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Abstract: Predictive modeling has been widely used for insurance rate making. In this paper, we
focus on insurance claim count data and address their common issues with more flexible modeling
techniques. In particular, we study the zero-inflated and hurdle-generalized Poisson and negative
binomial distributions in a functional form for modeling insurance claim count data. It is shown
that these models are useful in addressing the problem of excess zeros and over-dispersion of the
claim count variable. In addition, we show that including the exposure as a covariate in both the
zero and the count part of the model is an effective approach to incorporating exposure information
in zero-inflated and hurdle models. We illustrate the effectiveness and versatility of the introduced
models using three real datasets. The results suggest their promising applications in insurance risk
classification and beyond.

Keywords: risk classification; count data; over-dispersion; hurdle-generalized Poisson regression;
hurdle negative binomial regression; exposure; shrinkage

1. Introduction

In a priori risk classification, actuaries group risks with similar risk characteristics in
order to set insurance premiums. Accurate risk classification is extremely important for
maintaining a financially sound and equitable system, assuring the availability of needed
insurance coverage to the public.

The individual risk characteristics used in risk classification are called rating variables.
For example, in automobile insurance, commonly used rating variables include geography,
driver characteristics such as age, gender, and marital status, and vehicle characteristics
such as the make and value of the vehicle insured.

Risk classification systems are generally based, whenever possible, on statistical anal-
ysis. Naturally, statistical methods such as generalized linear models and generalized
additive models provide useful tools. Numerous books and papers discuss the application
of statistical methods in insurance rate making, see, e.g., Renshaw (1994), Denuit et al.
(2007), Frees (2009), Frees et al. (2014), and the references therein.

This paper studies claim frequency modeling. It is well known that the Poisson
regression model is not always suitable because real-world claim frequency data usually
exhibit over-dispersion. Alternative models have been proposed in the literature. Notably,
negative binomial regression models were discussed by Dionne and Vanasse (1989), Frees
and Valdez (2008), and Wüthrich and Merz (2008). Inverse Gaussian models were studied
by Dean et al. (1989) and Wang et al. (2023). Consul (1993) compared the generalized
Poisson (GP) distribution with several well-known distributions and concluded that the
GP distribution is a plausible model for claim frequency data.

Insurance claim data usually have an excessive number of zeros. Zero-inflated models,
studied by Lambert (1992), have been used to deal with such problems in the literature.
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For example, Yip and Yau (2005) applied several parametric zero-inflated count distribu-
tions, including zero-inflated Poisson (ZIP), zero-inflated generalize negative binomial,
zero-inflated generalized Poisson, and zero-inflated double Poisson distributions, to accom-
modate the excess zeros in insurance claim count data. Famoye and Singh (2006) applied
the zero-inflated generalized Poisson regression model to fit a domestic violence dataset.
Czado et al. (2007) extended the zero-inflated generalized Poisson regression model by
including explanatory regression parameters in both the zero-inflation and the dispersion
parameters and applied the extended model to patent outsourcing rate data.

The hurdle model, which was introduced by Cragg (1971) and later refined by Mullahy
(1986), can also be applied to model data with an excessive number of zeros. For instance,
Saffari et al. (2013) and Zuo et al. (2021) studied the hurdle-generalized Poisson distribution,
whereas Bhaktha (2018) employed the hurdle negative binomial approach. Additionally,
using an insurance claim number dataset, Boucher et al. (2007) compared various zero-
inflated and hurdle models.

Another issue with insurance claim datasets lies in the fact that different observations
may have different risk exposures, but only the total number of claims for all exposures is
recorded. For example, some policyholders stay longer in the policy than others. An “offset”
term is often utilized to account for the varying exposure scale. In the case of the log link
function, this is equivalent to including the log of exposure as an explanatory variable with
a fixed coefficient of one (Agresti 2015). For zero-inflated and hurdle models, the offset is
usually only included in the count part of the models, see, e.g., Lee et al. (2001), Loquiha
et al. (2013), Zhen et al. (2018), and Dai et al. (2018). However, as pointed out by Feng (2022),
varying exposure can also influence the probability of observing excessive zeros.

The paper’s main contributions are as follows. First, we delineate several forms
of hurdle-generalized Poisson (HGP) and hurdle-generalized negative binomial (HNB)
regression models. It is shown that these models are useful in addressing the problem
of excess zeros and over-dispersion of claim count datasets. Second, through a detailed
analysis, we show that including exposure in both the zero and the count parts as a covariate
is an effective approach to incorporating exposure information into zero-inflated and hurdle
models. Lastly, from a practical point of view, we illustrate the effectiveness and versatility
of the introduced models using real datasets and compare the results with other commonly
used models.

We organize the rest of the paper as follows. Section 2 provides the mathematical
background, specifically highlighting several forms of HGP and HNB regression models.
Section 3 studies how to include exposure in zero-inflated and hurdle regression models.
Section 4 presents real-world applications, analyzing various models using data from a
Malaysian auto insurance dataset, the US National Medical Expenditure Survey, and a
French auto insurance dataset. Section 5 explores the variable selection problem in the
HGP and HNB models by applying the Lasso shrinkage methodology. Section 6 concludes
the paper.

2. Mathematical Models

In this section, we first provide the mathematical background of generalized Poisson
and generalized negative binomial models and then introduce their hurdle functional forms.

2.1. Various Forms of Generalized Poisson and Generalized Negative Binomial Random Variables

From a probability point view, the GP distribution was introduced by Consul and
Jain (1973) as a limiting form of a generalized negative binomial distribution. Consul
and Shoukri (1988) showed that a GP distribution can be viewed as the distribution of
the number of served customers in a busy period of a queue with Poisson arrival and a
constant service time. GP distribution can also be considered as the distribution of the
total progeny in a Galton branching process, where both the initial number of a species
and the number of offspring an individual produces follow a Poisson distribution. From a
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statistical point view, the GP distribution and its related distributions are flexible and can
be used to model over-dispersed or under-dispersed data.

The GP distribution has been applied in actuarial science. For instance, Gerber (1990)
showed that the number of jumps it takes for a classical Poisson risk process with a constant
claim size to reach a certain level follows a GP distribution. Consul (1993) compared the GP
distribution with several well-known distributions and concluded that the GP distribution
is a plausible model for claim frequency data. Calderín-Ojeda et al. (2019) proposed a
special GP distribution, and tested the performance of their GP regression model using
French Motor Personal Line datasets, which are available in the R package ”CASdatasets”.
Scollnik (1995) presented a Bayesian analysis of GP distribution using two datasets; one
was the number of injuries in automobile accidents, and the other was the ship damage
incident data from Lloyd’s Register of Shipping.

Different forms of GP random variables have been proposed in the literature. The
classical GP-1 distribution has a probability mass function (pmf) of

g1(yi) = P(Yi = yi | µi, a) =
µi(µi + ayi)

yi−1

(1 + a)yi yi!
e−

µi+ayi
1+a , yi = 0, 1, 2, . . . ,

where µi is the mean parameter and a is the dispersion parameter. The variance of GP-1
is µi(1 + a)2. Thus, a > 0 implies over-dispersion, while a < 0 implies under-dispersion.
When a = 0, GP-1 reduces to a Poisson distribution.

A slightly different parameterization gives the so-called GP-2 distribution with the pmf

g2(yi) = P(Yi = yi | µi, a) =
µi(µi + aµiyi)

yi−1

(I + aµi)
yi yi!

e−
µi+aµiyi

1+aµi , yi = 0, 1, 2, . . . .

The mean and variance of the GP-2 distribution are µi and µi(1 + aµi)
2, respectively.

While the GP-1 distribution has a linear mean–variance relationship, the GP-2 distribution
has a cubic mean–variance relationship. The applications of the GP-2 distribution have
been discussed in, e.g., Wang and Famoye (1997) and Ismail and Jemain (2007).

Another parameterization of the GP distribution, GP-P, which was studied in, e.g.,
Zamani and Ismail (2012), has the pmf

gP(yi) = P(Yi = yi | µi, a, P) =
µi

(
µi + aµP−1

i yi

)yi−1

(
1 + aµP−1

i

)yi
yi!

e
−

µi+aµP−1
i yi

1+aµP−1
i , yi = 0, 1, 2, . . . . (1)

A GP-P random variable Yi has mean E(Yi) = µi and variance Var(Yi) = µi

(
1 + aµP−1

i

)2
.

