω1,3ψ(1)(y(1)

ij )
∫ y
−∞ f (y(3)

ij )ψ(3)(y(3)
ij ) dy(3)

ij

1 + ω1,2ψ(1)(y(1)
ij )ψ(2)(y(2)

ij )
+

ω2,3ψ(2)(y(2)
ij )
∫ y
−∞ f (y(3)

ij )ψ(3)(y(3)
ij ) dy(3)

ij

1 + ω1,2ψ(1)(y(1)
ij )ψ(2)(y(2)

ij )
.

Once we estimate the parameters from both the one-stage inference and rank-based
methods, as described in Sections 2.3 and 3, we simulate the 45 observations of the lower
part of the triangle y(`)

i,j , with 2 ≤ i ≤ 10, and i ≤ j ≤ 10, using the simulation procedure
described above. Then we calculate the reserve and estimate the risk measure from the
simulated lower part of the triangle, as follows.

For each simulation and LOB `, we compute the total unpaid loss:

X(`) =
n

∑
i=1

n+1−i

∑
j=1

p(`)
i y(`)

ij

as well as S = ∑` X(`), the total unpaid loss for the whole portfolio. Here, the TVaR-based
capital allocation is used and can be written as
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÷TVaRk(X(`); S)

=
1

N(1− k)

ñ
N

∑
j=1

X(`)
j 1(Sj > ‘VaRk(S)) +

FN(‘VaRk(S))− k
1
n ∑N

i=1 1(Si = ‘VaRk(S))

N

∑
j=1

X(`)
j 1(Sj = ‘VaRk(S))

ô
,

where FN is the empirical cumulative distribution function of S and N is the number of
simulations. The total TVaR-based capital allocation can be written as÷TVaRk(S) =

1
1− k

ñ
1
N

N

∑
j=1

Sj1(Sj > ‘VaRk(S)) +‘VaRk(S)
Ä

FN(‘VaRk(S))− k
äô

.

The risk capital is defined as the difference between the risk measure and the value of
liability (see, e.g., Dhaene et al. 2006). To replicate what is usually being done in practice, the
risk measure is used at a high-risk tolerance, say 99%, while the value of liability (reserve)
is usually assumed to be equal to the risk measure, but at a lower risk tolerance, generally
between 60% and 80%, according to the risk appetite. Here, we set the risk tolerance at 60%
for the reserve in our risk capital analysis. Mathematically, the risk capital associated with
a risk R, noted by RC(R), is then calculated as follows:

RC(R) = TVaR99%(R)− TVaR60%(R).

We then compute the gain of the dependence model compared to the silo method below:

Gain =
Ä

RCSilo(R)− RCSarmanov(R)
ä
/RCSilo(R).

First, we apply the aforementioned procedures to the personal and commercial auto
LOBs utilizing data from the US Schedule P. We compute the TVaRk for various risk
thresholds, where k ∈ {60%, 90%, 95%, 99%}. Subsequently, we determine the risk
capital and gains using the rank-based method and proceed to compare them against both
the silo and one-stage inference methods. The results of these comparisons, based on
50,000 simulations, are presented in Table 30. We present the lowest TVaR, risk capital and
highest gain for each risk level in bold.

Table 30. The TVaR and risk capital comparison based on 50,000 simulations for personal and
commercial LOBs.

TVaR

Model 60% 90% 95% 99%

Silo 7,176,965 7,370,308 7,450,181 7,613,205

Sarmanov with one-stage inference 7,170,180 7,335,921 7,403,829 7,541,347
Sarmanov with rank-based method 7,137,733 7,297,020 7,362,307 7,494,715

Risk Capital

Model 60% 90% 95% 99%

Silo - 193,343 273,216 436,240

Sarmanov with one-stage inference - 165,741 233,649 371,167
Sarmanov with rank-based method - 159,286 224,574 356,982

Gain

Model 60% 90% 95% 99%

Sarmanov with one-stage inference - 14.28% 14.48% 14.92%
Sarmanov with rank-based method - 17.61% 17.80% 18.17%
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Unsurprisingly, both one-stage inference and rank-based Sarmanov methods provide
lower risk measures and risk capital than the silo method. This confirms and highlights the
importance of the diversification benefit when modeling dependence between these two
negatively dependent LOBs.

