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Abstract: In this research, we employ a full-range tail dependence copula to capture the intraday
dynamic tail dependence patterns of 30 s log returns among stocks in the US market in the year of
2020, when the market experienced a significant sell-off and a rally thereafter. We also introduce a
model-based unified tail dependence measure to directly model and compare various tail dependence
patterns. Using regression analysis of the upper and lower tail dependence simultaneously, we have
identified some interesting intraday tail dependence patterns, such as interactions between the upper
and lower tail dependence over time among growth and value stocks and in different market regimes.
Our results indicate that tail dependence tends to peak towards the end of the regular trading hours,
and, counter-intuitively, upper tail dependence tends to be stronger than lower tail dependence
for short-term returns during a market sell-off. Furthermore, we investigate how the Fama–French
five factors affect the intraday tail dependence patterns and provide plausible explanations for the
occurrence of these phenomena. Among these five factors, the market excess return plays the most
important role, and our study suggests that when there is a moderate positive excess return, both the
upper and lower tails tend to reach their lowest dependence levels.

Keywords: unified tail dependence measure; PPPP copula; Fama–French five factors; regression on
tail dependence; multiple components GARCH

1. Introduction

Dependence modeling among financial assets has been an important topic of re-
search in quantitative risk management. For daily returns, there are many papers on the
use of copulas to model dependence structures across different financial assets, such as
Dißmann et al. (2013) and Krupskii and Joe (2020), among many others. However, for
intraday financial risks, there has not yet been much work conducted. The recent market
crash on 16 March 2020 tells us that intraday risks of the financial market can be as large as a
loss of 12% in the major stock market index in a single day. With the growing availability of
high-frequency financial data and the massive popularity of algorithm trading, it becomes
more and more relevant to study intraday risks of the financial market. In particular, little
is known about the intraday tail dependence patterns of financial assets and these are more
relevant to better understand the intraday market operation and tail risks.

There has been a research trend on dependence modeling for high-frequency financial
data. For example, Koopman et al. (2018) used copulas with time-varying parameters
to show that in the US stock markets, the dependence starts low but gradually increases
throughout the day. The copula was used by Carvalho et al. (2021) to investigate the
dependence of the 15 min returns of the Brazilian stock market. Buccheri et al. (2021)
investigated intraday dependence patterns in asynchronous high-frequency financial data.
Kim and Hwang (2021) studied directional dependence of intraday volatility via the copulas.
Weiß and Supper (2013) utilized vine copulas to find tail dependence between intraday
returns and bid–ask spreads of Nasdaq stocks.

To our knowledge, there is lack of research work in the literature about tail dependence
patterns of high-frequency financial returns, how they change over time between different
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stock categories and in different market regimes, and what factors contribute to such
changes. From what we have learned in this study, intraday dependence patterns can be
quite different than those in daily returns and they are worthy of further study.

Copula models such as Student-t, Gumbel, Clayton, and BB series copulas such as
BB1, BB4, and BB7 copulas studied in Joe (1997) are commonly used to model dependence
among returns of financial assets, as those copulas can capture tail dependence in financial
markets. For example, Carvalho et al. (2021) used the BB7 copula to model asymmetric tail
dependence between financial returns. However, the commonly used copula models are
not flexible enough in the tails to serve our purpose of modeling tail dependence, especially
for conducting tail comparisons. The Student-t copula, for example, is only symmetric
between the upper and lower tails and can only handle relatively stronger tail dependence;
the other commonly used copulas, such as the BB series copulas, cannot be symmetric
between the upper and lower tails and a direct comparison between the upper and lower
tails using such copulas is unfeasible.

To capture various intraday tail dependence patterns, one needs not only a model
to capture the overall dependence but also a model that is tailored to be flexible enough
to model the dynamic lower and upper tails and make comparisons between the tails
without too much distraction. The full-range tail dependence copulas studied in Hua
(2017) and Su and Hua (2017) are ideal candidate models for this study, due to their
flexible upper and lower tails to capture various tail dependence patterns. In particular,
we use the PPPP copula studied in Su and Hua (2017) to model the dependence between
standardized residuals of high-frequency log returns of two financial assets, with each
univariate margin being modeled by a multiple components GARCH model to account
for intraday seasonality, volatility, etc. The two dependence parameters that are used to
respectively control the lower and upper tails of the PPPP copula are linked to a generalized
additive model with natural cubic splines being utilized to explain the nonlinear effects
arising from the time and the Fama–French five factors. To quantify the strength of tail
dependence for comparisons, we propose a model-based unified tail dependence measure
based on the PPPP copula. The unified measure ranges from 0 to 1 and can quantify the full
range of positive tail dependence, covering both asymptotic dependence and asymptotic
independence cases.

Through the regression analyses mentioned above, we have observed that, for QQQ
and SPY, which are ETFs that track the Nasdaq-100 and S&P 500 indexes, respectively, the
unified upper and lower tail dependence increases over time and tends to peak toward
4 p.m. in New York time, which is the end of the regular trading hours of the US stock mar-
ket, and the tail dependence often plateaus or drops slightly during noon; this phenomenon
also exists between AAPL and MSFT, the two main growth stocks. For the value stocks, we
studied the pair of two major banks, JPM and BAC, for which the tail dependence can be
higher after the market opens and before the market closes, with the noon trading session
having the lowest unified tail dependence measures.

Market regimes also affect the overall dependence of the tail and the degree of asym-
metry between the dependence of the lower and upper tails. It is commonly believed that
for the returns of financial assets, the lower tail dependence is stronger than the upper tail
dependence, and the lower tail dependence is more relevant when the stock market crashes
due to some spillover or contagious effects (Kato et al. 2022; Rodriguez 2007). On the
contrary, we find that high-frequency returns tend to have higher upper tail dependence
than lower tail dependence, especially during a market sell-off, when both the upper and
lower tail dependence increases, and furthermore, the lower and upper tail dependence
patterns become a lot more different, much more than those during a market rally.