The additional parameter, P, provides more flexibility in modeling the variance function. It
reduces to GP-1 and GP-2 regressions with P = 1 and P = 2, respectively.

The generalized negative binomial (NB-P) distribution, which was introduced in
Greene (2008) and discussed in Cameron and Trivedi (2013), Hilbe (2011) and Ismail and
Zamani (2013), has a parameter set (a, µi, P) and the pmf

hP(yi) = P(Yi = yi | µi, a, P) =
Γ
(

yi + a−1µ2−P
i

)
yi!Γ

(
a−1µ2−P

i

)
×
(

a−1µ2−P
i

a−1µ2−P
i + µi

)a−1µ2−P
i
(

µi

a−1µ2−P
i + µi

)yi

, yi = 0, 1, . . . .

(2)

2.2. Hurdle Functional Form of the Generalized Poisson Regression Model

A hurdle model involves the application of two different models to analyze data that
fall either above or below a specific threshold, which is typically set at zero. Therefore, it
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is sometimes called a two-part model. Following Mullahy (1986), the distribution of the
claim counts according to a hurdle model is given by

P(Yi = yi) =

{
f1(0), yi = 0,

1− f1(0)
1− f2(0)

f2(yi) := Φ f2(yi), yi = 1, 2, . . . ,

where f1 and f2 are two probability functions that describe the distribution of the zero
and non-zero parts of Yi. In insurance applications, the quantity Φ can be interpreted as
the probability of reporting at least one claim. As argued in Boucher et al. (2007), in auto
insurance, policyholders’ behavior may change after a claim has been made; therefore, it is
natural to apply hurdle models to describe the two parts (zero claim and non-zero claims)
of the claim process. An advantage of the hurdle model is that the parameters for each part
can be estimated separately.

In what follows, we assume that f1 is Bernoulli-distributed. Then, the hurdle functional
form of a generalized Poisson (HGP-P) regression model is given as

P(Yi = yi) =

{
ωi, yi = 0,

(1−ωi)
gP(yi)

1−gP(0)
, yi = 1, 2, 3, . . . ,

where gP(yi) is defined in Equation (1). Note that the term gP(yi)
1−gP(0)

is usually referred to as
the zero-truncated GP distribution. In addition, we assume that µi is related to covariates
xi by a log link function

log(µi) = xT
i β, (3)

where β is the vector of regression parameters, and ωi is related to covariates zi by a logit
link function

log
(

ωi
1−ωi

)
= zT

i γ. (4)

The HGP-P model reduces to the HGP-1 and HGP-2 models when P = 1 and P = 2,
respectively. Therefore, the likelihood ratio test (LRT) can be applied for testing the HGP-1
model (or HGP-2 model) against the HGP-P model.

The loglikelihood function for the HGP-P regression model is given by

log L(γ, β, a, P) = log L1(γ) + log L2(β, a, P),

where

log L1(γ) =
n

∑
i=1

[
I(yi=0) log(ωi) +

(
1− I(yi=0)

)
log(1−ωi)

]
,

and

log L2(β, a, P) =
n

∑
i=1

[
1− I(yi=0)

]{
− log(1− exp(−Ai)) + (yi − 1) log

(
µi + aµP

i yi!
)

+ log µi − yi log
(

1 + aµP−1
i

)
− log(yi!)− Ai

}
.

with Ai =
µi+aµP−1

i yi

1+aµP−1
i

. Note that the regression parameters β and γ are included in the

loglikelihood function through the link functions for µi and ωi.
The two components of the loglikelihood function, log L1(γ) and log L2(β, a, P), can

be maximized separately. In particular, the parameter γ can be estimated using a simple
logistic regression. The system of normal equations for estimating β is obtained by taking
the partial derivative of log L2(β, a, P). Since these partial derivative equations cannot be
simplified, the Newton–Raphson method is applied to solve them. The standard errors
of the parameter estimates are given by the square root of the diagonal elements of the
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inverse of the Hessian matrix. The estimated parameters from the truncated Poisson fit are
used as starting values for faster convergence.

We note that the two-part structure of the hurdle model greatly simplifies the opti-
mization procedure.

2.3. Hurdle Functional Form of the Generalized Negative Binomial Regression Model

The hurdle functional form of the generalized negative binomial (HNB-P) regression
model is defined as

P(Yi = yi) =

{
ωi, yi = 0,

(1−ωi)
hP(yi)

1−hP(0)
, yi = 1, 2, 3, . . . ,

where hP(·) is the NB-P pmf defined in Equation (2), ωi is related to covariates zi with a
logit link function (4), and µi is related to covariates xi via a log link function (3).

The loglikelihood function for the HNB-P regression model is given by

log L(γ, β, a, P) = log L1(γ) + log L2(β, a, P),

where

log L1(γ) =
n

∑
i=1

[
I(yi=0) log(ωi) +

(
1− I(yi=0)

)
log(1−ωi)

]
,

and

log L2(β, a, P) =
n

∑
i=1

[
1− I(yi=0)

]{
Bi log(Bi)− yi log(Bi + µi)− Bi log(Bi + µi)

+
yi−1

∑
j=0

log(Bi + j) + yi log µi − log
(
1− hp(0)

)}
.

with Bi = a−1µ2−P
i . The estimation of the regression parameters for HNB-P is similar to

that for the HGP-P model.

3. Incorporating Exposure in Zero-Inflated and Hurdle Regression Models

In many insurance loss datasets, different policyholders (observations) may have
different risk exposures, yet only the total number of claims is reported. For example, a
dataset could report the total number of claims made by a policyholder during the whole
policy period, but different policyholders may stay in the policy for different periods of time.
An offset term in the regression is a commonly used strategy for enclosing a population
size at risk or the amount of exposure time. Particularly, if a log link function is used, the
model can be defined as

log(µi) = xT
i β + log(Ei),

or equivalently µi = EiexT
i β, where Ei is the exposure for policyholder i. This approach of

considering exposure makes sense because, intuitively, the mean number of events should
be proportional to the size of the exposure.

For zero-inflated and hurdle models, the offset is usually only included in the count
part of the models, see, e.g., Lee et al. (2001), Loquiha et al. (2013), Zhen et al. (2018), Dai
et al. (2018). However, as pointed out by Feng (2022), the probability of observing excessive
zeros can also be impacted by exposure in many situations. One might directly impose
exposure in the zero-inflated part of the model in the same way as in the count model. For
example, if the logit model is used for the zero part, we might write

logit(ωi) = log
(

ωi
1−ωi

)
= zT

i γ + log(Ei).
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However, this may not be plausible because it indicates that the probability of zero
inflation ωi increases with the exposure size, which is counter-intuitive. Feng (2022) then
proposed the model

logit(ωi) = zT
i γ + ξ1 log(Ei),

log(µi) = xT
i β + ξ2 log(Ei),

(5)

where ξ1 and ξ2 are the regression coefficients for the logarithm transformed Ei. Model (5)
allows risk exposures to be included in the analysis as a regular covariate in both the binary
and count parts of the zero-inflated and hurdle models. We next provide a simulation study
to illustrate the benefit of such a method.

A Simulation Study

In this subsection, we implement a simulation study to compare several approaches to
incorporate risk exposure in zero-inflation models.

We generate 100 observations as follows. Each observation i is associated with an
exposure size Ei, which is uniformly distributed among one to ten. The number of events,
Ni, for the ith observation is then the summation of Ei independent and identically dis-
tributed ZIP-distributed random variables Y(i) with parameters (ωi, µi), where ωi is the
zero-inflation probability and µi is the Poisson count mean. That is,

Ni =
Ei

∑
j=1

Y(i)
j .

Furthermore, assume that there are two covariates: x1,i, which can take values 0 or
1, and x2,i, which is a realization of a normal (1, 1) random variable. The distribution
parameters are related to the covariates by:

logit(ωi) = γ0 + γ1x1,i + γ2x2,i,

with γ0 = γ1 = γ2 = 1, and

log(µi) = β0 + β1x1,i + β2x2,i,

with β0 = β1 = β2 = 0.5.
The mean and standard deviation of the simulated number of events are 18.4 and

32.02, respectively, where 34% of the claims are zero.
We next fit the simulated data to ZIP and ZIGP-P regression models that handle the

exposures differently, as described in Equations (6)–(10).