Significantly, it is evident from Table 30 that the rank-based method surpasses the one-
stage inference method in terms of gain when compared to the Silo method. Specifically, we
note a reduced risk measure and an increased gain for the Sarmanov rank-based method.
This highlights that the diversification benefit achieved through the rank-based method is
greater than that attained with the one-stage inference method.

Subsequently, we reevaluate the implications of risk capital using two other datasets
from the Canadian insurer data. The initial dataset includes the auto and home LOBs, and
we proceed to compare the risk capital obtained through the rank-based Sarmanov method
against that obtained via the traditional one-stage inference approach.

Table 31 demonstrates and corroborates that the bivariate Sarmanov model, when
utilizing the rank-based method, yields lower risk measures and greater risk capital gains
in comparison to both the silo and one-stage inference methods. This observation is further
substantiated in the subsequent section through the application of bootstrapping. The
lowest TVaR, risk capital and highest gain for every risk level are indicated in bold below.

Table 31. The TVaR and risk capital comparison based on 50,000 simulations for the auto and home
LOBs.

TVaR

Model 60% 90% 95% 99%

Silo 187,326 195,737 199,111 205,934

Sarmanov with one-stage inference 186,983 193,446 195,984 201,120
Sarmanov with rank-based method 185,138 191,560 194,083 199,211

Risk Capital

Model 60% 90% 95% 99%

Silo - 8411 11,785 18,608

Sarmanov with one-stage inference - 6463 9000 14,136
Sarmanov with rank-based method - 6422 8945 14,073

Gain

Model 60% 90% 95% 99%

Sarmanov with one-stage inference - 23.16% 23.63% 24.03%
Sarmanov with rank-based method - 23.65% 24.10% 24.37%

For the second dataset from the Canadian Insurer, we compare the risk capital for the
bivariate case with the following pairs: BI and AB, BI and DI, and AB and DI, as well as
for the trivariate case with the triplet BI, AB, and DI. Here, only models with significant
dependence shown in Section 4 are illustrated.

Table 32 demonstrates and validates that the bivariate Sarmanov model, employing
the rank-based method, yields lower risk capital and higher gains when contrasted with
both the silo and one-stage inference methods. The lowest risk capital and highest gain of
the total of three LOBs are highlighted in bold.

In the trivariate scenario, we observe that the risk capital allocations are lower than
in the bivariate case. Furthermore, the gains are higher, underscoring the additional risk
diversification potential enabled by the rank-based trivariate Sarmanov method in the
presence of multivariate dependence.
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Table 32. The risk capital comparison based on 50,000 simulations for the BI, AB, and DI LOBs.

Model Line BI Line AB Line DI Total Gain

Silo BI and AB 16,163 11,301 - 27,464 -
Bivariate BI and AB one-stage inference 13,474 5972 - 19,446 29.19%
Bivariate BI and AB rank-based method 13,549 5820 - 19,369 29.47%

Silo BI and DI 16,163 - 2455 18,618 -
Bivariate BI and DI rank-based method 16,007 - 400 16,407 11.88%

Silo AB and DI - 11,301 2455 13,756 -
Bivariate AB and DI rank-based method - 11,075 619 11,694 14.99%

Silo BI, AB, and DI 16,163 11,301 2455 29,920 -
Trivariate BI, AB, and DI rank-based method 13,458 5800 246 19,505 34.81%

5.2. Bootstrap Procedure

The results from the simulation procedure section above do not incorporate parameter
uncertainty, as the model is assumed to be correct. As such, a parametric bootstrap can be
used in order to quantify estimation error and tackle potential model over-fitting. Therefore,
in order to calculate the predictive distribution of reserves and risk capital, we also use the
bootstrapping method to generate sample data and estimate the parameters. We use the
same bootstrap algorithm as Taylor and McGuire (2007), which is also shown in work by
Shi and Frees (2011) and Abdallah et al. (2016b). The following are the steps included in
the bootstrapping method for bivariate or multivariate cases after estimating parameters
using the methods described in Sections 2.3 and 3.

