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Abstract: This paper introduces and studies a new family of diffusion models for stock prices with
applications in portfolio optimization. The diffusion model combines (stochastic) elasticity of volatil-
ity (EV) and stochastic volatility (SV) to create the SEV-SV model. In particular, we focus on the SEV
component, which is driven by an Ornstein–Uhlenbeck process via two separate functional choices,
while the SV component features the state-of-the-art 4/2 model. We study an investment problem
within expected utility theory (EUT) for incomplete markets, producing closed-form representations
for the optimal strategy, value function, and optimal wealth process for two different cases of prices of
risk on the stock. We find that when EV reverts to a GBM model, the volatility and speed of reversion
of the EV have a strong impact on optimal allocations, and more aggressive (bull markets) or cautious
(bear markets) strategies are hence recommended. For a model when EV reverts away from GBM,
only the mean reverting level of the EV plays a role. Moreover, the presence of SV leads mainly to
more conservative investment decisions for short horizons. Overall, the SEV plays a more significant
role than SV in the optimal allocation.

Keywords: CEV model; expected utility theory; stochastic volatility; stochastic elasticity of volatility

1. Introduction

The literature on optimal investment within expected utility began in the late 60s,
where the risky asset price was assumed as a geometric Brownian motion (GBM); see the
celebrated work of Merton (1969). Since then, many empirical studies have shown that this
simple model cannot properly fit real market data. The main drawback is that the GBM
does not capture implied volatility smile/skew effects from option prices.

To address its limitation, a simple extension of the GBM is the so-called local-volatility
constant elasticity of variance (CEV) model, originally proposed by Cox (1975) and Cox and
Ross (1976) as an alternative diffusion process for European option pricing. Compared with
the GBM, the merits of the CEV model are that the volatility rate correlates with the risky
asset price, known as the leverage effect, and empirical biases such as volatility smile can be
better captured. Beckers (1980), MacBeth and Merville (1980), and Emanuel and MacBeth
(1982) presented some theoretical arguments as well as empirical evidence to support
volatility changing with the stock price and a negative elasticity factor. The main application
of the CEV process has been on derivative pricing (see, for instance, Cox 1996; Davydov
and Linetsky 2001; Lo et al. 2000; Yuen et al. 2001). As for portfolio optimization, Gao (2009)
explored the optimal investment problem for defined contributions (DC) retirement plans
under a CEV model. The author derived the respective explicit solutions for the CRRA and
CARA utility functions by applying the stochastic optimal control, power transformation,
and variable change technique.

As documented in (Kim et al. 2014), however, one main disadvantage in the CEV
framework is that volatilities and underlying risky asset prices are perfectly correlated.
Much evidence currently exists of volatilities being correlated with but decoupled from
stock prices (e.g., implied volatility structures and trading of volatility indexes). These
stylized facts cannot be captured within constant elasticity of volatility models. To overcome
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this restriction, some researchers have proposed a time-varying elasticity parameter β (see
Ghysels et al. 1996; Harvey 2001). In particular, Kim et al. (2014) introduced an extension
of the CEV model named: “stochastic elasticity of variance” (SEV). The authors relaxed
the time deterministic elasticity assumption by allowing the elasticity to vary randomly,
and hence decoupled the movements of implied volatility from the risky asset prices. No
attempt at portfolio optimization for SEV models is known to the authors.

In a separate branch of the literature, stochastic volatility (SV) models are a natural
extension to the GBM and are capable of generating random volatility correlated with the
stock price. The 4/2 model is a new popular stochastic volatility (SV) model that was first
introduced by (Grasselli 2017). It combines the classic (Heston 1993) i.e., the 1/2 (Heston)
model and the 3/2 model of (Heston 1997) and (Platen 1997). By combining the two, the 4/2
model inherits the benefits of both 1/2 and 3/2 models while bringing additional benefits
such as an instantaneous volatility uniformly bounded away from zero and closed-form
solutions for pricing derivatives (see, e.g., Cui et al. 2017a, 2017b, 2018). In terms of
portfolio optimization, Kraft (2005), Chacko and Viceira (2005), and Boguslavskaya and
Muravey (2016) provided closed-form solutions and asymptotic expansions for various SV
models. More recently, Cheng and Escobar-Anel (2021) solved the expected utility problem
for the 4/2 SV model in the family of CRRA utilities, while (Cheng and Escobar-Anel 2022)
extended it to HARA. They derived analytical representations of the optimal investment
strategies, optimal wealth, and value function.

The separate benefits of both SEV and SV models tell an story of how the log of the
instantaneous volatility of stock returns depend on the stock itself (CEV) and also on
external factors (SEV, SV). Together, the presence of SEV and SV components imply that
the percentage change of volatility depends linearly on the percentage change in stock
prices (i.e., elasticity of volatility), with the caveat that the coefficients in this relation are
time dependent and random. Some researchers have already contributed to working with
a hybrid structure but almost entirely on the topic of pricing derivatives. For instance,
Choi et al. (2013) introduced a hybrid model built as a CEV multiplied by a stochastic
volatility term driven by a fast mean-reverting Ornstein–Uhlenbeck process. Moreover,
Cao et al. (2021) applied the hybrid model (SVCEV) to pricing a variance swap. As for port-
folio optimization, Gao (2010) works with a CEV-1/2 model, leading to an approximated
solution for a CRRA utility. However, the application of a hybrid structure that combines
the SEV and 4/2 models for investment problems has not been studied yet.