ZIP
{

logit(ωi) = γ0 + γ1x1 + γ2x2,
log(µi) = β0 + β1x1 + β2x2,

(6)

ZIPee
{

logit(ωi) = γ0 + γ1x1 + γ2x2 + ξ1 log(Ei),
log(µi) = β0 + β1x1 + β2x2 + ξ2 log(Ei),

(7)

ZIPe
{

logit(ωi) = γ0 + γ1x1 + γ2x2,
log(µi) = β0 + β1x1 + β2x2 + ξ2 log(Ei),

(8)

ZIP11
{

logit(ωi) = γ0 + γ1x1 + γ2x2 + log(Ei),
log(µi) = β0 + β1x1 + β2x2 + log(Ei),

(9)

ZIP1
{

logit(ωi) = γ0 + γ1x1 + γ2x2,
log(µi) = β0 + β1x1 + β2x2 + log(Ei).

(10)

The parameter estimates, including absolute t-ratios, log likelihood (LL), Akaike
information criterion (AIC), and Bayesian information criterion (BIC), for the ZIP model
are presented in Table 1, and those for the ZIGP-P model are shown in Table 2.
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Table 1. Parameter estimates, t-ratios, and model fit measures for simulated data using the ZIP model
under various exposure scenarios.

ZIP ZIPee ZIPe ZIP11 ZIP1

Par Est. |t.ratio | Est. |t.ratio| Est. |t.ratio| Est. |t.ratio| Est. |t.ratio|

Logistic proportion of models
γ0 −1.53 34.92 0.49 7.20 −1.60 35.20 −2.92 72.02 −1.85 36.64
γ1 0.55 12.52 0.71 14.00 0.58 12.95 0.69 17.43 0.68 14.34
γ2 0.53 22.25 0.70 25.07 0.56 22.93 0.66 29.60 0.66 25.23
ξ1 −1.59 39.98

Count proportion of models
β0 1.86 336.0 1.16 106.9 1.16 105.6 0.04 6.75 0.04 7.51
β1 0.80 164.4 0.79 162.5 0.79 162.5 0.79 160.9 0.79 160.8
β2 0.83 341.6 0.82 334.4 0.82 334.4 0.81 329.1 0.81 328.9
ξ2 0.41 78.01 0.41 78.17

LL −45,067 −40,652 −41,671 −50,271 −47,284
AIC 90,147 81,319 83,356 100,553 94,579
BIC 90,190 81,377 83,406 100,597 94,623

Table 2. Parameter estimates, t-ratios, and model fit measures for simulated data using the ZIGP-P
model under various exposure scenarios.

ZIGP-P ZIGP-Pee ZIGP-Pe ZIGP-P11 ZIGP-P1

Par Est. |t.ratio| Est. |t.ratio| Est. |t.ratio| Est. |t.ratio| Est. |t.ratio|

Logistic part of the models
γ0 −1.65 35.03 0.40 5.75 −1.74 35.16 −3.23 66.73 0.46 33.39
γ1 0.60 13.24 0.74 14.40 0.64 13.72 0.81 18.94 −1.47 31.21
γ2 0.58 23.24 0.74 25.52 0.62 23.94 0.77 31.09 0.61 13.49
ξ1 – – −1.58 39.43

Non-zero part of the models
β0 1.88 138.5 1.06 41.95 0.99 37.48 0.07 4.69 0.61 13.49
β1 0.79 57.80 0.79 61.5 0.79 61.21 0.80 51.87 0.78 60.03
β1 0.82 111.7 0.81 115.9 0.81 115.8 0.81 95.22 0.80 115.9
ξ2 0.47 37.30 0.50 38.09
a 0.39 15.31 0.17 13.41 0.19 13.28 0.45 14.50 0.39 16.60
P 1.46 75.21 1.67 77.16 1.64 75.51 1.46 72.39 1.43 82.04

LL −30,270 −28,606 −29582 −33,088 −29,685
AIC 60556 57,233 59,181 66,193 59,386
BIC 60,614 57,304 59,246 66,250 59,443

Table 1 shows that the ZIPee model has the lowest AIC and BIC values. The worst
model is ZIP11, which includes an offset term in the binary component and the positive
count. Notice that the parameter value ξ1 for the binary part is negative, expressing the fact
that when the exposure increases, one should expect a smaller value for the zero-inflation
parameter ωi; on the other hand, the value of parameter ξ2 for the count part is positive,
expressing the fact that when the exposure increases, one should expect a greater value for
the expected count µi. This finding highlights the importance of having exposure in both
the binary and count parts of the model.

Notice that in the true model, the distribution of Ni is no longer ZIP; it is rather a
summation of some random number of ZIP distributions. Therefore, there is no reason that
one has to fit the data with exposure with a ZIP model.

Table 2 shows that the ZIGP-Pee model fits the data better than the competing models
based on AIC and BIC criteria. In addition, comparing Tables 1 and 2, we see that the
ZIGP-P models perform better than the ZIP models. This is because, as discussed above,
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the distribution of Nis is no longer ZIP. The ZIGP-P model, which includes two additional
parameters compared to the ZIP model, presents a more flexible option for fitting the data.

Table 3 presents the average AIC and BIC values obtained from analyzing 100 simu-
lated datasets for model comparison when the number of simulated data is 1000, 5000, and
10,000. The results demonstrate that the ZIGP-Pee model performs better than the other
models in all scenarios, consistently producing the smallest AIC and BIC values. These
findings indicate that the ZIGP-Pee model is a robust and reliable model for analyzing the
simulated dataset.

Table 3. Comparing the model fitness of ZIGP-Pee, ZIGP-Pe, ZIGP-P11, and ZIGP-P1 based on the
mean values of AIC and BIC over 100 simulated datasets created from the ZIP model.

n ZIGP-Pee ZIGP-Pe ZIGP-P11 ZIGP-P1

AIC 1000 5721.15 5915.20 6633.57 6037.35
5000 28,575.05 29,503.79 33,097.63 30,157.15

10,000 57,194.15 59,054.38 66,010.11 60,329.38

BIC 1000 5770.23 5959.37 6672.83 6076.62
5000 28,640.22 29,562.44 33,149.77 30,209.29

10,000 57,266.26 59,119.27 66,067.79 60,387.06

Table 4 shows the results of fitting the HGP-P model to the simulated data in this
section under different treatments of exposure. According to the AIC and BIC, the HGP-Pee

model outperforms other competing models, which is consistent with previous findings.
This observation emphasizes the importance of including exposure (log(Exposures)) in
the binary part of the HGP-P model. The estimated effect of log(Exposures) on the bi-
nary component of the HGP-Pee model, ξ1 = −1.58 (t-ratio = 40.38) reflects the negative
association between exposure and the probability of observing an excess zero count. This
finding is consistent with the ZIGP-Pee model’s ξ1 estimation. In contrast, the estimated
effect of log(Exposures) on the count component of the HGP-Pee model is positive, with an
associated effect size of ξ2 = 0.46 (t-ratio = 36.68). Notably, this effect size is close to that
of the ZIGP-Pee model (ξ2 = 0.47). Furthermore, the functional parameter for the HGP-Pee

model was estimated to be P = 1.66, which is very close to the value of P = 1.67 for the
ZIGP-Pee model.

Table 4. Parameter estimates, t-ratios, and model fit measures for simulated data using the HGP-P
model under various exposure scenarios.