• Simulate 55 pseudo-responses y∗(`)
i,j , (1 ≤ i ≤ 10, 1 ≤ j ≤ 11− i) from the Sarmanov

model using the estimated parameters ~ω, α1, τ1, . . . , α`, τ`, a1, b1,. . . ,a`, b`, with ` ≥ 2.
• Estimate the parameters ~ω∗, α∗1 , τ∗1 , . . . , α∗` , τ∗` , a∗1 , b∗1 , . . . , a∗` , b∗` from the new simulated

(synthetic) data y∗(`)
i,j , based on the different models.

• Simulate the lower part (45 observations) of the triangle y∗(`)
i,j , where 2 ≤ j ≤ 10 and 12−

j ≤ i ≤ 10, using the new estimated parameters ~ω∗, α∗1 , τ∗1 , . . . , α∗` , τ∗` , a∗1 , b∗1 , . . . , a∗` , b∗`
obtained above.

• Calculate the reserve and estimate the risk measures from the simulated lower part of
the triangle.

We apply the bootstrap method to the three datasets. We first use the Kolmogorov–
Smirnov test to check whether the simulation procedure produces adequate datasets (i.e.,
loss triangles), as shown in Table 33. We observe that the null hypothesis is not rejected for
all models, i.e., there is not enough evidence that the simulated data do not come from the
same distribution of the original loss data for each LOB.

Table 33. KS test for simulated vs. original data.

Model/p-Value 1st Line 2nd Line 3rd Line

Bivariate personal and commercial one-stage inference 0.9989 0.9031 -
Bivariate personal and commercial rank-based 0.9989 0.9031 -

Bivariate auto and home one-stage inference 0.7695 0.9789 -
Bivariate auto and home rank-based 0.7695 0.9789 -

Bivariate BI and AB one-stage inference 0.9031 0.9789 -
Bivariate BI and AB rank-based 0.9031 0.9789 -

Bivariate BI and DI rank-based 0.9031 0.9789 -

Bivariate AB and DI rank-based 0.9789 0.9789 -

Trivariate BI, AB, and DI rank-based 0.9031 0.9789 0.9789
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For the personal and commercial auto lines based on the US Schedule P Data, Table 34
displays the TVaRk, k ∈ {60%, 90%, 95%, 99%}, as well as the corresponding risk capital
estimates and gains obtained through 5000 bootstrap simulations. As the bootstrap is more
computationally intensive, a reduced number of simulations is used for this section. The
lowest TVaR, risk capital and highest gain for each risk level are given in bold below.

Table 34. Comparison of TVaR and risk capital based on 5000 bootstrap samples for the personal
and commercial LOBs.

TVaR

Model 60% 90% 95% 99%

Silo 7,437,291 7,863,068 8,039,379 8,399,543

Sarmanov with one-stage inference 7,392,765 7,750,422 7,898,561 8,208,176
Sarmanov with rank-based method 7,357,154 7,702,067 7,846,936 8,138,880

Risk Capital

Model 60% 90% 95% 99%

Silo - 425,777 602,088 962,252

Sarmanov with one-stage inference - 357,657 505,796 815,411
Sarmanov with rank-based method - 344,914 489,782 781,727

Gain

Model 60% 90% 95% 99%

Sarmanov with one-stage inference - 16.00% 15.99% 15.26%
Sarmanov with rank-based method - 19.00% 18.65% 18.76%

The findings presented in Table 34 corroborate the results obtained through simu-
lations. Specifically, they demonstrate that, once again, the bivariate Sarmanov model
employing the rank-based method yields lower risk measures compared to both the silo
and one-stage inference methods. This reaffirms the conclusion that rank-based methods
consistently outperform both models when applied to the personal and commercial auto
LOBs from the US Schedule P dataset.

We next implement the bootstrap method on the Canadian Insurer Data 1, with the
results presented in Table 35. The lowest TVaR, risk capital and highest gain for each
risk level are written in bold. These results reaffirm the conclusions drawn in Section 5.1,
specifically that the bivariate Sarmanov distribution using the rank-based method consis-
tently delivers the lowest risk capital allocations and the highest risk capital gains when
compared to the one-stage inference model.