In this paper, we introduce a new hybrid model that combines the properties of both
the SEV and 4/2 processes. We do so by introducing an instantaneous volatility of the form
Sβt

t
(
a
√

vt +
b√
vt

)
for some constants a, b, where vt is the CIR factor, and βt is driven by an

OU process yt. We denote this hybrid structure as the SEV-4/2 model.
The main contributions of the paper are as follows:

1. We define a new, richer model capturing both stochastic elasticity of volatility and
stochastic volatility.

2. We study two sub-models arising from the way in which the OU process yt re-
lates to the elasticity of volatility βt. We use estimates of the 4/2 model as per
(Cheng and Escobar-Anel 2021) and estimates for the SEV as per (Kim et al. 2015) for
further analyses.

3. In closed-form optimal investment, we find optimal wealth and value function for a
risk-averse investor within expected utility theory, for two choices of prices of risk
(MPR). Our setting is different from that of (Gao 2010).

4. We show the impact of the new parameters, namely ky, σy, and θy, on the optimal
allocation. For this, we select and fix the paths of the processes representing states
of the market, i.e., increasing prices (bull market), a decreasing path (bear market),
and stable prices (normal market conditions).

5. We also compare the solution in the absence of SV to separate the effects of SEV from
those of SV.
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The structure of this paper is as follows: Section 2 introduces the SEV-4/2 model and some
properties. In Section 3, we derive closed-form solutions for the optimal strategy, wealth,
and value function for two choices of prices of risk (MPR). The parametric and numerical
settings are discussed in Section 4, and we analyze the sensitivity for two cases in Section 5:
(1) the interaction of SEV and SV processes and (2) the absence of SV process. Concluding
remarks are provided in Section 6.

2. Material and Methods: Model Formulation and Properties

Assume that a financial market consists of one risk-free asset and one risky asset
(i.e., stock). Let all the stochastic processes introduced in this paper be defined on a
complete probability space (Ω,F ,P, {Ft}t∈[0,T]), where {Ft}t∈[0,T] is a right-continuous
filtration generated by standard Brownian motions (BMs).

We assume that the price process of the risk-free asset Bt evolves according to

dBt = Btrdt, B0 = 1,

where the interest rate r is assumed to be constant. The price processes St of the risky asset
follow the hybrid structure of what we define as an SEV-4/2 model:

dSt

St
=
[
r + (λ̄

√
vt + λ̄c)S

βt
t

(
a
√

vt +
b√
vt

)]
dt

+Sβt
t

(
a
√

vt +
b√
vt

)(
ρdZ1t +

√
1− ρ2dZ2t

)
, (1)

where s0 > 0. The stochastic factors vt, βt evolve as follows:

dvt = κv(θv − vt)dt + σv
√

vtdZ1t, v0 > 0 (2)

βt = f (yt) (3)

dyt = κy
(
θy − yt

)
dt + σydZ3t, y0, (4)

with r, θv, θy, κv, κy, σv, σy ∈ R+; λ̄ ≥ 0; λ̄c ≥ 0; a ≥ 0; and b ≥ 0. Moreover, s0, v0 and
y0 are initial values; Z1, Z2, Z3 are independent Brownian motions; and f is a bounded
function of the hidden process yt ensuring that βt is well defined. In this setting, the MPR
becomes λ̄

√
vt + λ̄c; therefore the cases λ̄ = 0 and λ̄c = 0 will be considered separately.

We consider two cases (the Gaussian function first, and the Arctan function second):

f (yt) =
φ(yt; θy)− φ(θy; θy)

2φ(θy; θy)
(5)

f (yt) =
arctan(yt)

2π
− 0.25, (6)

where φ(y; µ) is the Gaussian density function at y with mean µ and unit variance. In both
cases, f lies in the practical region [−0.5, 0], which includes the GBM as a particular case.
The functions could easily be modified to accommodate any bounded region [βL, βU ] for βt.

The presence of f is motivated by the formulation in Kim’s model (Kim et al. 2014).
In that article, the authors define f as a function connecting/driving the elasticity via an
Ornstein–Uhlenbeck (OU) process yt. The function f plays a key role in the behavior of
the elasticity, and we consequently consider two cases to illustrate how this choice affects
solutions to investment decisions.