HGP-P HGP-Pee HGP-Pe HGP-P11 HGP-P1

Par Est. |t.ratio| Est. |t.ratio| Est. |t.ratio| Est. |t.ratio| Est. |t.ratio|
Logistic part of the models

γ0 −1.46 34.72 0.59 9.06 −1.46 34.72 −2.54 73.88 −1.46 34.72
γ1 0.52 11.99 0.66 13.29 0.52 11.99 0.54 14.44 0.52 11.99
γ2 0.49 21.40 0.64 24.12 0.49 21.40 0.48 24.93 0.49 21.40
ξ1 −1.58 40.38

Non-zero part of the models
β0 1.88 135.3 1.07 41.75 1.07 41.75 0.10 7.29 0.10 7.29
β1 0.80 57.70 0.79 61.35 0.79 61.35 0.81 52.75 0.81 52.75
β2 0.82 110.5 0.81 114.6 0.81 114.7 0.82 95.28 0.82 95.28
ξ2 0.46 36.68 0.46 36.68
a 0.41 14.94 0.17 13.22 0.17 13.22 0.26 15.71 0.26 15.71
P 1.45 73.14 1.66 75.85 1.66 75.85 1.62 86.18 1.62 86.18

LL −30,287 −28,633 −29,678 −33,564 −30,472
AIC 60,589 57,286 59,374 67,144 60,960
BIC 60,647 57,358 59,439 67,201 61,018

We remark that none of the models in Equations (6)–(10) “correctly” describe the
underlying simulation model. Our analysis shows that models with observations with
different exposures and are zero-inflated, including exposure in both the zero and the count
parts as covariates (model ee), perform the best.
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4. Model Fitting Results

In this section, we apply our proposed regression models to three datasets: the
Malaysian Motor Insurance Data, the 1987/88 US National Medical Expenditure Sur-
vey data, and a French auto insurance dataset, freMTPL2freq, which is available in the R
“CASdatasets” package.

4.1. Malaysian Motor Insurance Data

This dataset from Insurance Services Malaysia includes 1.01 million private car policies
from ten Malaysian insurance companies in 2002. It includes information on exposures
measured by the number of cars per year, claim counts for own damage and third party
property damage, and four rating factors: vehicle year, vehicle make, vehicle cc, and
location. The first three rating variables describe vehicle properties, whereas the last one
(location) gives the location where the vehicle was operated. This dataset has been studied
by Fuzi et al. (2016). As detailed therein, each of the four rating factors has five levels,
amounting to 54 = 625 cross-classified rating classes. Excluding 73 rating classes with zero
exposure, we used 552 rating classes in this study. The response variable is the number of
own damage claims in this study.

We fitted the dataset to the HP, HGP-P, and HNB-P regression models. The zero part
was fit using logistic regression, and the none-zero part by maximizing the likelihood using
the “nlm” function in R. This separation of the estimation of zero and non-zero parts greatly
simplifies the computation.

The parameter estimates and the absolute values of the t-ratio for the models are
reported in Table 5. It is seen that the over-dispersion and functional parameters (a and
P) in the non-zero parts of the GP-P and NB-P models are both significant. In addition,
in all models, the coefficients ξ1 and ξ2 for the log exposures of the zero (logistic) and the
non-zero parts, respectively, are significant.

For comparison purposes, we fitted the Poisson, GP-1, GP-2, GP-P, NB-1, NB-2, NB-P,
and corresponding zero-inflated and hurdle models to this dataset. The LL, AIC, and BIC
for these models are provided in Table 6.

Table 5. Parameter estimates and absolute t-ratios for the Malaysian Motor Insurance Data.

Coefficients for the Non-Zero Part of the Models Logistic Coef.

Poisson GP-P NB-P

Parameter Est. |t.ratio| Est. |t.ratio| Est. |t.ratio| Est. |t.ratio|
Intercept −2.59 49.29 −2.75 17.14 −2.81 16.94 3.00 3.14
2–3 year 0.50 39.68 0.54 12.30 0.53 12.24 −2.14 2.92
4–5 year 0.48 36.46 0.49 10.78 0.49 10.99 −0.99 1.66
6–7 year 0.41 31.15 0.44 9.85 0.43 9.78 −1.31 2.02
above 8 0.26 20.33 0.27 6.11 0.27 6.10 0.15 0.25
1001–1300 cc −0.10 4.40 −0.10 1.45 −0.10 1.51 −0.49 0.78
1301–1500 cc 0.10 4.26 0.07 1.12 0.08 1.07 −1.72 2.04
1501–1800 cc 0.30 12.56 0.27 3.93 0.28 3.91 −1.51 1.66
above 1800 cc 0.38 16.12 0.37 5.30 0.37 5.13 −1.47 1.49
Local type 2 −0.26 12.01 −0.33 5.31 −0.31 4.76 −0.09 0.09
Foreign type 1 −0.28 23.55 −0.25 6.14 −0.25 6.33 1.27 1.43
Foreign type 2 0.00 0.15 0.06 1.03 0.06 1.01 0.12 0.15
Foreign type 3 −0.16 7.69 −0.13 1.87 −0.13 1.90 2.03 2.03
East 0.24 13.27 0.30 5.13 0.29 4.92 −0.47 0.73
Central 0.35 30.02 0.33 8.24 0.33 8.27 −1.54 1.77
South 0.23 18.15 0.26 5.89 0.25 5.79 0.36 0.56
East Malaysia 0.08 5.48 0.07 1.42 0.08 1.53 −0.02 0.04
log(Exposure) 0.93 187.48 0.95 59.64 0.95 59.21 −1.15 6.19
a - - 1.51 8.01 5.34 6.64 - -
P - - 1.09 42.39 1.12 34.66 - -
LL −3809.43 −2028.35 −2036.86 −82.35
AIC 7654.85 4096.70 4113.73 200.71
BIC 7730.61 4180.87 4197.90 278.35

Based on AIC and BIC, the HGP and HNB models are obviously better than the HP
model. Further, the HGP-P, HGP-1, and HNB-P models are the top three best models,
followed by HNB-1. The best functional parameters in the HGP-P and HNB-P models are
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P = 1.09 and P = 1.12, respectively, which are close to 1. In particular, the HNB-P model
has a much lower AIC/BIC than the HNB-2 model, confirming that it is more flexible than
the latter, which is accessible in the “pscl” package in R.

Table 6. The number of parameters, LL, AIC, and BIC of different models for Malaysian Motor
Insurance Data.

Models No. of Parameters LL AIC BIC

Poisson 18 −3917.5 7871.1 7948.7
GP-1 19 −2166.1 4370.1 4452.1
GP-2 19 −2441.6 4921.2 5003.1
GP-P 20 −2146.4 4332.8 4419.1
NB-1 19 −2191.0 4419.9 4501.9
NB-2 19 −2324.1 4686.2 4768.2
NB-P 20 −2173.6 4387.3 4473.5
ZIP 36 −3899.9 7871.9 8027.2

ZIGP-1 37 −2281.4 4636.9 4796.5
ZIGP-2 37 −2659.2 5392.3 5551.9
ZIGP-P 38 −2167.1 4410.3 4574.2
ZINB-1 37 −2695.5 5464.9 5624.5
ZINB-2 37 −2356.8 4787.5 4947.1
ZINB-P 38 −2153.8 4383.6 4547.5

HP 36 −3891.8 7855.6 8008.9
HGP-1 37 −2116.2 4306.5 4464.1
HGP-2 37 −2420.6 4915.1 5072.7
HGP-P 38 −2110.7 4297.4 4459.2
HNB-1 37 −2125.9 4325.8 4483.4
HNB-2 37 −2321.9 4717.8 4875.4
HNB-P 38 −2119.2 4314.4 4476.2

Moreover, the coefficient for log exposure in the count part is positive, and in the logistic
part it is negative. They are both significant; this verifies our simulation results in Section 3.

4.2. The US National Medical Expenditure Survey Data

We now consider the US National Medical Expenditure Survey 1987/88 data studied
by Deb and Trivedi (1997). This dataset contains a subsample of 4406 observations of
individuals aged 66 and over who were covered by Medicare, a public insurance program.
The dataset is available from the R package accompanying Kleiber and Zeileis (2008) and
is also known as “DebTrivedi”. The number of physician office visits (ofp), with a mean
and variance of 5.77 and 45.69, respectively, is the response variable. We fitted the data
to the HP, HGP-P, and HNB-P regression models. The parameter estimates and absolute
value of t-ratios are provided in Table 7. Based on the Wald test, both over-dispersion and
functional parameters (a and P) are significant.

Table 7. Parameter estimates and absolute t-ratios for the US National Medical Expenditure Survey
dataset.

Coefficients for the Non-Zero Part of the Models Logistic Coef.