Table 35. Comparison of TVaR and risk capital based on 5000 bootstrap samples for the auto and
home LOBs.

TVaR

Model 60% 90% 95% 99%

Silo 230,444 249,837 257,779 273,682

Sarmanov with one-stage inference 199,250 217,121 224,593 239,702
Sarmanov with rank-based method 197,857 215,206 222,418 235,385

Risk Capital

Model 60% 90% 95% 99%

Silo - 19,393 27,335 43,238

Sarmanov with one-stage inference - 17,870 25,343 40,542
Sarmanov with rank-based method - 17,349 24,561 37,528
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Table 35. Cont.

Gain

Model 60% 90% 95% 99%

Sarmanov with one-stage inference - 7.85% 7.29% 6.24%
Sarmanov with rank-based method - 10.54% 10.15% 13.21%

Finally, we apply the bootstrap method to the Canadian Insurer Data 2, and the results
are shown in Table 36. We highlighted the lowest risk capital and highest gain for the total
three LOBs in bold. The findings from Section 5.1 are again confirmed, i.e., the trivariate
Sarmanov distribution with the rank-based method provides the smallest risk capital
allocations and the largest risk capital gain among all models.

It is worth noting that the risk measures obtained through bootstrapping are sig-
nificantly higher for all models compared to those reported through simulation. This
emphasizes the significance of accounting for parameter uncertainty.

Table 36. Risk capital comparison based on 5000 bootstrap samples for the BI, AB, and DI LOBs.

Model Line BI Line AB Line DI Total Gain

Silo BI and AB 35,471 26,899 - 62,370 -
Bivariate BI and AB one-stage inference 28,233 18,320 - 46,553 25.36%
Bivariate BI and AB rank-based method 24,717 17,978 - 42,695 31.55%

Silo BI and DI 35,471 - 5563 41,034 -
Bivariate BI and DI rank-based method 35,021 - 713 35,734 16.30%

Silo AB and DI - 26,899 5563 32,462 -
Bivariate AB and DI rank-based method - 26,515 1323 27,838 14.24%

Silo BI, AB, and DI 35,471 26,899 5563 67,934 -
Trivariate BI, AB, and DI rank-based method 24,548 17,970 1591 44,110 35.07%

6. Summary and Concluding Remarks

In this paper, we introduced rank-based techniques to enhance the modeling of the
Sarmanov family of multivariate distributions within the context of loss-reserving. Our
findings demonstrate that these rank-based methods not only more effectively capture the
inter-dependencies between different LOBs when compared to one-stage inference but also
yield superior outcomes in terms of risk capital allocation.

The dependence structure has also been extended to more than two LOBs with the
trivariate case, which provides the largest risk capital gains and diversification benefits
among all models. We provided comprehensive explanations and descriptions for esti-
mations, reserve calculations, as well as simulation and bootstrap procedures for all the
models utilized in this paper.

The methods were calibrated and validated on seven LOBs from real-world data and
led to the same conclusions that, namely, the robust rank-based estimation method outper-
forms the classical one-stage inference approach for both bivariate and trivariate Sarmanov
models. Indeed, the rank-based Sarmanov model effectively captures the interdependence
among LOBs in cases where the one-stage inference model falls short (see the summary in
Table 29). Moreover, as demonstrated in the preceding section, the proposed rank-based
Sarmanov model not only yields lower risk measures but also produces a more substantial
diversification benefit when compared to the one-stage inference model.

The challenge in aggregate loss reserving lies in dealing with over-parameterization
due to the limited dataset available within the loss triangle. Although rank-based methods
partially alleviate this problem by fixing the marginal parameters, future research could
explore the application of rank-based Sarmanov methods at the micro-level of reserving,
where more (detailed) data are accessible.
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Furthermore, to enhance the accuracy of residuals, we can also work on improving
the fit of the marginal model. In this regard, future investigations may consider utilizing
the generalized partial linear model (GPLM), which incorporates both linear and nonlinear
components. This approach provides greater flexibility in capturing intricate relationships
between the response variable and predictor variables. Such flexibility proves particularly
valuable when dealing with non-linear relationships, a common occurrence in real-world
datasets (see, for example, He et al. 2005; Yousof and Gad 2015).