On the one hand, the choice of the Gaussian function f in (5) is motivated by the
possibility of the SEV model becoming close to the GBM (βt = 0) at times. In other words,
we give credit to the GBM not only as a benchmark model but also as the natural state of
the market under normal conditions. On the other hand, the choice of the Arctan function
allows for βt to inherit the mean-reverting nature of yt directly. This can be seen from the
almost linear behavior of Arctan around the mean-reverting level of yt. This second choice
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does not favor the GBM but rather a nonzero value for the long-term elasticity of volatility
(i.e., the mean reversion level of βt, β̄ = θy 6= 0).

In this hybrid structure, the variance driver vt and the elasticity βt are assumed to
mean-revert around long-term values of θv and θy, with κv and κy reflecting the speed of
mean reversion. Furthermore, σv is the volatility of volatility, and σv

√
vt is the volatility

of the stochastic volatility (SV) variance driver. At the same time, σy is the volatility of
the elasticity of volatility (EV) driver yt. We also assume that the Feller condition holds

true for the CIR process; i.e., κvθv ≥ σ2
v
2 , which prevents the process vt from becoming

zero. In summary, Sβt
t

(
a
√

vt +
b√
vt

)
is the volatility of the risky asset. The instantaneous

correlation between the risky asset and the SV driver is ρ ∈ (−1, 1). Note that no correlation
exists between EV driver yt and vt or St for the sake of simplicity.

The drift term in our model is different from that in the existent literature, but the
diffusion term of our model embeds and connects popular stochastic volatility and the
elasticity of volatility models in the literature. For example,

• βt = 0, a = 1, and b = 0—The celebrated SV Heston model (Heston 1993).
• βt = 0, a = 0, and b = 1—The SV 3/2 model (Heston 1997).
• βt = 0, a > 0, and b > 0—The SV 4/2 stochastic volatility model (Grasselli 2017).
• vt = v, βt = β, a > 0, and b > 0—The constant elasticity of variance (CEV) model (see

Cox 1975; Cox and Ross 1976).
• vt = v, βt = f (yt), a > 0, and b > 0—The stochastic elasticity of variance (SEV) model

(see Kim et al. 2014)
• b = 0 and βt = β—The E-CEV model of (Gao 2010) and a particular case of the

generalized SABR model in (Lions and Musiela 2007).

The SEV-4/2 model is inspired by a combination of the 4/2 SV in (Grasselli 2017) and
the SEV of (Kim et al. 2014). The main motivation for both an SEV and an SV stems from
the presentation in (Beckers 1980); our proposal means that the log of the instantaneous
volatility of the stock return (σS) can be expressed as follows:

log(σS) = at + bt log(St), (7)

where at = a
√

vt +
b√
vt

is the S V coefficient, and bt = βt is the elasticity of volatility
coefficient. Moreover, as explained in (Gao 2010), the CEV model leads to a perpetually
declining volatility as the stock increases. To see this, note the instantaneous volatility is Sβ

t ,
and as the stock price increases over a long time, the instantaneous volatility will decrease
to zero. This cannot be fixed entirely by creating an SEV. The best correction is to allow for
an SV part in the instantaneous volatility.

Our model permits a risk-neutral pricing measure Q, which we identify via the change
of measure1:

dZ1,t = dZQ
1,t − λ1

√
vtdt (8)

dZ2,t = dZQ
2,t − (λ2

√
vt + λ2,c)dt (9)

dZ3,t = dZQ
3,t − λ3,cdt, (10)

where dZQ
i,t, i = 1, . . . , 3 are independent standard Brownian motions under Q. This means,

as per the notation in Equation (1), that λ̄ = ρλ1 +
√

1− ρ2λ2 and λ̄c =
√

1− ρ2λ2,c.
Moreover, the processes under Q would read as follows:
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dSt

St
= rdt + Sβt

t

(
a
√

vt +
b√
vt

)(
ρdZQ

1t +
√

1− ρ2dZQ
2t

)
, and

dvt = (κv + λ1σv)

(
θvκv

κv + σvλ1
− vt

)
dt + σv

√
vtdZQ

1t, (11)

dyt = κy

(
θyκy − λ3,cσy

κy
− yt

)
dt + σydZQ

3t, (12)

Proposition 1. The following conditions are needed for the change of measure in Equations (8)–(10)
to be well defined 2 :

2κvθv ≥ σ2
v (13)

κv + λ1σv > 0 (14)

max {|λ1|, |λ2|} <
κv

σv
(15)

Proof. The proof is presented in Appendix A.1.

3. Results: Portfolio Problem and Solution

We invest in the stock and a cash account Bt; πt is the proportion of wealth allocated
to the stock, and (1− πt) hence goes to cash. Using the self-financing condition, the wealth
process for this investor under the real-world measure P is given by

dXt

Xt
= πt

dSt

St
+ (1− πt)

dBt

Bt

=

[
r + πt(λ̄

√
vt + λ̄c)S

βt
t

(
a
√

vt +
b√
vt

)]
dt

+ πt

[
Sβt

t

(
a
√

vt +
b√
vt

)(
ρdZ1t +

√
1− ρ2dZ2t

)]
, (16)

where X(0) = x > 0 is an initial wealth.
For all (x0, v0) ∈ R+ ×R+ and t ∈ [0, T], we assume that the SDE (16) has a pathwise

unique solution {Xπ
t }t∈[0,T] under real-world measure P. Let us define

U (x, v) := {π : = (πt)t∈[0,T]
∣∣π as progressive measures,

X(0) = x0, v0 = v,EP
x0,v0,t0

[u(Xt)] < ∞,
}

,

where EP
x,v,t
[
.
]
= EP[. |Xt = x, vt = v

]
denote the conditional expectation.