Poisson GP-P NB-P

Parameter Est. |t.ratio| Est. |t.ratio| Est. |t.ratio| Est. |t.ratio|
Intercept 1.84 20.46 1.62 7.01 1.60 6.63 −1.37 2.27
Poorhlth 0.28 15.19 0.31 6.18 0.31 6.18 0.07 0.42
Exclhlth −0.34 10.67 −0.37 4.86 −0.39 4.81 −0.32 2.27

Numchron 0.12 24.80 0.15 12.40 0.15 11.92 0.55 12.14
Adldiff 0.12 7.19 0.10 2.26 0.12 2.71 −0.18 −1.44
Noreast 0.11 5.92 0.10 2.09 0.12 2.32 0.03 0.21

Other regions 0.02 1.24 0.01 0.33 0.02 0.46 −0.10 −0.89
Midwest 0.12 6.06 0.12 2.45 0.14 2.62 0.10 0.71

Age −0.08 6.92 −0.07 2.47 −0.08 2.68 0.19 2.51
Black 0.00 0.03 −0.03 0.53 −0.03 0.50 −0.32 2.52
Male −0.01 0.71 −0.02 0.65 −0.02 0.61 −0.46 4.82

Married −0.07 4.60 −0.06 1.66 −0.07 1.80 0.25 2.41
School 0.02 9.58 0.02 3.77 0.02 3.82 0.05 4.24
Faminc 0.00 1.31 0.00 0.35 0.00 0.46 0.01 0.36

Employed 0.06 2.69 −0.01 0.10 0.03 0.56 −0.01 0.09
Private health 0.19 9.51 0.24 4.58 0.27 4.90 0.76 6.85

Medicaid 0.19 7.35 0.25 3.63 0.27 3.75 0.55 3.21
a - - 0.60 5.43 1.67 4.20 - -
P - - 1.45 14.95 1.56 12.28 - -
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Table 8 presents the LL, AIC, and BIC for the Poisson, GP-1, GP-2, GP-P, NB-1, NB-2,
NB-P, and their related zero-inflated and hurdle models. It also shows the results for some
popular models used to fit the data, which include the constrained two-point finite mixture
of negative binomials (CFMNB-2), the two-point finite mixture of negative binomials
(FMNB-2), and the constrained three-point finite mixture of negative binomials (CFMNB-3)
that were introduced by Deb and Trivedi (1997), as well as the two-point negative binomial
mixture (NBM2) used by Park and Kim (2021).

Overall, the HGP-P and CFMNB-3 models, and the FMNB-2 model, which are based
on NB-1 specifications, are among the preferred models according to AIC and BIC.

Table 8. Number of parameters, LL, AIC, and BIC for different models for the US National Medical
Expenditure Survey dataset.

Models No. of Parameters LL AIC BIC

Poisson 17 −18,134 36,303 36,412
GP-1 18 −12,147 24,330 24,445
GP-2 18 −12,237 24,510 24,625
GP-P 19 −12,147 24,332 24,453
NB-1 18 −12,156 24,348 24,463
NB-2 18 −12,202 24,440 24,555
NB-P 19 −12,155 24,348 24,470
ZIP 34 −16,290 32,648 32,862
ZIGP-1 35 −12,096 24,261 24,485
ZIGP-2 35 −12,095 24,259 24,483
ZIGP-P 36 −12,085 24,242 24,472
ZINB-1 35 −12,133 24,336 24,560
ZINB-2 35 −12,117 24,304 24,528
ZINB-P 36 −12,114 24,301 24,531
HP 34 −16,290 32,648 32,862
HGP-1 35 −12,085 24,240 24,460
HGP-2 35 −12,096 24,262 24,482
HGP-P 36 −12,077 24,227 24,453
HNB-1 35 −12,113 24,296 24,517
HNB-2 35 −12,110 24,291 24,511
HNB-P 36 −12,104 24,280 24,507
NBM2 33 −12,139 24,343 24,554
CFMNB-2 * 21 −12,098 24,238 24,372
FMNB-2 * 37 −12,073 24,220 24,456
CFMNB-3 * 24 −12,098 24,244 24,397
CFMNB-2 ** 21 −12,149 24,340 24,474
FMNB-2 ** 37 −12,134 24,342 24,579
CFMNB-3 ** 24 −12,149 24,346 24,499

* Based on the NB-1. ** Based on the NB-2.

4.3. The freMTPL2freq Dataset

The freMTPL2freq dataset, which is included in the “CASdatasets” package, provides
information on the number of claims and risk-related features for 677,991 third party motor
liability policies. Table 9 provides a summary of the covariates that were included in the
analysis. The mean and variance of the number of claims are reported as 0.0532 and 0.0577,
respectively. Moreover, it was observed that 94.98% of observations have zero claims.

Table 9. The description of the coviates in the French dataset.

Variable Description

VehPower The power of the car.

VehAge The vehicle age in years

DriveAge The driver age in years.

Log(density) The log of the number of residents per square kilometer of the city
where the car driver lives.

BonusMalus Zero indicate a bonus, while one indicates a malus.

VehGas The car’s fuel equals zero for regular fuel and one for diesel.

Log(exposure) The log of the period of exposure for a policy in years.

Table 10 compares our models with several commonly used regression models. It
shows that the ZIGP-P model exhibited the lowest AIC and BIC values, indicating its
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superiority in fitting the data. The ZINB-P and HGP-P models rank second and third,
respectively. Furthermore, it is worth noting that the running time for the HGP-P model,
thanks to its two-part model setting, is much shorter than the ZIGP-P and ZINB-P models.

Table 10. LL, AIC, BIC, and computational time (CT) for various statistical models applied to the
French dataset.

Models LL AIC BIC CT (Seconds)

Poisson −140,092 280,201 280,292 69
GP-1 −139,593 279,205 279,308 236
GP-2 −139,694 279,407 279,510 471
GP-P −139,586 279,191 279,305 1562
NB-1 −139,602 279,222 279,325 898
NB-2 −139,700 279,419 279,521 401
NB-P −139,596 279,212 279,327 1292
ZIP −139,709 279,450 279,632 1850
ZIGP-1 −139,573 279,180 279,374 1711
ZIGP-2 −139,653 279,340 279,534 1331
ZIGP-P −139,474 278,984 279,190 915
ZINB-1 −139,490 279,014 279,209 741
ZINB-2 −139,593 279,220 279,414 700
ZINB-P −139,481 278,997 279,203 1339
HP −139,665 279,361 279,521 125
HGP-1 −139,565 279,163 279,331 132
HGP-2 −139,572 279,177 279,345 157
HGP-P −139,562 279,160 279,336 211
HNB-1 −139,573 279,180 279,347 139
HNB-2 −139,578 279,190 279,357 135
HNB-P −139,571 279,178 279,354 269

Table 11 displays the estimated coefficients and absolute t-ratios for four models:
ZIGP-P, ZINB-P, HGP-P, and HNB-P. In all models, both the over-dispersion parameter a
and functional parameters P are statistically significant.

Table 11. Parameter estimation and absolute t-ratio for ZIGP-P, ZINB-P, HGP-P, and HNB-P models
for the French dataset.