The Sarmanov distribution family offers numerous advantages over alternative de-
pendence models, such as copulas. Its flexible structure renders it a promising tool for
effectively capturing dependencies among LOBs. This methodology can be readily ex-
tended to encompass more than three LOBs, as well as broader risk considerations. Fur-
thermore, its applicability extends beyond LOBs and can be effectively employed in other
domains of actuarial science, including the valuation of premiums and the development of
pricing strategies.

For industry professionals, this research also carries tangible and pragmatic signif-
icance. The rank-based multivariate Sarmanov method offers a more comprehensive
understanding of dependence structures and portfolio dynamics. Consequently, it can be a
valuable resource for P&C insurance companies, aiding them in meeting the International
Financial Reporting Standard (IFRS 17) regulations while enhancing their solvency risk
assessment. This, in turn, will result in positive economic and societal impacts by im-
proving the insurance company’s solvency ratio. Furthermore, the proposed model aligns
harmoniously with industry best practices, as it encourages actuaries to avoid adjusting
the estimated reserve of one LOB based on another. Instead, it places a strong emphasis
on integrating the impact of correlated LOBs into risk management and tail dependence
evaluations. This approach aims to harness diversification benefits and provide valuable
insights to inform strategic decisions.
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Appendix A. US Schedule P Data

Tables A1 and A2 present the net earned premiums and the incremental paid losses for
accident years 1988–1997, inclusive, for personal and commercial auto lines developed over
ten years, from the US Schedule P Data. Table A3 presents the AIC and KS goodness-of-fit
test used for determining the distribution of marginals. Table A4 presents the parameters
of the GLMs of personal and commercial auto lines for the independence case and one-
stage inference bivariate model. The corresponding reserve for each model and LOB are
also provided.
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Table A1. Incremental paid losses for the personal auto line.

Year Premium 1 2 3 4 5 6 7 8 9 10

1988 4,711,333 1,376,384 1,211,168 535,883 313,790 168,142 79,972 39,235 15,030 10,865 4086
1989 5,335,525 1,576,278 1,437,150 652,445 342,694 188,799 76,956 35,042 17,089 12,507
1990 5,947,504 1,763,277 1,540,231 678,959 364,199 177,108 78,169 47,391 25,288
1991 6,354,197 1,779,698 1,498,531 661,401 321,434 162,578 84,581 53,449
1992 6,738,172 1,843,224 1,573,604 613,095 299,473 176,842 106,296
1993 7,079,444 1,962,385 1,520,298 581,932 347,434 238,375
1994 7,254,832 2,033,371 1,430,541 633,500 432,257
1995 7,739,379 2,072,061 1,458,541 727,098
1996 8,154,065 2,210,754 1,517,501
1997 8,435,918 2,206,886

Table A2. Incremental paid losses for commercial auto line.

Year Premium 1 2 3 4 5 6 7 8 9 10

1988 267,666 33,810 45,318 46,549 35,206 23,360 12,502 6602 3373 2373 778
1989 274,526 37,663 51,771 40,998 29,496 12,669 11,204 5785 4220 1910
1990 268,161 40,630 56,318 56,182 32,473 15,828 8409 7120 1125
1991 276,821 40,475 49,697 39,313 24,044 13,156 12,595 2908
1992 270,214 37,127 50,983 34,154 25,455 19,421 5728
1993 280,568 41,125 53,302 40,289 39,912 6650
1994 344,915 57,515 67,881 86,734 18,109
1995 371,139 61,553 132,208 20,923
1996 323,753 112,103 33,250
1997 221,448 37,554

Table A3. Fit statistics and goodness-of-fit test of marginals for personal and commercial auto.

LOB AIC p-Value of the
Log-Normal Gamma Kolmogorov–Smirnov Test

Personal −395 −384 0.8732 (Log-normal)
Commercial −214 −218 0.0159 (Gamma)

Table A4. Parameter and reserve estimations for the independence and one-stage inference bivariate
model for personal and commercial auto.