To seek the optimal investment strategy πt, we maximize the expected utility of the
terminal wealth

V(x, S, v, y, t) = max
πt∈U

Et,x,v[u(XT)|Xt = x, St = s, vt = v, yt = y], (17)

where u(.) is the power utility function

u(x) =
xγ

γ

that is increasing and concave. V(x, S, v, y, t) is the value function, and U (x, S, v, y) denotes
the space of admissible trading strategies. By using the dynamic programming approach,
we obtain the form of optimal investment strategy πt and the Hamilton–Jacobi–Bellman
(HJB) equation for this optimization problem, with boundary condition V(x, S, v, y, T) = xγ

γ .
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The solution for the optimal strategy, terminal wealth, and value function are summarized
in the next proposition.

Proposition 2. The solution to problem (17) is provided next in two cases:

1. Assume λ̄c = 0 and γ
1−γ λ̄

(
κvρ
σv

+ λ̄
2

)
< κ2

v
2σ2

v
hold. The value function (17) can be repre-

sented as

V(x, S, v, y, t) = V(x, v, t) =
xγ

γ
exp

{
α1(τ) + α2(τ)vt

}
, (18)

where α1(τ) and α2(τ) are given by

α1(τ) = γrτ +
2θvκv

k2
ln

(
2k3e

1
2 (k1+k3)τ

2k3 + (k1 + k3)(ek3τ − 1)

)
, (19)

α2(τ) = k0
ek3τ − 1

ek3τ(k1 + k3)− k1 + k3
(20)

with auxiliary parameters k0 = γλ̄2

1−γ , k1 = κv − γλ̄σvρ
1−γ , k2 = σ2

v + γσ2
v ρ2

1−γ and k3 =√
k2

1 − k0k2, where τ = T − t. Then, the optimal strategy π∗(S, v, β, t) is given by

π∗(S, v, β, t) =
v

Sβ(av + b)

(
σvρ

1− γ
α2(T − t) +

λ̄

1− γ

)
, (21)

with βt = f (yt) defined by functions (5) and (6).
Furthermore, the optimal wealth X∗ has the following dynamics under measure P

dX∗t
X∗t

=

(
r +

(
λ̄

1− γ
+

σvρα2(T − t)
1− γ

)
λ̄vt

)
dt

+

(
λ̄

1− γ
+

σvρα2(t)
1− γ

)√
vt

(
ρ dZ1t +

√
1− ρ2 dZ2t

)
(22)

with initial wealth X0 = x > 0.
2. Assume λ̄ = 0. The value function (17) can be expressed as Equation (18), with

α1(τ) =

(
γr +

1
2

γλ̄2
c

1− γ

)
(T − t) (23)

α2(τ) = 0, (24)

Then, the optimal strategy π∗(S, v, β, t) is given by

π∗(S, v, β, t) =
√

v
Sβ(av + b)

λ̄c

1− γ
, (25)

with βt = f (yt) as per (5) and (6).
Furthermore, the optimal wealth X∗ has the following dynamics under real-world measure P

dX∗t = X∗t

[(
r +

λ̄2
c

1− γ

)
dt +

λ̄c

1− γ

(
ρ dZ1t +

√
1− ρ2 dZ2t

)]
(26)

with initial wealth X0 = x > 0.

Proof. The proof is in Appendix A.2.
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It should be noted that although the optimal strategies in Equations (21) and (25)
appear to be highly stochastic, the key value for an investor is the optimal number of shares
allocated, as this would determine the transaction costs involved in keeping the optimal
strategy. Our solution (Case 1) implies the following optimal number of shares:

φ∗t = π∗t
Xt

St
=

vtXt

Sβt+1
t (avt + b)

(
σvρ

1− γ
α2(T − t) +

λ̄

1− γ

)
. (27)

In the case of a simple Merton (GBM) solution, this amounts to

φ∗t =
Xt

St

(
λ̄

1− γ

)
, (28)

which is also stochastic; therefore, one solution does not offer obvious benefits in terms of
transaction costs compared to the other.

4. Results: Numerical Setting

The optimal solution to the portfolio problem, as per Section 3, depends on the
parameters of the model and the evolution of the state variables/processes. Section 4
clarifies how the parameters are chosen and how the processes are simulated.

This section is organized as follows: Section 4.1 specifies the estimate values of the
parameters in our model. We then discretize processes vt, yt, and St for simulation in
Section 4.2.