Among the Fama–French five factors (Fama and French 2015), the factor of excess
return on the market, which is the difference between value-weighted market returns and
a risk-free return rate, affects the tail dependence patterns the most. Both the lower and
upper tail dependence reaches the minimum when there is a moderate positive excess
return. Some other factors such as “Small Minus Big” and “Conservative Minus Aggressive”
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also affect tail dependence significantly, with the exception that the “Robust Minus Weak”
factor was not significant after the other four factors were controlled in our analyses.

We believe that our work is the first one to use a full-range tail dependence copula
to study the tail dependence patterns of short-term financial asset returns. The proposed
method of using a full-range tail dependence copula with regression on both the upper
and lower tail dependence parameters provides an effective way of modeling tail depen-
dence and their explanatory variables. The model-based unified tail dependence measure
overcomes the difficulty of comparing tail dependence with different quantities in different
situations. With the help of the proposed model, we have obtained some new empirical
findings on tail dependence patterns for high-frequency financial data.

In what follows, we discuss the details with the following structures: Section 2 explains
the details of the regression models and covers the notion of full-range tail dependence
copulas, the unified tail dependence measures, etc. Section 3 presents an empirical study
for some US stocks and ETFs that track the major stock indexes, and the main findings on
intraday tail dependence patterns will be discussed in detail. Finally, we will conclude the
paper in Section 4.

2. Regression Models for Intraday Tail Dependence

In Section 2.1, we will briefly describe how to use the copula to model the dependence
between several time series data. The concept of the full-range tail dependence copula and
its properties will be introduced in Section 2.2. To directly compare the upper and lower
tail dependence, we propose using a model-based tail dependence measure referred to as
the unified tail dependence measure, which is discussed in Section 2.3. Section 2.4 introduces
a GARCH model of multiple components and the model is used to account for intraday
features of returns, such as seasonality and dynamic volatilities. Section 2.5 discusses the
generalized additive models for the regression analysis of dependence parameters.

To facilitate the reading, we provide in Figure 1 a flow chart of the proposed models
and their associated sections.

TS1 Std. Res.

PPPP (Section 2.2)Expl. Var. Unif. Tail Dep.

Std. Res.TS2

ARMA-mcsGARCH
(Section 2.4)

(Section 2.5) (Section 2.3)

(Section 2.1)

(Section 2.1)
ARMA-mcsGARCH

(Section 2.4)

Figure 1. Model structures and their corresponding sections. “TS1” and “TS2” are “Time series of log
returns of the first ticker” and “Time series of log returns of the second ticker”, respectively, “Expl.
Var.” is “Explanatory Variables”, “Std. Res.” is “Standardized Residuals”, and “Unif. Tail Dep.” is
“Unified Tail Dependence”.

2.1. Copula for Dependence of Multiple Time Series

Sklar’s theorem (Sklar 1959) tells us that for two continuous random variables X
and Y with the joint CDF F and the marginal CDFs FX and FY, respectively, the copula
function C(ux, uy) := F(F−1

X (ux), F−1
Y (uy)) characterizes the dependence structure between

X and Y. We refer to Joe (1997) for basic concepts about copulas and various parametric
copula functions.

Copula functions, unlike many other dependence measures in quantitative finance,
such as covariances and correlations, have the advantage of capturing non-linear depen-
dence structures, regardless of how flexible the dependence patterns are; see, for example,
Patton (2009). It is especially useful to capture the dependence between financial asset
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returns, which is generally higher during a market sell-off or rally; see De Luca and Zuc-
colotto (2017). Copula functions can be utilized to capture dependence in the upper and
lower tails for such stronger dependence structures that can be caused by greed and fear of
the market participants.

Copula functions are frequently used to model residuals that arise from each marginal
time series, which are usually modeled individually by their appropriate models. In Patton
(2012), for example, log returns of each financial asset are represented using commonly
known time series models to account for mean and variance processes, and copula functions
are utilized to model residual dependence. The dependence structures that are modeled by
copulas are actually the dependence structures of some “deviance” from their expected
values after accounting for the past information on expectations and volatilities, and the
dependence suggested by the copula fitted based on the standardized residuals reflects
how new information affects both the marginal time series. We use the copula to model
such dependence structures between time series, but it should not be simply understood as
the dependence between the observed time series data, and it only explains how marginal
time series depend on each other after new information arrives. For the intraday financial
data, we also use the copula to model their standardized residuals. To account for dynamic
intraday volatility patterns, we employ multiple component GARCH models, and ARMA
models are applied for the mean processes of log returns. Then, standardized residuals are
utilized to fit the copulas; see Section 2.4 for details.

2.2. Full-Range Tail Dependence Copula

For the copula C, if limu→0+ C(u, u)/u = λL ∈ (0, 1], then λL is referred to as the
lower tail dependence parameter of C. Let Ĉ(u1, u2) := C(1− u1, 1− u2) + u1 + u2 − 1
be the survival copula of C. If limu→0+ Ĉ(u, u)/u = λU ∈ (0, 1], then λU is referred
to as the upper tail dependence parameter for C. In the literature, the tail dependence
parameters are also known as tail dependence coefficients and they can be used to describe
the degree of dependence in either the upper or lower tails. If we are concerned about the
lower tail, which corresponds to the dependence of high-quantile losses between financial
assets, and C(u, u) ≈ λLu when u is a small positive number very close to 0, then we can
approximate the probability P[X1 ≤ F−1

X1
(u), X2 ≤ F−1

X2
(u)] by λLu, where X1 and X2 are

random variables and F−1
X1

and F−1
X2

are the corresponding quantile functions. In practice,
parametric copulas are frequently used to fit real data, and the estimated values of λL and
λU can be used to assess risk and profit dependence, respectively.

The following patterns frequently appear in the dependence between financial asset
returns: (1) The upper and lower tails usually have different dependence patterns. (2) In
both the upper and lower tails, dependence patterns are usually dynamic over time. Com-
monly used copulas have some limitations that make them unsuitable for modeling and
comparing tail dependence among financial asset returns. Student-t copulas, for example,
are widely used in the literature to quantify the dependence among stock returns due
to their ability to model tail dependence. However, unlike full-range tail dependence
copulas that will be discussed in further detail in what follows, Student-t copulas are
always symmetric between their upper and lower tails; tail dependence exists not only in
the upper and lower tails for capturing extreme positive or negative dependence, but also
between extreme positive and negative returns. It is unlikely that we will have an extreme
dependence on both returns of the same sign and returns of the opposite signs at the same
time. Other commonly used copulas, such as the Gumbel, Clayton, and BB series copulas,
can only model asymmetric dependence between the upper and lower tails.