Model Independence One-Stage Inference Bivariate Model

LOB ` Personal Commercial Personal Commercial

GLM Log-normal Gamma(log) Log-normal Gamma(log)

u(`) −1.137 −1.670 −1.113 −1.585

Accident
Year

2 −0.033 −0.129 −0.039 −0.196
3 −0.028 −0.142 −0.033 −0.258
4 −0.131 −0.289 −0.132 −0.403
5 −0.175 −0.272 −0.178 −0.384
6 −0.174 −0.252 −0.170 −0.360
7 −0.173 −0.124 −0.179 −0.207
8 −0.223 −0.089 −0.256 −0.137
9 −0.244 0.135 −0.272 0.158

10 −0.204 −0.104 −0.186 −0.248



Risks 2023, 11, 187 32 of 37

Table A4. Cont.

Model Independence One-Stage Inference Bivariate Model

Dev.
Lag

2 −0.224 0.196 −0.248 0.238
3 −1.047 −0.023 −1.070 −0.013
4 −1.644 −0.409 −1.668 −0.395
5 −2.254 −1.048 −2.277 −1.041
6 −3.013 −1.463 −3.041 −1.474
7 −3.671 −2.089 −3.689 −2.080
8 −4.493 −2.783 −4.488 −2.811
9 −4.911 −3.111 −4.965 −2.995

10 −5.913 −4.171 −5.888 −4.369

sd or scale 0.089 10.093 0.089 9.712

Dependence parameters −4.430

Reserve 6,464,075 490,652 6,465,679 513,622

Appendix B. Canadian Insurer Data 1

Tables A5 and A6 display the incremental paid losses and net earned premiums
for accident years 2003–2012, inclusive, for both auto and home lines of business (LOBs)
developed over a span of ten years, sourced from the Canadian insurer data. Table A7
presents the AIC and KS goodness-of-fit test, showing that both LOBs follow a gamma
distribution. Table A8 presents the parameters of the GLMs of auto and home LOBs for the
independence case and one-stage inference bivariate model, as well as the corresponding
reserve for each model and LOB.

Table A5. Cumulative paid losses for LOB Auto.

Accident Development Lag (in Months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 2279 8683 15,136 21,603 27,650 30,428 32,004 32,592 33,009 34,140 76,620
2004 2139 7077 13,159 16,435 20,416 22,598 24,171 25,034 25,714 65,691
2005 1420 4888 8762 12,184 14,482 15,633 17,089 17,710 55,453
2006 1510 5027 10,763 15,799 19,269 22,504 24,807 54,006
2007 1693 5175 8216 12,263 16,918 20,792 55,425
2008 2097 7509 10,810 15,673 19,791 59,100
2009 2094 5174 8062 12,389 54,438
2010 1487 4789 7448 53,483
2011 1868 6196 52,978
2012 2080 57,879

Table A6. Cumulative paid losses for LOB Home.

Accident Development Lag (in Months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 4157 9558 13,131 17,460 19,608 21,124 21,900 23,360 23,377 23,575 55,484
2004 4158 9956 14,860 18,024 20,397 22,068 23,312 24,555 25,137 65,705
2005 3989 10,519 15,877 20,274 23,428 26,495 30,974 31,580 73,879
2006 4012 10,904 16,141 19,643 21,954 26,215 28,095 91,473
2007 4322 10,814 16,086 20,186 24,157 27,222 87,212
2008 6379 14,524 19,058 24,108 28,329 89,455
2009 5291 14,620 20,799 25,131 90,341
2010 4946 12,956 18,007 89,212
2011 5674 15,026 91,606
2012 5478 99,982
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Table A7. Fit statistics and goodness-of-fit test of marginals for auto and home.

LOB AIC p-Value of the
Log-Normal Gamma Kolmogorov–Smirnov Test

Auto −323 −324 0.397 (Gamma)
Home −259 −267 0.019 (Gamma)

Table A8. Parameter and reserve estimations for the independence and one-stage inference bivariate
model for auto and home.