Count Model Coefficients

ZIGP-P ZINB-P HGP-P HNB-P

Parameter Est. |t.ratio| Est. |t.ratio| Est. |t.ratio| Est. |t.ratio|
Logistic Proportion of models

Intercept −0.14 0.39 −0.14 0.43 2.77 78.12 2.77 78.12
VehPower 0.10 2.51 0.10 2.67 −0.01 1.25 −0.01 1.25
VehAge −0.06 7.61 −0.06 7.97 0.01 27.85 0.01 27.85
DrivAge 0.01 3.18 0.01 3.57 −0.01 7.83 −0.01 7.83
Log(density) 0.06 1.97 0.06 1.95 −0.03 10.56 −0.03 10.56
BonusMalus 5.93 2.54 5.93 2.38 −1.04 47.42 −1.04 47.42
VehGas 5.38 3.92 5.37 3.93 0.10 8.28 0.10 8.28
Log(Exposure) −0.54 6.21 −0.54 6.69 −0.38 60.67 −0.38 60.67

Count Proportion of models
Intercept −2.45 49.70 −2.44 50.11 −5.20 8.64 −5.35 6.63
VehPower −0.01 1.25 0.00 1.18 0.12 3.49 0.12 3.38
VehAge −0.02 13.54 −0.02 13.79 −0.05 2.97 −0.05 2.81
DrivAge 0.00 3.96 0.00 3.70 0.01 1.00 0.01 1.04
Log(density) 0.03 7.07 0.03 7.32 0.16 3.56 0.17 2.98
BonusMalus 0.80 24.45 0.80 26.29 1.68 7.66 1.74 6.01
VehGas −0.32 8.37 −0.32 9.74 0.31 2.05 0.31 1.96
Log(Exposure) 0.41 50.46 0.41 51.96 0.54 4.05 0.55 3.45
a 0.01 2.36 0.02 3.09 0.02 3.80 0.05 2.09
P 0.72 5.08 0.71 6.52 0.83 13.03 0.84 7.48

Further, we compared the AIC values for two situations in Table 12; the first column
shows models that include exposure as an offset in the count part, and the second column
shows those that include exposure as a covariate in the count and zero-inflation parts. The
results indicate that the models with exposure included as a covariate in both parts have a
lower AIC, suggesting that they fit the data better than those with exposure included only
as an offset.

Likelihood ratio tests for various statistical models applied to the French dataset are
presented in Table 13.
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Table 12. Comparison of AIC values of various models with exposure included as an offset in the
count part and as a covariate based on the French dataset.

Models Exposure as an Offset in the Count Part Exposure as a Covariate

Poisson 288,718 280,201
GP-P 287,192 279,191
NB-P 287,212 279,212
ZIP 287,774 279,450
ZIGP-P 287,102 278,984
ZINB-P 287,120 278,997
HP 284,806 279,361
HGP-P 283,571 279,160
HNB-P 283,588 279,178

Table 13. Likelihood ratio tests for various statistical models applied to the French dataset.

Models Compared LRT Value p-Value

GP-1 vs. Poisson 997.8 <0.001
GP-2 vs. Poisson 795.8 <0.001
GP-P vs. GP-1 15.6 0.0001
GP-P vs. GP-2 217.6 <0.001
NB-1 vs. Poisson 980.6 <0.001
NB-2 vs. Poisson 784.2 <0.001
NB-P vs. NB-1 11.6 0.0007
NB-P vs. NB-2 208 <0.001
ZIGP-1 vs. ZIP 272.4 <0.001
ZIGP-2 vs. ZIP 111.6 <0.001
ZIGP-P vs. ZIGP-1 196.8 <0.001
ZIGP-P vs. ZIGP-2 357.6 <0.001
ZINB-1 vs. ZIP 437.4 <0.001
ZINB-2 vs. ZIP 231.4 <0.001
ZINB-P vs. ZINB-1 19 <0.001
ZINB-P vs. ZINB-2 225 <0.001
HGP-1 vs. HP 200.3 <0.001
HGP-2 vs. HP 186.4 <0.001
HGP-P vs. HGP-1 5.1 0.024
HGP-P vs. HGP-2 19 <0.001
HNB-1 vs. HP 183.9 <0.001
HNB-2 vs. HP 173.9 <0.001
HNB-P vs. HNB-1 2.8 0.093
HNB-P vs. HNB-2 12.8 <0.001

5. The Lasso Regression

In this section, we briefly study the variable selection problem associated with the
HGP-P and HNB-P regression models discussed in the paper by using the US National
Medical Expenditure Survey 1987/88 data. Variable selection is important because it may
simplify the regression model as well as reduce the out-of-sample prediction error.

Lasso regression, introduced in Tibshirani (1996), has been proven to be an effective
method for variable selection. Park and Hastie (2007) expanded Lasso regression to a
generalized linear model to handle count data. Related to this paper’s context, Tang et al.
(2014) proposed an EM adaptive Lasso method to select risk factors (covariates) for an auto
insurance claim dataset. Wang et al. (2015) employed it to address the issue of variable
selection for a model with zero inflation and over-dispersion.

In this study, we apply a simplified version of the Lasso shrinkage method, which
aims to maximize the penalized log likelihood function

log L− λ ∑
i≥1
|βi|,

where λ ≥ 0 is the tuning parameter and βi are the parameters of interest. The intercept β0
and the model parameters a and P are excluded from the penalty.

When λ increases, the estimates of the coefficient values deviate from maximum
likelihood estimates, resulting in lower in-sample goodness-of-fit. However, the model is
simplified, potentially improving the out-of-sample performance.

Since the LL of the logistic and truncated parts of hurdle models can be separated, we
may perform Lasso regression separately for the two parts. Lasso regression for the logistic
part can be executed in R utilizing the “glmnet” package. Lasso regression for the truncated
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functional form of generalized Poisson (TGP-P) regression and the truncated functional
form of generalized negative binomial (TNB-P) regression has not been implemented in
the literature. Therefore, it is implemented based on our own R codes.

To obtain the optimal value of λ that leads to the most accurate out-of-sample predic-
tion, we applied five-fold cross-validation.

As shown in Table 14, for the logistics parts, we find that the tuning parameter is 10;
four variables, “regionnortheast”, “age”, “faminc” and “employedye”, are removed from
the models. This results in a decrease in the out-of-sample deviance from 746.0 to 740.4.

Table 14. Modeling results for the original full logistic regression model and shrunken model applied
to the US National Medical Expenditure Survey dataset.

Full Model Lasso Regression

Variables Est. p-Value Est. p-Value

Intercept −1.04 0.00 −1.24 0.00
healthpoor −0.53 0.00 −0.28 0.09
healthexcellent 0.62 0.00 0.36 0.03
numchron 0.09 0.10 0.02 0.76
adldiffyes −0.20 0.17 −0.08 0.56
regionnoreast −0.04 0.80 0.00 1.00
regionother 0.12 0.35 0.07 0.53
regionwest −0.30 0.06 −0.13 0.33
age 0.01 0.78 0.00 1.00
blackyes 0.57 0.00 0.40 0.00
gendermale 0.52 0.00 0.39 0.00
marriedyes −0.24 0.03 −0.08 0.46
school 0.14 0.01 0.10 0.05
faminc 0.02 0.71 0.00 1.00
employedyes 0.04 0.80 0.00 1.00
privinsyes −1.02 0.00 −0.82 0.00
medicaidyes −0.57 0.00 −0.22 0.23
In-sample LL −1436.9 −1446.7
Out-of-sample LL −373.0 −370.2
In-sample deviance 2873.8 2893.4
Out-of-sample deviance 746.0 740.4

The results of the Lasso regression with TNB-P and TGP-P models are shown in
Table 15. At the optimal value of the tuning parameter λ (18.95 and 10.77 for TNB-P and
TGP-P, respectively), shrunken models lead to lower out-of-sample deviances and thus
perform better than the full models. Furthermore, the out-of-sample prediction accuracy of
the TNB-P model is lower than that of the TGP-P model.

Table 15. Modeling results for the original full TGP-P and TNB-P regression and shrunken models
applied to the US National Medical Expenditure Survey dataset.

TGP-P TNB-P

Full Model Lasso Reg. Full Model Lasso Reg.

Variables Est. p-Val Est. p-Val Est. p-Val Est. p-Val

Intercept 1.27 0.00 1.39 0.00 1.19 0.00 1.30 0.00
healthpoor 0.31 0.00 0.26 0.00 0.32 0.00 0.30 0.00
healthexcellent −0.42 0.00 −0.28 0.00 −0.40 0.00 −0.31 0.00
numchron 0.15 0.00 0.15 0.00 0.14 0.00 0.14 0.00
adldiffyes 0.10 0.04 0.07 0.14 0.12 0.02 0.11 0.04
regionnoreast a 0.13 0.02 0.06 0.23 0.11 0.06 0.04 0.46
regionother b,c 0.04 0.45 0.00 1.00 0.06 0.23 0.00 1.00
regionwest 0.12 0.03 0.05 0.32 0.14 0.02 0.07 0.20
age a −0.04 0.04 −0.03 0.14 −0.04 0.05 −0.04 0.09
blackyes b,c −0.03 0.50 0.00 1.00 0.01 0.92 0.00 1.00
gendermale −0.03 0.53 −0.01 0.72 −0.05 0.27 −0.04 0.34
marriedyes −0.08 0.08 −0.05 0.27 −0.05 0.26 −0.04 0.41
school 0.07 0.00 0.06 0.00 0.09 0.00 0.08 0.00
faminc a,b −0.01 0.76 0.00 1.00 −0.02 0.34 −0.02 0.43
employedyes a,b,c 0.10 0.12 0.00 1.00 0.07 0.32 0.00 1.00
privinsyes 0.24 0.00 0.15 0.01 0.29 0.00 0.22 0.00
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Table 15. Cont.