When the dependence on the tails is not strong enough, λU or λL can be 0. Then, one
can use C(u, u) ≈ uκ`(u) as u→ 0+ to model the tail dependence pattern, for which `(u)
is a slowly varying function, and the parameter κ ≥ 1 is called the tail order, which is then
used to describe the dependence strength in the tail; see Hua and Joe (2011) for details
of tail orders. We only consider non-negative tail dependence, so the range of interested
values of the tail order is 2 ≥ κ ≥ 1.
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When the lower tail dependence parameter λ = 0, the lower tail order κ > 1 can
provide further information on the dependence strength of the lower tail. However, all the
most popular copula models can only model one scenario: κ = 1 or κ > 1, but not both. To
compare the strength of dependence in the upper and lower tails of intraday returns, we
need a copula that has the following two critical features:

1. Being able to capture the full-range tail dependence (i.e., the set of values of κ is dense
in [1, 2]) in both the upper and lower tails. We refer to Definition 2.1 of Su and Hua
(2017) for a formal definition of full-range tail dependence.

2. Being able to model both reflection symmetry and reflection asymmetry between the
upper and lower tails. That is, the model can handle both cases: Ĉ(u, v) ≡ C(u, v) for
any (u, v) ∈ [0, 1]2 and Ĉ(u, v) 6= C(u, v) with a positive probability for some (u, v) ∈
[0, 1]2. Note that the concepts of “reflection symmetry” and “permutation symmetry”
are different and the latter means that C(u, v) ≡ C(v, u) for any (u, v) ∈ [0, 1]2. We
only consider copulas that have permutation symmetry that are mostly observed for
dependence among returns of financial assets.

Constructing parametric copula families that have the above two common properties
while also being computationally implementable has been a difficult task. So far, there are
only two full-range tail dependence copulas: the GGEE and the PPPP copulas. Both are
induced by Xi, i = 1, 2, which can be constructed by mixing four random variables of the
following form:

Xi = (R1/R2) · (Yi1/Yi2), i = 1, 2,

where Rj’s and Yij’s are all independent. Since X1 and X2 share the same (R1/R2) and have
independent (Yi1/Yi2)’s, the dependence between X1 and X2 becomes an interpolation
of comonotonicty, the most positive dependence structure from the shared component
(R1/R2), and the independence structure. The names of the two copulas are based on what
Rj’s and Yij’s are used: the PPPP copula is induced by such a mixture model of four Pareto
random variables, and the GGEE copula is induced by two gamma and two exponential
random variables. The GGEE copula was created in Hua (2017) and satisfies both the
features 1 and 2 listed above. However, the current implementation in the R package
CopulaOne1 is quite slow in terms of computation speed. Later, the PPPP copula family
was developed in Su and Hua (2017), which not only has the above features 1 and 2, but
is also much faster computationally and is suitable for dealing with heavy computational
tasks such as modeling dependence among high-frequency returns of financial assets.

The PPPP copula has four parameters α, a, β, b and the parameters enter the copula
model as the shape parameters of the four Pareto random variables in the above stochastic
representation. Since the shape parameter determines the tail heaviness of the Pareto
random variable, an interaction between different levels of tail heaviness and the aforemen-
tioned interpolation between comonotonicity and independence leads to the flexible tail
dependence structures. We refer to Assumption III of Su and Hua (2017) for mathematical
details of the mixture model used to construct the PPPP copula. The normalized contour
plots in Figure 2 of the PPPP copula have clearly demonstrated how flexible it can be.
As a result, we will use the PPPP copula to model dependence patterns among financial
asset returns.

The following summarizes some advantages of using full-range tail dependence
copulas to model dependence patterns for financial asset returns: (1) It can capture dynamic
dependence patterns in both the upper and lower tails. (2) It models the upper and lower
tails separately with the corresponding parameter for the upper and lower tails, respectively,
so that the degrees of dependence in the upper and lower tails can be modeled separately
and compared directly without inherited distraction from the model itself. (3) It can account
for both reflection symmetry and asymmetry, allowing the difference between the upper
and lower tails to be driven solely by the data rather than the model constraints. (4) It can
capture the full range of tail dependence, from tail independence to the strongest positive
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tail dependence. (5) It can capture dynamic dependence with a single copula, eliminating
the need for copula selection.
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Figure 2. Normalized contour plots of the PPPP copula: The univariate marginals are transformed to
the standard normal to help visualize the dependence patterns. The original PPPP copulas have four
parameters: α, β, a, and b, and here we let a = b = 1 to further reduce the number of parameters so
that the comparison between the upper and lower tails are only characterized by the remaining two
parameters α and β for the lower and upper tails, respectively.

2.3. Unified Tail Dependence Measures

Tail dependence becomes very weak and close to independence as tail order κ ap-
proaches 2; see Hua and Joe (2011) for reference. When comparing values of tail orders
close to 2, comparisons become less interesting and less informative. As a result, we can
constrain the range of tail orders to the most interesting range [1, 2) by reparameterizing the
parameters of the PPPP copula as follows: α = 1 + 2

π arctan(α′) and β = 1 + 2
π arctan(β′).

Then, α′, β′ ∈ (−∞,+∞) and α, β ∈ (0, 2). We can achieve the ideal range of κ ∈ [1, 2)
according to Proposition 4.10 of Su and Hua (2017). It is especially useful when both
the upper and lower tails have a very weak positive dependence and the full-range tail
dependence copula is able to make comparing such weak positive dependence possible
and informative.

We still have to deal with another issue after limiting the range of tail orders to [1, 2).
That is, we use the tail dependence parameters λL and λU to quantify the degree of tail
dependence when the tail order κ = 1. If κ > 1, however, λL = λU = 0, and we must
use κL and κU to measure the degree of tail dependence. With both κ and λ, comparisons
between the cases of κ = 1 and κ > 1 become inconvenient; therefore, we need a unified
quantity to allow such direct comparisons.