4.1. Parameter Value Selection

In our model, 12 parameters are required: r, λ̄, λ̄c, a, b, ρ, κv, κy, θv, θy, σv, and σy. Note
that for simplicity, we assume that λ̄c = 0. We propose values for these parameters via a
combination of two reliable sources on the embedded key models: the SEV and the 4/2.

1. Values for the 4/2-related parameters (κv, θv, σv) in the SEV-4/2 model
Our model combines two models—the SEV and 4/2 models. The hybrid structure not
only possesses new features but also inherits some characteristics of each of the two
models. The parameters, λ̄, a, b, ρ, κv, θv, and σv are inherited from the 4/2 model,
and their estimates were already obtained by (Cheng and Escobar-Anel 2021). Table 1
displays these parameter values.

Table 1. Estimates among the various models.

Parameters 4/2 Model Merton

κ̂v 7.3479 -
θ̂v 0.0328 0.16862

σ̂v 0.6612 -
â 0.9051 -
b̂ 0.0023 -
ρ̂ −0.7689 -
λ̂ 2.9428 3.3431
Theoretical leverage (vt = θv) −0.76889 -

2. Values for the SEV-related parameters (κy, θy, σy) in the SEV-4/2 model
We consider two approaches for these parameters based on the two bound functions
f (see Equations (5) and (6)) connecting yt and βt.

2.1 For the Gaussian function, we propose values of κy, θy, and σy for a baseline
case and two other cases as follows in Table 2.
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Table 2. Estimation from the properties of the elasticity βt with the SEV-4/2 model.

Parameters Baseline Case 1 Case 2

κ̂y 2 0.5 10
θ̂y 0 −1 1
σ̂y 1 0.1 5

2.2 For the Arctan function, we match the SEV part of our model to the SEV part
of (Kim et al. 2015). Here, we call the SEV model in (Kim et al. 2015) as Kim’s
model. To distinguish the parameters from our model’s parameters, we use a
subscript K to denote parameters from Kim’s model. Let us recall that the stock
price Xt process can be expressed by the stochastic differential equation (SDE)
in Kim’s model as follows:

dXt = rKdt + σKXγt
t dWx

t

under a risk-neutral measure, where rK (interest rate) and σK (volatility coeffi-
cient) are positive constants, γt is a nonnegative stochastic process, and Wx

t is a
standard Brownian motion. Let θt = 2γt (i.e., γt =

θt
2 ) for convenience, and sup-

pose that θt follows an Ornstein–Uhlenbeck process given by the solution to
the SDE:

dθt = αK(µK − θt)dt + βKdWθ
t ,

where αK, µK, and βK are constants. From Figure 1 in (Kim et al. 2015) , we know
that the estimates of (σK, αK, βK, µK) are (0.2785, 250, 3.4982, 1.8890). In addition,
using the properties of OU processes, for t ≥ s we have

E0[θt] = µK, V0(θt) =
β2

K
2αK

(1− e−2αK t), and

cov0(θt, θs) =
β2

K
2αK

(e−αK(t−s) − e−αK(t+s)).

Now, with our model and notation, we get

(our model) f (yt) = βt =
θt

2
− 1 (Kim’s model) (29)

Given the non-linear nature of f , we first perform a Taylor approximation for
βt around θy. That is,

βt = f (yt) ≈ f (y) + f ′(y)(yt − y),

βt ≈
arctan(θy)

2π
− 0.25 +

1
2π(1 + θ2

y)
(yt − θy). (30)

Next, we match the properties of our approximated process and those of Kim’s
process:

E0[βt] ≈
arctan(θy)

2π
− 0.25 =

µK
2
− 1 (31)

V0[β1] ≈
σ2

y

2κy
(1− e−2κy) =

β2
K

8αK
(1− e−2αK ) (32)

cov0[β2, β1] ≈
σ2

y

2κy
(e−κy − e−3κy) =

β2
K

8αK
(e−αK − e−3αK ). (33)
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Using formulae (31)–(33) yields arctan θy = 2π( µK
2 − 0.75), κy = αK, and σ2

y =
β2

K
4 . Due to µK = 1.8890, it follows that

θy = tan
(2πµK

2
− 2π0.75

)
= 2.7505,

κy = 250,

σ2
y =

3.49822

4
= 3.0594 =⇒ σy = 1.7491.

Thus, for the Arctan function, we could propose values of κy, θy, and σy associ-
ated with Kim’s model for a new baseline case and two other cases, as listed in
Table 3 below:

Table 3. Estimation associated with Kim’s model for the SEV-4/2 model.

Parameters Baseline Case 1 Case 2

κ̂y 250 125 500
θ̂y 2.7505 −5 15
σ̂y 1.7491 0.5 5

4.2. Model Discretization and Simulation

Our hybrid structure contains three processes: St, vt, and yt. We apply the Euler–
Maruyama scheme to simulate yt and St. Discretization schemes of a CIR process are sum-
marized in (Lord et al. 2010), Table 1. To simulate vt, we use the Higham and Mao method.