TGP-P TNB-P

Full Model Lasso Reg. Full Model Lasso Reg.

Variables Est. p-Val Est. p-Val Est. p-Val Est. p-Val

medicaidyes 0.27 0.00 0.16 0.04 0.30 0.00 0.24 0.00
a 0.57 0.00 0.67 0.00 1.85 0.00 2.00 0.00
P 1.48 0.00 1.40 0.00 1.49 0.00 1.45 0.00
In-sample LL −8290.6 −8297.7 −8311.3 −8314.3
Out-of-sample LL −2108.3 −2105.1 −2106.7 −2088.2
In-sample deviance 2825.5 2852.8 2734.2 2748.4
Out-of-sample deviance 762.3 759.0 755.9 720.8

a removed variable based on logistic Lasso. b removed variable based on TGP-P Lasso. c removed variable based
on TNB-P Lasso.

Considering both Tables 14 and 15, we can see that the “employedyes” should be
removed from the zero and non-zero parts of the model. However, other variables that
were candidates for removal in zero and non-zero parts are different.

6. Discussion and Conclusions

In this paper, we explored the zero-inflated and hurdle-generalized Poisson/negative
binomial models for analyzing count data. It was shown that such models can effectively
tackle the common challenges of excessive zero and over-dispersion in analyzing insurance
claim data. The nested structure of the models mentioned allows for the use of a likelihood
ratio test to select the most appropriate model.

Further, we provided a detailed study of how to include exposure information in
zero-inflated and hurdle models. We find that including exposure as a covariate in both the
zero and non-zero parts can provide superior results than just including it in the non-zero
part as an offset.

Finally, we showed that Lasso regression can be applied to HGP-P and HNB-P regres-
sion models for variable selection.

There are several directions to be explored for future research. One is to apply Bayesian
methods to GP regression models, focusing on modeling over-dispersed count data. An
earlier study in this direction was presented by Scollnik (1995). Another direction is
to investigate the variable selection of zero-inflated or hurdle models. Techniques such
as linear shrinkage, pretest, shrinkage pretest, Stein-type, and positive Stein-type Liu
estimators, see, e.g., Stein (1981), Ledoit and Wolf (2003), and Månsson et al. (2012), could
be considered in the context of the ZIGP-P or HGP-P models.
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Abbreviations
A full list of the abbreviations used in this manuscript (ordered alphabetically):
AIC Akaike information criterion
BIC Bayesian information criterion
CFMNB-2 Constrained two-point finite mixture of negative binomials
CFMNB-3 Constrained three-point finite mixture of negative binomials
FMNB-2 Two-point finite mixture of negative binomials
LL Log likelihood
LRT Likelihood ratio test
GP Generalized Poisson
GP-P Functional form of generalized Poisson
HGP Hurdle-generalized Poisson
HGP-P Hurdle functional form of generalized Poisson
HNB Hurdle negative binomial
HNB-P Hurdle functional form of negative binomial
HP Hurdle Poisson
NB-P Functional form of negative binomial
NBM2 Two-point negative binomial mixture
TGP-P Truncated functional form of generalized Poisson
TNB-P Truncated functional form of negative binomial
ZIGP-P Zero-inflated functional form of generalized Poisson
ZINB-P Zero-inflated functional form of negative binomial
ZIP Zero-inflated Poisson

References
Agresti, Alan. 2015. Foundations of Linear and Generalized Linear Models. Hoboken: John Wiley & Sons.
Bhaktha, Nivedita. 2018. Properties of Hurdle Negative Binomial Models for Zero-Inflated and Overdispersed Count Data. Ph.D.

Thesis, The Ohio State University, Columbus, OH, USA.
Boucher, Jean-Philippe, Michel Denuit, and Montserrat Guillén. 2007. Risk classification for claim counts: A comparative analysis of

various zero inflated mixed Poisson and hurdle models. North American Actuarial Journal 11: 110–31. [CrossRef]
Calderín-Ojeda, Enrique, Emilio GóMez-Déniz, and Inmaculada Barranco-Chamorro. 2019. Modelling zero-inflated count data with a

special case of the generalised Poisson distribution. ASTIN Bulletin: The Journal of the IAA 49: 689–707. [CrossRef]
Cameron, A. Colin, and Pravin K. Trivedi. 2013. Regression Analysis of Count Data. Cambridge: Cambridge University Press, vol. 53.
Consul, Prem. C. 1993. A model for distributions of injuries in auto-accidents. Insurance: Mathematics and Economics 13: 147. [CrossRef]
Consul, Prem. C., and Mohamed M. Shoukri. 1988. Some chance mechanisms related to a generalized poisson probability model.

American Journal of Mathematical and Management Sciences 8: 181–202. [CrossRef]
Consul, Prem C., and Gaurav C. Jain. 1973. A generalization of the Poisson distribution. Technometrics 15: 791–9. [CrossRef]
Cragg, John G. 1971. Some statistical models for limited dependent variables with application to the demand for durable goods.

Econometrica: Journal of the Econometric Society 39: 829–44. [CrossRef]
Czado, Claudia, Vinzenz Erhardt, Aleksey Min, and Stefan Wagner. 2007. Zero-inflated generalized Poisson models with regression

effects on the mean, dispersion and zero-inflation level applied to patent outsourcing rates. Statistical Modelling 7: 125–53.
[CrossRef]

Dai, Lin, Michael D. Sweat, and Mulugeta Gebregziabher. 2018. Modeling excess zeros and heterogeneity in count data from a complex
survey design with application to the demographic health survey in sub-saharan africa. Statistical Methods in Medical Research 27:
208–20. [CrossRef]

Dean, Charmaine, Jerry. F. Lawless, and Gord. E. Willmot. 1989. A mixed Poisson–inverse-gaussian regression model. Canadian
Journal of Statistics 17: 171–81. [CrossRef]

Deb, Partha, and Pravin K. Trivedi. 1997. Demand for medical care by the elderly: A finite mixture approach. Journal of Applied
Econometrics 12: 313–336. [CrossRef]

Denuit, Michel, Xavier Maréchal, Sandra Pitrebois, and Jean-François Walhin. 2007. Actuarial Modelling of Claim Counts: Risk
Classification, Credibility and Bonus-Malus Systems. Hoboken: John Wiley & Sons.

Dionne, Georges, and Charles Vanasse. 1989. A generalization of automobile insurance rating models: The negative binomial
distribution with a regression component. ASTIN Bulletin: The Journal of the IAA 19: 199–212. [CrossRef]

Famoye, Felix, and Karan P. Singh. 2006. Zero-inflated generalized poisson regression model with an application to domestic violence
data. Journal of Data Science 4: 117–30. [CrossRef]

Feng, Cindy. 2022. Zero-inflated models for adjusting varying exposures: A cautionary note on the pitfalls of using offset. Journal of
Applied Statistics 49: 1–23. [CrossRef]

Frees, Edward W. 2009. Regression Modeling with Actuarial and Financial Applications. Cambridge: Cambridge University Press.
Frees, Edward W., Richard A. Derrig, and Glenn Meyers. 2014. Predictive Modeling Applications in Actuarial Science. Cambridge:

Cambridge University Press, vol. 1.
Frees, Edward W., and Emiliano A. Valdez. 2008. Hierarchical insurance claims modeling. Journal of the American Statistical

Association 103: 1457–69. [CrossRef]
Fuzi, Mohd Fadzli Mohd, Abdul Aziz Jemain, and Noriszura Ismail. 2016. Bayesian quantile regression model for claim count data.