To address this issue, we propose to employ

πL =
2
π

arctan(1/α) and πU =
2
π

arctan(1/β), 0 < πL, πU < 1, (1)

where α and β are the corresponding parameters of the PPPP copula in order to quantify
the strength of dependence in the lower and upper tails, respectively. In what follows, we
refer to πL and πU as the unified tail dependence measure of the PPPP copula in the lower and
upper tails, respectively.

The fully parameterized PPPP copula has four parameters: α, β, a, and b, and a com-
parison between the upper and lower tails is more sensible if a = b because a and b affect
the strength of tail dependence as well and we do not want different values of a and b
to distort the comparison between the upper and lower tails. We set a = b = 1 in the
empirical study to focus on uncovering and comparing different tail dependence patterns,
but not to aim to achieve a better-fitted model with potentially different values of a and b;
letting a = b = 1 is just for convenience and serves our purpose well enough. On the one
hand, the unified tail dependence measures of πL and πU change continuously in the two
cases: κ = 1 and 1 < κ < 2, and, on the other hand, the strength of dependence in the tails
increases in the values of πL and πU for the lower and upper tails, respectively, regardless
of whether κ = 1 or 1 < κ < 2. When 0.5 ≤ πL[πU ] < 1, we have the usual lower [upper]
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tail dependence with κ = 1, and when 0 < πL[πU ] < 0.5, we have intermediate lower
[upper] tail dependence cases with 1 < κ < 2. As a result, πL and πU are excellent metrics
for capturing the degrees of dependence in the tails.

2.4. Multiple Components GARCH for Intraday Volatility

It is well known that temporal dependence exists in a single time series of financial
prices or returns. To use copulas to assess the dependence patterns among different time
series data, one needs to filter each time series data first, and then the copula is used to
model residuals that are better than the original data to satisfy the identical and independent
assumption required for fitting a copula.

As a result, we must first filter each time series data using appropriate models. Further-
more, when compared to volatility across days, intraday volatility of log returns has distinct
characteristics, such as the fact that volatility is typically higher right after the market opens
and before the market closes, while volatility is typically lower during lunchtime in the US
market. We need a model that can account for both the seasonality of volatility within each
trading day and the heterogeneity of volatility across trading days. In the following, we
model log returns of each financial asset using a multiple components GARCH model.

Denote intraday log returns as rt,i := ln(pt,i) − ln(pt,i−1), where t ∈ {1, 2, · · · , T}
is the day index with the total number of days being T and i is the index for time bars.
Regular trading hours on US stock exchanges are from 9:30 a.m. to 4:00 p.m., New York
time, totaling 6.5 regular trading hours. We use 30 s time bars, so i = 2, 3, · · · , 780 and 780
is the number of 30 s time bars in the regular trading hours of the market. We only keep
the time bars where both data are available. Since we only consider stocks and ETFs that
have high liquidity, missing values are not an issue in our study.

The multiple components GARCH has the following specification:

rt,i = µt,i + εt,i εt,i = (qt,iσtsi)zt,i, (2)

where qt,i is the stochastic component for the intraday volatility so that the innovation zt,i
can be assumed as a standard distribution such as the standardized Student-t distribution;
σt is the volatility for the specific day t and it can be modeled separately using some other
models for daily volatility and then inserted into the model; and si represents the intraday
seasonality for the ith time bar and it describes the average intraday seasonality effect over
the days that we are modeling. We refer to Engle (2002) and Galanos (2023) for details
of the standard GARCH model of multiple components and its implementation in the R
package rugarch (Galanos 2023). Then, we use the PPPP copula to model the standardized
residual zt,i’s for different financial assets. For each stock, the standardized residuals for
day t are converted into uniform scores ut,i’s by their corresponding ranks within the day:
ut,i = (rank(zt,i)− 0.5)/nt, where nt is the total number of observations on day t. When
we need to study a particular trading session, such as the 90 min period before the market
closes, we retrieve the corresponding uniform scores directly from all the uniform scores
obtained for the entire day. Note that uniform scores are obtained on the basis of their daily
ranks, even if we only use the data for a specific period within the day.

2.5. Regression Models with Full-Range Tail Dependence Copulas

To study how factors such as time of day and the Fama–French five factors affect
intraday tail dependence, we perform regression analyses using the uniform scores of the
standardized residuals from the aforementioned intraday marginal models as response
variables, and the explanatory variables are linked via natural cubic splines to the upper and
lower tail dependence parameters, respectively. Given observations x of the explanatory
variables, we let the x enter the model via natural cubic splines as follows for both the
upper and lower tail dependence parameters:

α(x) = 1 +
2
π

arctan(α′(x)), α′(x) = γα0 +
k

∑
i=1

γαi · nsi(xi) +
p

∑
i=k+1

γαi · xi,
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β(x) = 1 +
2
π

arctan(β′(x)), β′(x) = γβ0 +
k

∑
i=1

γβi · nsi(xi) +
p

∑
i=k+1

γβi · xi,

where x1, . . . , xk are continuous explanatory variables with nsi(xi) as the natural cubic
splines for them and xk+1, . . . , xp as the categorical explanatory variables. In this study, we
only consider continuous explanatory variables, but categorical variables can also be used
in the model. The parameters to be estimated are γ = (γα, γβ).

A maximum likelihood method can be used to obtain the estimates of these parameters,
and the variance–covariance matrix of the estimated parameters can be derived from the
approximated Hessian matrix. To assess the variability of the estimates, we can simulate
regression parameters based on the estimates and the approximated variance–covariance
matrix many times. Each time, we plot a line based on the simulated parameters (see the
gray lines in Figures 5 and 7), and these simulated lines show the variability of the fitted
regression lines.

3. Empirical Study

In this section, we present an empirical study for the ticker pairs in Table 1. These
four pairs represent different categories of stock and ETF combinations and we can find
similarities and differences in the dependence patterns between these categories. SPY is an
ETF that tracks the S&P 500 index and it is one of the most popular equity ETFs. QQQ is
an ETF that tracks the Nasdaq-100 index, with the largest holding at the time of the study
being AAPL. Both MSFT and AAPL are dividend-paying, mega-cap growth stocks, while
JPM and BAC are large-cap value stocks.