Consider a time horizon [0, T] for T < ∞. We subdivide the time interval [0, T] into n
subintervals of equal width ∆t := T

n . We keep track of the values of the corresponding three
stochastic processes at each discrete-time point ti = i∆t for i = 1, 2, · · · , n. Within this set-
ting, the approximation formulae are presented together with the steps in our simulations.

Accordingly, the discretization of vt and yt for simulations is as follows:

vt+∆t = vt + κv(θv − vt)∆t + σv

√
| vt |
√

∆t εv
t+1, (34)

yt+∆t = yt + κy(θy − yt)∆t + σy
√

∆t ε
y
t+1. (35)

Prior to discretizing the underlying asset process, we first use the log return of the
risky asset instead of the simple return of the asset. That is, using Itô’s lemma yields

d(log St) =

(
r + λ̄Sβt

t (avt + b)− 1
2

S2βt
t
(
a
√

vt +
b√
vt

)2
)

dt + Sβt
t

(
a
√

vt +
b√
vt

)
dWt,

where dWt = ρdZ1t +
√

1− ρ2dZ2t. Denote At := log St, and we then discretize At
to obtain

At+∆t = At +

(
r + λ̄eβt At(avt + b)− 1

2
e2βt At

(
a
√

vt +
b√
vt

)2
)

∆t

+eβt At
t

(
a
√

vt +
b√
vt

)√
∆t εs

t+1, (36)

where (εs
t , εv

t , ε
y
t ) is independent of t. Furthermore, the Gaussian triple has the following

dependence

cov(εs
t , εv

t ) = ρ, cov(εs
t , ε

y
t ) = (εv

t , ε
y
t ) = 0.

After simulating the processes St, vt, and βt, we can produce the paths of optimal strategy
π∗t as per Equation (21).
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5. Results: Analysis of Optimal Investment Strategies

In this section, we analyze the effects of market parameters on the optimal stock
allocation, especially the parameters of the hidden process yt driving the elasticity in our
model, namely θy, κy, and σy. Throughout the section, unless otherwise stated, the basic
parameters are given in Tables 1–3 in Section 4.1.

It should be noted that the optimal stock allocation depends explicitly on three under-
lying processes in our model: the stock price itself (St), the driver of the stochastic elasticity
of volatility (yt), and the driver of the stochastic volatility (vt). Therefore, the dependence
of the optimal stock allocation on parameters is implicit; that is, the parameters impact the
behavior of the underlying processes, hence impacting the optimal allocation decision.

To capture the influence of parameters fairly, we split the behavior of stock prices
into three market states: bull market (increase in prices), bear market (decrease in prices),
and normal market (stable prices). We then pick three (St, vt, yt) paths, t = 0, . . . , T,
representing the bull mmrket path, the bear market path, and the normal market path,
respectively, to fix the Brownian path

(
WS

t , Zv
1t, Zy

3t
)

generating such scenarios, where
dWS

t = ρdZ1t +
√

1− ρ2dZ2t, t = 0, . . . , T. For these given paths, we explore the influence
of the new parameters by comparing several different parametric choices. In other words,
we consider only parameter changes, not changes in the path of the underlying noises.

Given that our model contains two components explaining instantaneous volatility
(i.e., SEV and SV), we first explore the impact of the SEV parameters on the optimal
allocation in the presence of both components (Section 5.1), and we then explore the impact
of the same parameters in the absence of the SV component (Section 5.2).

5.1. Sensitivity to the Interaction of SEV and SV Processes

As in the previous section, the study is split into two parts, each corresponding to a
functional representation of the elasticity of volatility.

1. Gaussian function analysis. The figures in this analysis can be found in Appendix A.3.1.

(a) Bull market conditions.
The first three figures (Figures A1–A3 in Appendix A.3.1) illustrate the impact
of yt parameters on the factors and the optimal stock allocation under the bull
market path.
We first study the impact of κy on the optimal stock allocation. We select three
different values for κy: {0.5, 2, 10}. Figure A1a shows the behavior of the bull
market path for the stock under these choices of κy. As anticipated, in such a
bull market, a slower speed of reversion for yt generates more variation in βt
and hence lower, more negative values (Figure A1d), leading to lower stock
prices (compared with a faster reversion).
Figure A1b shows no impact of κy parameters on vt as expected, while Figure A1c,d
confirm the changes in speed of reversion for yt and βt, respectively.
The optimal stock allocation in Figure A1e demonstrates a similar behavior
as yt: a slower mean reversion of allocation for κy = 0.5 that quickens as κy
increases. A decrease in the speed of reversion leads to (1) larger fluctuation
on the optimal allocation due to larger fluctuations in βt and (2) more aggres-
sive investment due to more negative values for βt. Interestingly, the more
aggressive investments are a result of not only higher stock prices but also a
more negative elasticity of volatility (βt), which result from a slower speed of
reversion in yt.
Figure A2 focuses on the impact of three different θy: {−1, 0, 1}. Figure A2a
reports the changes in the bull market path for the stock price. Due to the
assumption y0 = θy, changes in θy create a shift on the mean reverting level of
yt (Figure A2b), which is further cancelled out by the function in the transfor-
mation from yt to βt, leading to no changes in βt (Figure A2c) and therefore no
impact on stock prices (Figure A2a). This parameter is also disconnected from
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vt. Figure A2c,d indicate that variations in βt away from 0 (i.e., lower, more
negative values) lead to more aggressive stock allocations.
Figure A3 targets the influence of σy, {0.1, 1, 5}, on optimal stock allocation
for the bull market path. In this case, a larger volatility has a similar effect
as a slower speed of reversion. Therefore, it creates larger variations on βt
(Figure A3d), e.g., lower, more negative values and hence lower stock prices
(Figure A3a). This leads to similar implications in terms of optimal stock
allocation (Figure A3e): the higher σy, the more aggressive the investments in
the stock price (even though stock prices would be lower in this bull market,
Figure A3a).
In summary, the consistent pattern among all these figures (bull market) is that
larger deviations of βt from 0 lead to more aggressive stock allocations; these
variations can be incited by larger values of σy and smaller values of κy. This
phenomenon can be explained, in financial terms, by observing that a more
negative beta implies smaller volatilities, which, combined with an increase in
stock prices (bull market), lead to excellent market conditions and therefore
more aggressive stock allocations.