Model Independence One-Stage Inference Bivariate Model

LOB ` Auto Home Auto Home

GLM Gamma Gamma Gamma Gamma

u(`) −3.501 −2.872 −3.495 −2.889

Accident
Year

2 0.053 0.101 0.059 0.112
3 −0.156 0.163 −0.153 0.162
4 0.238 −0.136 0.254 −0.112
5 0,137 −0.024 0.146 0.012
6 0.120 0.095 0.127 0.126
7 0.003 0.069 0.003 0.138
8 −0.160 −0.017 −0.153 −0.001
9 0.169 0.131 0.138 0.171

10 0.175 −0.032 0.168 −0.011

Dev.
Lag

2 0.815 0.420 0.808 0.396
3 0.817 0.076 0.813 0.066
4 0.849 −0.095 0.833 −0.094
5 0.717 −0.406 0.713 −0.373
6 0.283 −0.481 0.254 −0.473
7 −0.115 −0.757 −0.131 −0.720
8 −1.001 −1.215 −1.004 −1.195
9 −1.375 −2.612 −1.385 −2.601

10 −0.715 −2.764 −0.711 −2.736

sd or scale 24.046 8.021 25.087 8.104

Dependence parameters 256.001

Reserve 78,665 98,929 77,789 101,603

Appendix C. Canadian Insurer Data 2

Tables A9–A11 display the net earned premiums and cumulative paid losses for
accident years 2003–2012, inclusive, for each LOB (BI, AB, DI) developed over, a maximum
of ten years, using data from a large Canadian insurer. To preserve confidentiality, all
figures were multiplied by a constant. Table A12 displays the AIC and KS goodness-fit of
test results, used to determine the distribution of each marginal. Table A13 displays the
parameters of the GLMs of three LOBs for the independence model, one-stage inference
bivariate model, and one-stage inference trivariate model, accompanied by the respective
reserve for each model and LOB.
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Table A9. Cumulative paid losses for the BI LOB.

Accident Development Lag (in Months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 3488 14,559 27,249 37,979 49,561 55,957 58,406 60,862 63,280 63,864 85,421
2004 1169 12,781 20,550 31,547 42,808 47,385 50,251 50,978 51,272 98,579
2005 1478 10,788 25,499 34,279 43,057 49,360 52,329 52,544 103,062
2006 1186 11,852 22,913 32,537 41,824 48,005 52,542 108,412
2007 1737 13,881 25,521 38,037 43,684 47,755 111,176
2008 1571 12,153 27,329 41,832 51,779 112,050
2009 1199 17,077 29,876 44,149 112,577
2010 1263 16,073 28,249 113,707
2011 986 10,003 126,442
2012 683 130,484

Table A10. Cumulative paid losses for LOB AB.

Accident Development Lag (in Months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 13,714 24,996 31,253 38,352 44,185 46,258 47,019 47,894 48,334 48,902 116,491
2004 6883 16,525 24,796 29,263 32,619 33,383 34,815 35,569 35,612 111,467
2005 7933 22,067 32,801 38,028 44,274 44,948 46,507 46,665 107,241
2006 7052 18,166 25,589 31,976 36,092 38,720 39,914 105,687
2007 10,463 23,982 31,621 36,039 38,070 41,260 105,923
2008 9697 28,878 41,678 47,135 50,788 111,487
2009 11,387 37,333 48,452 55,757 113,268
2010 12,150 32,250 40,677 121,606
2011 5348 14,357 110,610
2012 4612 104,304

Table A11. Cumulative paid losses for LOB DI.

Accident Development Lag (in Months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 3043 5656 7505 8593 9403 10,380 10,450 10,812 10,856 10,860 116,491
2004 2070 4662 6690 8253 9286 9724 9942 10,086 10,121 111,467
2005 2001 4825 7344 8918 9824 10,274 10,934 11,155 107,241
2006 1833 4953 7737 9524 10,986 11,267 11,579 105,687
2007 2217 5570 7898 8885 9424 10,402 105,923
2008 2076 5681 8577 10,237 12,934 111,487
2009 2025 6225 9027 10,945 113,268
2010 2024 5888 8196 121,606
2011 1311 3780 110,610
2012 912 104,304

Table A12. Fit statistics and goodness-of-fit test of marginals for BI, AB, and DI.