Insurance: Mathematics and Economics 66: 124–37. [CrossRef]

http://doi.org/10.1080/10920277.2007.10597487
http://dx.doi.org/10.1017/asb.2019.26
http://dx.doi.org/10.1016/0167-6687(93)90847-I
http://dx.doi.org/10.1080/01966324.1988.10737237
http://dx.doi.org/10.1080/00401706.1973.10489112
http://dx.doi.org/10.2307/1909582
http://dx.doi.org/10.1177/1471082X0700700202
http://dx.doi.org/10.1177/0962280215626608
http://dx.doi.org/10.2307/3314846
http://dx.doi.org/10.1002/(SICI)1099-1255(199705)12:3<313::AID-JAE440>3.0.CO;2-G
http://dx.doi.org/10.2143/AST.19.2.2014909
http://dx.doi.org/10.6339/JDS.2006.04(1).257
http://dx.doi.org/10.1080/02664763.2020.1796943
http://dx.doi.org/10.1198/016214508000000823
http://dx.doi.org/10.1016/j.insmatheco.2015.11.004


Risks 2023, 11, 213 17 of 17

Gerber, Hans U. 1990. When does the surplus reach a given target? Insurance: Mathematics and Economics 9: 115–9. [CrossRef]
Greene, William. 2008. Functional forms for the negative binomial model for count data. Economics Letters 99: 585–90. [CrossRef]
Hilbe, Joseph M. 2011. Negative Binomial Regression. Cambridge: Cambridge University Press.
Ismail, Noriszura, and Abdul Aziz Jemain. 2007. Handling overdispersion with negative binomial and generalized poisson regression

models. In Casualty Actuarial Society Forum. Arlington County: Casualty Actuarial Society, vol. 2007, pp. 103–58.
Ismail, Noriszura, and Hossein Zamani. 2013. Estimation of claim count data using negative binomial, generalized Poisson, zero-

inflated negative binomial and zero-inflated generalized Poisson regression models. In Casualty Actuarial Society E-Forum.
Arlington County: Casualty Actuarial Society, vol. 41, pp. 1–28.

Kleiber, Christian, and Achim Zeileis. 2008. Applied Econometrics with R. Berlin: Springer Science & Business Media.
Lambert, Diane. 1992. Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 34: 1–14.

[CrossRef]
Ledoit, Olivier, and Michael Wolf. 2003. Improved estimation of the covariance matrix of stock returns with an application to portfolio

selection. Journal of Empirical Finance 10: 603–21. [CrossRef]
Lee, Andy H, Kui Wang, and Kelvin K. W. Yau. 2001. Analysis of zero-inflated Poisson data incorporating extent of exposure.

Biometrical Journal 43: 963–75. [CrossRef]
Loquiha, Osvaldo, Niel Hens, Leonardo Chavane, Marleen Temmerman, and Marc Aerts. 2013. Modeling heterogeneity for count data:

A study of maternal mortality in health facilities in mozambique. Biometrical Journal 55: 647–60. [CrossRef] [PubMed]
Månsson, Kristofer, B. M. Golam Kibria, and Ghazi Shukur. 2012. On liu estimators for the logit regression model. Economic Modelling

29: 1483–88. [CrossRef]
Mullahy, John. 1986. Specification and testing of some modified count data models. Journal of Econometrics 33: 341–65. [CrossRef]
Park, Myung Hyun, and Joseph H. T. Kim. 2021. Modelling healthcare demand count data with excessive zeros and overdispersion.

Global Economic Review 50: 358–81. [CrossRef]
Park, Mee Young, and Trevor Hastie. 2007. L1-regularization path algorithm for generalized linear models. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 69: 659–77. [CrossRef]
Renshaw, Arthur E. 1994. Modelling the claims process in the presence of covariates. ASTIN Bulletin: The Journal of the IAA 24: 265–85.

[CrossRef]
Saffari, Seyed Ehsan, Robiah Adnan, and William Greene. 2013. Investigating the impact of excess zeros on hurdle-generalized Poisson

regression model with right censored count data. Statistica Neerlandica 67: 67–80. [CrossRef]
Scollnik, David P. M. 1995. Bayesian analysis of two overdispersed Poisson models. Biometrics 51: 1117–26. [CrossRef]
Stein, Charles M. 1981. Estimation of the mean of a multivariate normal distribution. The Annals of Statistics 9: 1135–51. [CrossRef]
Tang, Yanlin, Liya Xiang, and Zhongyi Zhu. 2014. Risk factor selection in rate making: EM adaptive LASSO for zero-inflated poisson

regression models. Risk Analysis 34: 1112–27. [CrossRef]
Tibshirani, Robert. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological)

58: 267–88. [CrossRef]
Wang, Shuo, Wangxue Chen, Meng Chen, and Yawen Zhou. 2023. Maximum likelihood estimation of the parameters of the inverse

gaussian distribution using maximum rank set sampling with unequal samples. Mathematical Population Studies 30: 1–21.
[CrossRef]

Wang, Weiren, and Felix Famoye. 1997. Modeling household fertility decisions with generalized Poisson regression. Journal of
Population Economics 10: 273–83. [CrossRef] [PubMed]

Wang, Zhu, Shuangge Ma, and Ching-Yun Wang. 2015. Variable selection for zero-inflated and overdispersed data with application to
health care demand in germany. Biometrical Journal 57: 867–84. [CrossRef]

Wüthrich, Mario V., and Michael Merz. 2008. Stochastic Claims Reserving Methods in Insurance. Hoboken: John Wiley & Sons.
Yip, Karen C. H., and Kelvin K. W. Yau. 2005. On modeling claim frequency data in general insurance with extra zeros. Insurance:

Mathematics and Economics 36: 153–63. [CrossRef]
Zamani, Hossein, and Noriszura Ismail. 2012. Functional form for the generalized poisson regression model. Communications in

Statistics-Theory and Methods 41: 3666–75. [CrossRef]
Zhen, Zhen, Liyang Shao, and Lianjun Zhang. 2018. Spatial hurdle models for predicting the number of children with lead poisoning.

International Journal of Environmental Research and Public Health 15: 1792. [CrossRef]
Zuo, Guoxin, Kang Fu, Xianhua Dai, and Liwei Zhang. 2021. Generalized Poisson hurdle model for count data and its application in

ear disease. Entropy 23: 1206. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0167-6687(90)90022-6
http://dx.doi.org/10.1016/j.econlet.2007.10.015
http://dx.doi.org/10.2307/1269547
http://dx.doi.org/10.1016/S0927-5398(03)00007-0
http://dx.doi.org/10.1002/1521-4036(200112)43:8<963::AID-BIMJ963>3.0.CO;2-K
http://dx.doi.org/10.1002/bimj.201200233
http://www.ncbi.nlm.nih.gov/pubmed/23828715
http://dx.doi.org/10.1016/j.econmod.2011.11.015
http://dx.doi.org/10.1016/0304-4076(86)90002-3
http://dx.doi.org/10.1080/1226508X.2021.2004907
http://dx.doi.org/10.1111/j.1467-9868.2007.00607.x
http://dx.doi.org/10.2143/AST.24.2.2005070
http://dx.doi.org/10.1111/j.1467-9574.2012.00532.x
http://dx.doi.org/10.2307/2533010
http://dx.doi.org/10.1214/aos/1176345632
http://dx.doi.org/10.1111/risa.12162
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1080/08898480.2021.1996822
http://dx.doi.org/10.1007/s001480050043
http://www.ncbi.nlm.nih.gov/pubmed/12293017
http://dx.doi.org/10.1002/bimj.201400143
http://dx.doi.org/10.1016/j.insmatheco.2004.11.002
http://dx.doi.org/10.1080/03610926.2011.564742
http://dx.doi.org/10.3390/ijerph15091792
http://dx.doi.org/10.3390/e23091206

	Introduction
	Mathematical Models
	Various Forms of Generalized Poisson and Generalized Negative Binomial Random Variables
	Hurdle Functional Form of the Generalized Poisson Regression Model
	Hurdle Functional Form of the Generalized Negative Binomial Regression Model

	Incorporating Exposure in Zero-Inflated and Hurdle Regression Models
	Model Fitting Results
	Malaysian Motor Insurance Data
	The US National Medical Expenditure Survey Data
	The freMTPL2freq Dataset

	The Lasso Regression
	Discussion and Conclusions
	References