(b) Bear market conditions.
The detailed analysis presented above can be extended concisely to the case of
the bear market (Figures A4, A5, and A6 for κy, θy, and σy, respectively). Here,
larger deviations of βt (away from 0) combined with a downturn in prices (bear
market) lead to a more conservative stock allocation. The variation in βt is
more pronounced with larger values of σy or smaller values of κy. In financial
terms, this suggests that lower stock prices combined with larger volatilities
lead to more conservative risky allocations.

(c) Normal market conditions.
The case of normal market conditions (Figures A7, A8, and A9 for κy, θy,
and σy, respectively) behaves as expected. That is, allocations could increase
or decrease depending on small fluctuations in prices and beta, with no clear
pattern in terms of aggressive/conservative behavior. As anticipated, σy causes
larger fluctuations in optimal allocation, with a smaller impact by κy and no
impact of θy. The sharp downward movement in allocations in these figures
toward the end of the horizon (from year 4 to 5) is due to the impact of the SV
component (not observable in the figures in Section 5.2). This means that the
SV component plays a larger role under normal market conditions than it does
under bull and bear conditions.

2. Arctan function analysis. The figures in this analysis can be found in Appendix A.3.2.

(a) Bull market conditions.
Figures A10–A12 illustrate the impact of yt parameters on the factors and
the optimal stock allocation under the bull market path. We first study the
impact of κy on the optimal stock allocation. We select three different values
for κy : {125, 250, 500}. In this section, we present on the main observations.
Figure A10a indicates no impact of κy on the behavior of the stock St. This is
because βt inherits the mean-reverting nature of yt via the Arctan function,
which behaves almost linearly around the mean-reverting level. Figure A10c,d
confirm the changes in speed of reversion for yt and βt, respectively.
The optimal stock allocation, as depicted Figure A10e, shows a similar behavior
to that of βt. An increase in the speed of reversion leads to larger fluctuations
on the optimal allocation due to larger fluctuations in βt. The range of the
fluctuation is small and mostly impacted by the SV component due to the
sharp downward movement toward the end of the horizon.
Figure A11 depicts the impact of θy, {−5, 2.7505, 15}. Changes in θy create
significant shifts on the elasticity of volatility βt in Figure A11c, leading to
lower stock prices in Figure A11a. These large changes in βt impact the optimal
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stock allocation, as shown in Figure A11d. A smaller long-term mean leads
to a more negative βt and more aggressive optimal allocations. Interestingly,
the more aggressive investments are not a result of higher stock prices but
rather a more negative elasticity of volatility (βt).
Figure A12 focuses on the impact of σy, {0.5, 1.7491, 5}. Figure A12b,c confirm
the changes in volatility for yt and βt, respectively. The latter shows very
small variations on βt (Figure A12c) and therefore no impact on stock prices
(Figure A12a). All of the above lead to almost no impact on the optimal allo-
cation for various volatilities σy. Similarly to κy above, here the main impact
stems from the SV component, as evidenced by the downward movement.
In summary, on the one hand, changes in κy and σy have almost no impact on
the optimal allocation, as the main source of influence is the SV component.
On the other hand, the long-term mean θy plays a key role: the more negative
it is, the more aggressive the stock allocations become. This phenomenon can
be explained, in financial terms, as follows: a more negative β implies smaller
volatilities, which, combined with an increase in stock prices (bull market), lead
to excellent market conditions and hence more aggressive stock allocations.

(b) Bear market conditions.
The detailed analysis presented above can be extended concisely to the case of
the bear market (Figures A13, A14, and A15 for κy, θy, and σy, respectively).
First of all, optimal allocation remain insensitive to changes in κy and σy.
Secondly, larger deviations of βt (away from 0), which happens for large
negative values of θy, combined with a downturn in prices (bear market) lead
to a more conservative stock allocation. In financial terms, this tells us that
lower stock prices combined with larger volatilities lead to more conservative
risky allocations.