LOB AIC p-Value of the
Log-Normal Gamma Kolmogorov–Smirnov Test

Bodily Injury −262 −270 0.643 (Gamma)
Accident Benefit −267 −276 0.135 (Gamma)

Disability Income −437 −444 0.478 (Gamma)
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Table A13. Parameter and reserve estimations for the independence and one-stage inference models.

Model Independence Bivariate BI and AB Bivariate BI and DI Bivariate AB and DI Trivariate Model

LOB ` BI AB DI BI AB BI DI AB DI BI AB DI

GLM Gamma Gamma Gamma Gamma Gamma Gamma Gamma Gamma Gamma Gamma Gamma Gamma

u(`) −3.628 −2.365 −4.064 −3.593 −2.317 −3.605 −4.073 −2.410 −4.035 −3.597 −2.262 −4.086

Accident
Year

2 −0.750 −0.413 −0.121 −0.768 −0.409 −0.758 −0.163 −0.380 −0.118 −0.839 −0.483 −0.090
3 −0.729 −0.196 0.171 −0.771 −0.242 −0.724 0.128 −0.125 0.157 −0.814 −0.288 0.183
4 −0.651 −0.112 0.129 −0.627 −0.098 −0.659 0.099 −0.046 0.143 −0.683 0.183 0.145
5 −0.740 −0.095 0.092 −0.744 −0.123 −0.754 0.051 −0.039 0.084 −0.805 −0.186 0.107
6 −0.574 −0.001 0.396 −0.571 −0.010 −0.575 0.358 0.056 0.377 −0.691 −0.133 0.398
7 −0.574 0.196 0.254 −0.603 0.122 −0.557 0.223 0.225 0.215 −0.664 0.085 0.265
8 −0.658 −0.012 0.055 −0.697 −0.091 −0.684 0.052 0.022 0.060 −0.723 −0.147 0.076
9 −1.147 −0.628 −0.259 −1.168 −0.713 −1.186 −0.295 −0.635 −0.285 −1.168 −0.767 −0.210

10 −1.625 −0.754 −0.676 −1.675 −0.756 −1.621 −0.649 −0.751 −0.696 −1.694 −0.791 −0.628

Dev.
Lag

2 2.061 0.450 0.419 2.047 0.436 2.055 0.480 0.463 0.381 2.119 0.443 0.440
3 2.065 −0.055 0.114 2.064 −0.066 2.051 0.165 −0.035 0.107 2.107 −0.070 0.120
4 2.018 −0.507 −0.358 1.994 −0.504 1.983 −0.318 −0.505 −0.366 2.073 −0.501 −0.312
5 1.818 −0.759 −0.582 1.778 −0.796 1.785 −0.543 −0.758 −0.607 1.884 −0.773 −0.545
6 1.297 −1.580 −1.154 1.243 −1.631 1.286 −1.101 −1.582 −1.176 1.374 −1.642 −1.143
7 0.772 −1.899 −1.870 0.729 −1.884 0.757 −1.806 −1.902 −1.898 0.792 −1.943 −1.863
8 −0.493 −2.670 −2.102 −0.526 −2.713 −0.510 −2.064 −2.629 −2.131 −0.475 −2.752 −2.150
9 −0.429 −3.762 −3.849 −0.452 −3.801 −0.453 −3.805 −3.720 −3.862 −0.405 −3.874 −3.849

10 −1.358 −2.960 −6.255 −1.353 −3.037 −1.418 −6.260 −2.927 −6.313 −1.438 −3.154 −6.190

sd or scale 10.699 8.037 10.078 10.749 8.413 10.758 10.118 7.924 9.973 10.213 8.233 10.143

Dependence
parameters

ωBI,AB ωBI,DI ωAB,DI ωBI,AB ωBI,DI ωAB,DI
436.904 424.587 730.930 374.794 −110.327 −165.781

Reserve 132,918 73,220 18,289 129,397 71,457 131,148 18,739 72,144 18,123 135,061 70,857 18,752
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