Table 1. Stock and ETF tickers studied.

Tickers Categories Tickers Categories

SPY vs. QQQ ETF vs. ETF AAPL vs. MSFT stock vs. stock (growth)
QQQ vs. AAPL ETF vs. holdings JPM vs. BAC stock vs. stock (value)

The data set used for the empirical study is described in Section 3.1. Through the tickers
of SPY and QQQ, the method details will be discussed in Section 3.2. Section 3.3 summarizes
the findings on dynamic tail dependence patterns over time, and Section 3.4 presents the
study of the effects of the Fama–French five factors on the unified tail dependence measures.

3.1. Data

The historical stock price data was obtained from Alpaca, a brokerage focused on
algorithm trading. The 30 s time bars are constructed using the tick data for the year 2020,
omitting odd-lot transactions and trades that occur during extended trading hours. The
data for the whole year are used to study the effects of the Fama–French five factors, and
Table 2 are summary statistics of the 30 s log returns.

A matched pair of market sell-off and market rally data is used to study the dynamic
intraday tail dependence patterns over time. We use the performance of SPY as a proxy for
the market performance. The market sell-off and market rally periods are selected from 20
February 2020 to 23 March 2020 and from 24 March 2020 to 24 April 2020, respectively. The
period of market rally is matched to have the same number of trading days as those for
the market crash period, although the market rally lasted longer than the chosen period.
Figure 3 shows the daily closing prices during the chosen periods.
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Table 2. Summary statistics of the 30 s log returns of the tickers under study during the year 2020.
“1st Qu.” and “3rd Qu.” are the first and third quartiles, respectively.

Ticker Min. 1st Qu. Median Mean 3rd Qu. Max.

SPY −1.0× 10−2 −1.6× 10−4 0.0 3.5× 10−7 1.6× 10−4 1.7× 10−2

QQQ −1.1× 10−2 −2.1× 10−4 0.0 9.9× 10−7 2.2× 10−4 1.5× 10−2

AAPL −2.4× 10−2 −3.0× 10−4 0.0 1.1× 10−6 3.1× 10−4 1.7× 10−2

MSFT −2.3× 10−2 −2.7× 10−4 0.0 8.2× 10−7 2.8× 10−4 2.0× 10−2

JPM −1.7× 10−2 −3.0× 10−4 0.0 −1.0× 10−6 3.0× 10−4 2.4× 10−2

BAC −1.9× 10−2 −3.6× 10−4 0.0 6.6× 10−7 3.6× 10−4 2.8× 10−2
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Figure 3. Performance of SPY during the chosen periods of the market sell-off and the market rally
in 2020.

The daily data for the Fama–French five factors of the US market were downloaded
from Professor French’s website.2 The following factors are considered in the study: Mkt-
RF (the excess return on the market), HML (High Minus Low: the average return on
the two value portfolios minus the average return on the two growth portfolios), SMB
(Small Minus Big: the average return on the nine small stock portfolios minus the average
return on the nine big stock portfolios), CMA (Conservative Minus Aggressive: the average
return on the two conservative investment portfolios minus the average return on the two
aggressive investment portfolios), and RMW (Robust Minus Weak: the average return
on the two robust operating profitability portfolios minus the average return on the two
weak operating profitability portfolios). We refer to Professor French’s website for detailed
documents of the variables.

3.2. Intraday Marginal Analysis

First, we individually model each marginal time series data. To account for intraday
volatility, we apply the standard GARCH model of multiple components described in
Section 2.4, where the innovation is assumed to follow the standard Student-t distribution
and GARCH (1,1) is used. ARMA(1,1) models the mean process of each marginal. Therefore,
the overall model we use is the ARMA(1,1)-mcsGARCH(1,1, std) model. We utilized one
month’s worth of data to fit the model month by month. We have tried changing the orders
of the time series models and the current one worked well, so we chose to use time series
models that have the above orders for the marginal analysis of all the stocks.

The daily volatility σt in Equation (2) is modeled by an ARMA(1,1)-GARCH(1,1)
model. A rolling window of size 1000 was used and the model was re-fitted every 5 days.
Figure 4a shows the estimated daily volatility for 2020. It is clear that daily volatility spiked
in March and then gradually calmed down in April.

The multiple components GARCH model accounts for intraday volatility patterns and
Figure 4 shows relevant plots for SPY on 16 March 2020, which is one of the worst days in
the history of the US stock market, where the S&P 500 index dropped about 12%, comparing
the lowest in the day with the closing price of the previous day. Figure 4b shows the closing
prices of SPY. Note that there was a 15 min halt at the market opening. Figure 4c depicts
the 30 s log returns of SPY. Figure 4d shows the estimated seasonality of intraday volatility,
which corresponds to si in Equation (2). Notice that after the market opens and just before it
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closes, the volatility is notably greater. Figure 4e illustrates the estimated intraday stochastic
component, which is qt,i in Equation (2). Figure 4f represents the standard residuals zt,i in
Equation (2). For the residuals, we use the standard Student-t distribution.

We want to remark that, for intraday dependence modeling of multiple time series, it
is very important to first use a model such as the multiple components GARCH model to
account for the distinct marginal intraday features. Otherwise, the residuals are distorted
by those intraday features, such as seasonality and stochastic components, and it would
thus be misleading to use the corresponding intraday ranks of the residuals to calculate
uniform scores for copula modeling. The idea can be understood by comparing Figure 4c,f,
which clearly suggests that the standardized residuals are much more stationary than the
log returns.
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Figure 4. SPY’s estimated daily volatility of the year 2020 and intraday plots for 16 March 2020.
Note that there was a 15 min trading halt at the beginning of the regular trading hours due to the
market crash. (a) Estimated daily volatility; (b) closing prices; (c) log returns; (d) intraday seasonality;
(e) intraday stochastic components; and (f) intraday standardized residuals.

3.3. Dynamic Intraday Tail Dependence Patterns

After fitting the marginal time series, we can obtain the standardized residuals and
then use them as pseudo-data to study the dependence between the corresponding time
series. We are interested in knowing how the tail dependence changes over time during a
trading day, under different market conditions and with different kinds of stocks. So, we
use the regression model discussed in Section 2.5 and we use time units (in 5 min) since
the opening of the market as the explanatory variable. The function ns from the R package
splines was used to create the natural cubic splines, with two knots at one third and two
thirds, respectively. The likelihood of the PPPP copula can be easily calculated using the R
package CopulaOne, so we can use maximal likelihood estimators for the regression model.
After the regression coefficients are obtained, intraday dependence patterns can then be
inferred based on the estimated values of πL and πU .

In Figure 5, we plot the estimated unified tail dependence measures πL and πU
for different kinds of stocks during the periods of a market sell-off and a market rally,
respectively. The estimated unified tail dependence measures suggest the following:
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1. Dependence patterns attributed to the time of the day: For all the ticker pairs we
have studied, there are some common tail dependence patterns over time, no matter
whether during a market sell-off or a market rally.

(a) Both the lower and upper tail dependence tend to peak towards the end of the
regular trading hours of the day.

(b) Both the lower and upper tail dependence tend to reach a plateau and/or
slightly drop during the lunch session.

It is relatively easier to understand that during lunchtime, there are fewer trading
activities, and thus, the dependence either stops increasing or starts to decrease
mildly before the more active afternoon trading sessions. According to Koopman et al.
(2018), the overall dependence among ten US banking equities in 2012 suggests that
dependence levels tend to increase throughout the day. The authors attribute the
dependence pattern to firm-specific information collected overnight, which results in
a considerably smaller dependence at market opening. Another possible explanation
is that there are more low-frequency traders or less sophisticated traders, such as retail
traders, during morning sessions, thus associating trading activities with a greater
number of market participants and resulting in a relative weakening of dependence.
On the contrary, large institutional traders may trade many assets concurrently for
things like fund rebalancing during the late afternoon sessions, causing dependence
to increase at that time.

2. Dependence patterns attributed to market sentiments: For all the ticker pairs we have
studied, market sentiments affect both the strength of overall dependence and the
degree of asymmetry of dependence between the lower and upper tails:

(a) Overall dependence is stronger during a market sell-off by comparing the left
two columns to the right two columns of Figure 5.

(b) The dependence is stronger in the upper tail than in the lower tail during a
market sell-off, but it is not the case during a market rally.

Pattern (a) is consistent with what has already been studied in the literature and can be
attributed to the financial risk contagious effect. Examples of such research work are
Jondeau (2016), Rodriguez (2007), and Kato et al. (2022). To the best of our knowledge,
pattern (b) has not been well studied in the literature and we are trying to discuss the
potential reasons in what follows. When the market experiences a significant decline,
the market sentiment is quite negative and fears penetrate the market. Therefore,
there are many more sellers than buyers with market-moving power. As a result, the
dependence between short-term (say 30 s) positive returns becomes stronger than
that of short-term negative returns. The fewer buyers are probably the main forces
driving the prices up in a short period of time. They could be intraday short sellers
who tend to buy back those borrowed and sold stocks by the end of the day to avoid
higher borrowing costs and overnight risks, and long term investors who may see
market sell-offs as an opportunity to add to their equity positions. Interestingly, such
an effect is not present during the market rally and it seems that the relative strength
of dependence between the lower and upper tails also depends on other factors, such
as time and stock types during a market rally.

3. Dependence patterns attributed to stock types: Stock types play a role in shaping
intraday dependence patterns and general conclusions can not be drawn on depen-
dence patterns for growth or value stocks. One needs to study them separately for
any pair of stocks of interest.
The bottom row of Figure 5, for example, illustrates the tail dependence between two
major bank stocks, which tends to be the highest immediately after the market opens
and decreases throughout the day, with upward movements appearing after lunch. We
hypothesize that the following factors may contribute to such a dependence pattern:
(1) Unlike high-tech companies like AAPL and MSFT, banks like JPM and BAC have
similar business and risk exposures; therefore, there is less overnight firm-specific
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information that impacts only one bank but not the other. (2) Value equities, such as
JPM and BAC, are traded in substantially lower volumes than popular large growth
firms. During the study period, JPM’s total adjusted traded value was just about
17% of AAPL’s. Therefore, there would be distinct market players for growth and
value stocks and it is reasonable to observe different intraday dependence patterns
for different stock pairs.
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Figure 5. Unified tail dependence measures change over time. From top to bottom, each row
represents one pair of tickers and they are SPY vs. QQQ, QQQ vs. AAPL, AAPL vs. MSFT, and JPM
vs. BAC, respectively. The two columns on the left are the plots for the market sell-off period from 20
February 2020 to 23 March 2020, and the two columns on the right are the plots for the market rally
period from 24 March 2020 to 24 April 2020. The solid blue line is the estimated regression line, and
the 200 gray lines are created based on simulated regression parameters to indicate the uncertainty of
the estimated regression line.

3.4. The Fama–French Five Factors on Intraday Tail Dependence

To further explore factors that could affect intraday tail dependence patterns, we
employ the regression model introduced in Section 2.5 again with the Fama–French five
factors as explanatory variables. In what follows, we present the results for AAPL and
MSFT during the last 90 min of each trading day in the year 2020. From the results obtained
in Section 3.3, the intraday tail dependence tends to peak toward the end of the regular
trading hours for all the stock/ETF pairs we have studied. Therefore, we use the data of
the last 90 min as an illustration for our study.
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Figure 6 shows the daily Fama–French five factors for 2020. For the natural cubic
splines of the factors, we used two knots at one third and two thirds, respectively. We used
the likelihood ratio test as the criterion for selecting the significant factors of the five factors.
A forward selection approach was used to add one variable from the five factors each step;
the one variable added each step was the one that makes the p value of the likelihood ratio
test the smallest. We stopped adding more factors when no more factors could significantly
improve the model in the sense that adding more factors will no longer make the p value
less than 5%. Model selection is summarized in Table 3, where “df” is the degree of freedom
and “chi-sq” is the test statistic of the likelihood ratio test. According to the table, the four
factors of Mkt-RF, HML, SMB, and CMA significantly affect the intraday tail dependence
and are included in the model. Polanski et al. (2021) uses daily returns data to examine the
impact of Fama–French–Carhart factors on tail dependence among some stocks and finds
that most of the dependence is accounted for by the Mkt-RF factor, while the other factors
account for very little of the tail dependence. Our work considers high-frequency intraday
data and also notices that the Mkt-RF plays the most important role in shaping the intraday
tail dependence patterns. Moreover, our study also indicates that some other factors may
also have a significant impact, although not as much as that of the Mkt-RF factor.
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Figure 6. The daily Fama–French five factors for the year 2020.

In Figure 7, we plot the effects of the four significant factors on the lower tail de-
pendence, the upper tail dependence, and the difference between the dependence of the
upper and lower tails, respectively. The effect of each factor is presented while keeping the
other factors as their corresponding median values. In what follows, we try to discuss the
various dependence patterns and try to provide some potential reasons. However, a more
comprehensive empirical study based on many other stocks from multiple years will be
helpful in thoroughly understanding the mechanism of how these factors affect the tail
dependence patterns. It is outside the scope of the paper and more research is required in
this research direction.
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Figure 7. Effects of the Fama–French five factors on the unified tail dependence measures. The solid
blue line is the estimated regression line, and the 200 gray lines are created based on simulated
regression parameters to indicate the uncertainty of the estimated regression line. It is clear that
the variability of the estimated regression line for the factor Mkt-RF is smaller than that for the
factor CMA.

It is interesting to note that both the upper and lower unified tail dependence measures
reach the lowest when there is a positive excess return (Mkt-RF) of about 2% on the market,
and the tail dependence increases in both the upper and lower tails when the excess returns
move away from the “sweet spot” of the excess returns, regardless of the sign of the returns.
A more negative excess return is associated with a larger gap between the unified upper
and lower tail dependence measures. This is consistent with what we have discovered
in Section 3.3, and the same potential reason for such a pattern discussed in Section 3.3
applies here.
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The factor HML represents the difference between the returns of value and the growth
stocks. Both the unified upper and lower tail dependence measures reach the minimum
value when the absolute value of HML is small. A more negative HML is associated
with a stronger lower tail dependence and a larger gap between the lower and upper tail
dependence. The phenomenon might be attributed to large institutional investors selling
large volumes of value stocks during a relatively shorter period of time, and mega-cap
stocks like AAPL and MSFT being also treated as large value stocks at that moment.

The SMB factor represents the difference between the returns of small and large
companies. A negative SMB is not significantly associated with changes in the unified tail
dependence measures for both the upper and lower tails. It is reasonable considering that
both AAPL and MSFT are large stocks. However, a more positive SMB is associated with
stronger tail dependence in both the upper and lower tails of such large stocks.

The effects of the factor CMA, the difference between conservative and aggressive
stocks, do not shape the tail dependence patterns as much as the above three factors, and,
furthermore, the estimates have relatively greater variability indicated from the wider
range of the gray lines (see the last row of Figure 7). Therefore, we restrain ourselves from
overinterpreting it.

Table 3. Forward selection for the Fama–French five factors, where RMW is not significant at the
significance level of 5%.

df chi-sq p Value

Mkt-RF 6 459.86 < 1.0× 10−12

HML 6 141.94 <1.0× 10−12

SMB 6 56.90 1.91× 10−10

CMA 6 19.40 3.54× 10−3

RMW 6 10.34 1.11× 10−1

4. Concluding Remarks

By modeling the evolving intraday tail dependence patterns, it is possible to discover
some common but hidden dependence patterns in the financial market. We recommend
using the PPPP copula, a full-range tail dependence copula, to model standardized residuals
for log return processes to capture dynamic tail dependence patterns between financial
assets. To account for the unique characteristics of intraday volatility, a standard GARCH
of multiple components model is required. To compare tail dependence at various levels,
a model-based unified tail dependence measure is suggested. Instead of using different
measures in different situations, this metric enables direct comparisons of tail dependence
strength in various situations. Through the empirical study, we have uncovered several
interesting intraday tail dependence patterns for popular US stocks and ETFs over time via
explanatory variables such as the Fama–French five factors. We have attempted to explain
the reasons for these dependence patterns, but more empirical research is required to justify
them. The proposed method and the unified tail dependence measures can also be applied
to other financial assets.

The study of intraday tail dependence in financial markets provides more aspects of
the market to both investors and policymakers. It can help them better understand the
sentiments of the intraday market and the behavior of market participants. It offers insights
into extreme events, which are often the most challenging and important for risk assessment
and policy decisions. The current study is limited to the year 2020 and the selected ticker
symbols. However, the proposed method can be applied to many other research questions.
For example, a significant asymmetry between the upper and lower tail dependence could
be helpful in detecting manipulative market behavior and the footprints of influential
market players. Future studies can be carried out to examine a large number of stocks
over multiple years. Such a study would be helpful to better understand the dynamic
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tail dependence patterns in different market environments and for different categories of
financial assets and thus help prevent and manage large intraday financial risks.
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Abbreviations
The following abbreviations are used in this manuscript:

AAPL The ticker symbol for Apple Inc.
ARMA Auto Regressive Moving Average
BAC The ticker symbol for Bank of America Corporation
BB A series of 2-parameter copulas in Section 5.2 of Joe (1997)
CDF Cumulative Distribution Function
CMA Fama–French five factors: Conservative Minus Aggressive
ETF Exchange-traded Fund
GARCH Generalized Auto Regressive Conditional Heteroskedasticity
GGEE Full-range tail dependence copula by 2 Gamma & 2 Exponential random variables
HML Fama–French five factors: High Minus Low
JPM The ticker symbol for JPMorgan Chase & Co.
Mkt-RF Fama–French five factors: The excess return on the market
MSFT The ticker symbol for Microsoft Corporation
PPPP Full-range tail dependence copula by 4 Pareto random variables
QQQ A ETF that tracks the performance of the NASDAQ-100 Index
RMW Fama–French five factors: Robust Minus Weak
SMB Fama–French five factors: Small Minus Big
SPY A ETF that tracks the performance of the S&P 500 Index
US United States

Notes
1 https://github.com/larryleihua/CopulaOne (accessed on 4 November 2023).
2 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_5_factors_2x3.html (accessed on 4 November 2023).

References
Buccheri, Giuseppe, Giacomo Bormetti, Fulvio Corsi, and Fabrizio Lillo. 2021. A score-driven conditional correlation model for noisy

and asynchronous data: An application to high-frequency covariance dynamics. Journal of Business Economic Statistics 39: 920–36.
[CrossRef]

Carvalho, Marcela de Marillac, Luiz Otávio de Oliveira Pala, Gabriel Rodrigo Gomes Pessanha, and Thelma Sáfadi. 2021. Asymmetric
dependence of intraday frequency components in the brazilian stock market. SN Business Economics 1: 1–18. [CrossRef] [PubMed]

De Luca, Giovanni, and Paola Zuccolotto. 2017. Dynamic tail dependence clustering of financial time series. Statistical Papers 58:
641–57. [CrossRef]

Dißmann, Jeffrey, Eike Christian Brechmann, Claudia Czado, and Dorota Kurowicka. 2013. Selecting and estimating regular vine
copulae and application to financial returns. Computational Statistics Data Analysis 59: 52–69. [CrossRef]

Engle, Robert. 2002. New frontiers for arch models. Journal of Applied Econometrics 17: 425–46. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 2015. A five-factor asset pricing model. Journal of Financial Economics 116: 1–22. [CrossRef]
Galanos, Alexios. 2023. Rugarch: Univariate Garch Models. R Package Version 1.5-1. Available online: https://cran.r-project.org/

web/packages/rugarch (accessed on 4 November 2023).
Hua, Lei. 2017. On a bivariate copula with both upper and lower full-range tail dependence. Insurance: Mathematics and Economics 73:

94–104. [CrossRef]
Hua, Lei, and Harry Joe. 2011. Tail order and intermediate tail dependence of multivariate copulas. Journal of Multivariate Analysis 102:

1454–71. [CrossRef]
Joe, Harry. 1997. Multivariate Models and Dependence Concepts. London: Chapman & Hall. [CrossRef]
Jondeau, Eric. 2016. Asymmetry in tail dependence in equity portfolios. Computational Statistics Data Analysis 100: 351–68. [CrossRef]
Kato, Shogo, Toshinao Yoshiba, and Shinto Eguchi. 2022. Copula-based measures of asymmetry between the lower and upper tail

probabilities. Statistical Papers 63: 1907–29. [CrossRef]

https://github.com/larryleihua/CopulaOne
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_5_factors_2x3.html
http://doi.org/10.1080/07350015.2020.1739530
http://dx.doi.org/10.1007/s43546-021-00080-7
http://www.ncbi.nlm.nih.gov/pubmed/34778832
http://dx.doi.org/10.1007/s00362-015-0718-7
http://dx.doi.org/10.1016/j.csda.2012.08.010
http://dx.doi.org/10.1002/jae.683
http://dx.doi.org/10.1016/j.jfineco.2014.10.010
https://cran.r-project.org/web/packages/rugarch
https://cran.r-project.org/web/packages/rugarch
http://dx.doi.org/10.1016/j.insmatheco.2017.01.003
http://dx.doi.org/10.1016/j.jmva.2011.05.011
http://dx.doi.org/10.1201/9780367803896
http://dx.doi.org/10.1016/j.csda.2015.02.014
http://dx.doi.org/10.1007/s00362-022-01297-w


Risks 2023, 11, 195 17 of 17

Kim, Jong-Min, and Sun Young Hwang. 2021. Functional ARCH directional dependence via copula for intraday volatility from
high-frequency financial time series. Applied Economics 53: 506–20. [CrossRef]

Koopman, Siem Jan, Rutger Lit, André Lucas, and Anne Opschoor. 2018. Dynamic discrete copula models for high-frequency stock
price changes. Journal of Applied Econometrics 33: 966–85. [CrossRef]

Krupskii, Pavel, and Harry Joe. 2020. Flexible copula models with dynamic dependence and application to financial data. Econometrics
and Statistics 16: 148–67. [CrossRef]

Patton, Andrew J. 2009. Copula–based models for financial time series. In Handbook of Financial Time Series. Berlin/Heidelberg:
Springer, pp. 767–85. [CrossRef]

Patton, Andrew J. 2012. A review of copula models for economic time series. Journal of Multivariate Analysis 110: 4–18. [CrossRef]
Polanski, Arnold, Evarist Stoja, and Ching-Wai Chiu. 2021. Tail risk interdependence. International Journal of Finance Economics 26:

5499–11. [CrossRef]
Rodriguez, Juan Carlos. 2007. Measuring financial contagion: A copula approach. Journal of Empirical Finance 14: 401–23. [CrossRef]
Sklar, Abe. 1959. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de statistique de l’Universite’ de Paris 8:

229–31.
Su, Jianxi, and Lei Hua. 2017. A general approach to full-range tail dependence copulas. Insurance: Mathematics and Economics 77:

49–64. [CrossRef]
Weiß, Gregor N. F., and Hendrik Supper. 2013. Forecasting liquidity-adjusted intraday value-at-risk with vine copulas. Journal of

Banking Finance 37: 3334–50. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/00036846.2020.1808184
http://dx.doi.org/10.1002/jae.2645
http://dx.doi.org/10.1016/j.ecosta.2020.01.005
http://dx.doi.org/10.1007/978-3-540-71297-8_34
http://dx.doi.org/10.1016/j.jmva.2012.02.021
http://dx.doi.org/10.1002/ijfe.2077
http://dx.doi.org/10.1016/j.jempfin.2006.07.002
http://dx.doi.org/10.1016/j.insmatheco.2017.08.009
http://dx.doi.org/10.1016/j.jbankfin.2013.05.013

	Introduction
	Regression Models for Intraday Tail Dependence
	Copula for Dependence of Multiple Time Series
	Full-Range Tail Dependence Copula
	Unified Tail Dependence Measures
	Multiple Components GARCH for Intraday Volatility
	Regression Models with Full-Range Tail Dependence Copulas

	Empirical Study
	Data
	Intraday Marginal Analysis
	Dynamic Intraday Tail Dependence Patterns
	The Fama–French Five Factors on Intraday Tail Dependence

	Concluding Remarks
	References