(c) Normal market conditions.
The case of normal market conditions (Figures A16, A17, and A18 for κy, θy,
and σy, respectively), behaves as expected and similarly to the bear and bull
cases in terms of κy and σy.
However, here, we also observe that the smaller the θy, the farther the deviation
of βt from zero and hence the less aggressive the investment strategy. This
means normal market conditions behave like bear market conditions in terms
of the impact of βt parameters.

5.2. Sensitivity in the Absence of the SV Process

In Section 5.1, we observed several sharp downward movements of allocations in
Figure A6 under bear market conditions and in Figures A7–A9 under normal market
conditions from years 4 to 5. In particular, similar behaviors become more significant under
all market conditions (bull, bear, and normal) in the Arctan function analysis. This new
section shows that the reason for that behavior is the stochastic volatility part. Here, we
perform the analysis when only the SEV component is considered. To eliminate the SV
component in the solution, we make σv = κv converge to zero, thereby forcing vt to be θv.

The study is split into two parts, each corresponding to a functional representa-
tion of the elasticity of volatility, namely the Gaussian function, and the Arctan function.
For each of these two functions, we explore the impact of parameters in bull, bear, and
normal markets.

1. Gaussian function analysis. The figures in this analysis can be found in Appendix A.4.1.

(a) Bull market conditions.
Figures A19–A21 in Appendix A.4.1 illustrate the impact of yt parameters on
the stock price and the optimal stock allocation under the bull market path.
Since the order of parameters and values is the same as in Section 5.1, we will
not repeat the details here.
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Compared to Section 5.1–1(a), Figure A19a shows a similar behavior of the
bull market path for the stock under various κy as the interaction of the SEV
and SV processes, which highlights the low impact of the SV part on the stock
behavior. The optimal stock allocation, depicted in Figure A19b, presents a
similar behavior as that in Section 5.1–1(a). However, the slight difference is
that the curve of optimal allocations has a small shift towards conservative
allocations due to the absence of the SV component. The allocation becomes
less aggressive than that in Section 5.1–1(a).
Figure A20 demonstrates the impact of θy. The behaviors of St and optimal
allocation are similar to those in Section 5.1– 1(a). Again, the curve of optimal
allocations has a small shift towards conservative allocations due to the absence
of the SV component.
Figure A21 depicts the influence of σy on optimal stock allocation. The lack of
the SV component creates a small shift towards conservative allocations.
The major difference in the absence of the SV component is that we observe
minimum impact on St, and the curve of optimal allocations is similar in shape
but has a small shift towards conservative allocations.

(b) Bear market conditions.
The analysis presented above can be extended to the case of bear market for κy,
θy, and σy (Figures A22, A23, and A24, respectively, in Appendix A.4.1). Here,
we observe the same behavior as presented for the Gaussian function with
SEV and SV (Section 5.1–1(b)): larger deviations of βt (away from 0) combined
with a downturn in prices (bear market) lead to a more conservative stock
allocation. The variation in βt is more pronounced with larger values in σy or
smaller values in κy. In addition, the sharp down turn in optimal allocations at
the end of year 5 is corrected when the SV component is eliminated.

(c) Normal market conditions.
The case of normal market conditions (Figures A25, A26, and A27 for κy, θy,
and σy respectively) behaves as in the corresponding Section 5.1–1(c). The key
observation is that the sharp downward movement in allocations in these
figures toward the end of the horizon (from year 4 to 5) is corrected in the
absence of the SV component. This means that the SV component plays
a larger role under normal market conditions than it does under bull and
bear conditions.

2. Arctan function analysis. The figures in this analysis can be found in Appendix A.4.2.

(a) Bull market conditions.
Figures A28–A30 illustrate the impact of yt parameters on the factors and the
optimal stock allocation under the bull market path. The order of parameters
and values is the same as in Sections 5.1 and 5.2, so we will not repeat the
details here.
We first analyze the impact of κy. The behavior of St is similar to that in
Section 5.1–2(a), but the optimal stock allocation (Figure A28b) shows a sig-
nificantly different behavior than in Section 5.1–2(a). As fluctuations on the
optimal allocation are mostly impacted by the SV component, almost no fluc-
tuations occur in this case. The sharp downside movement toward the end of
the horizon has also disappeared.
Figure A29 depicts the impact of θy. Similar behaviors are observed as those in
Section 5.1–2(a) for various θy. Additionally, due to the lack of the SV compo-
nent, almost no fluctuations occur in optimal allocation, and the sharp down-
side movement toward the end of the horizon observed in Section 5.1–2(a)
is corrected.
Figure A30 illustrate on the impact of σy, which is minimal on stock prices
and on the optimal allocation. Again, due to the lack of the SV component,
the downward movement of allocations in Section 5.1–2(a) disappears.
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In summary, only θy has some impact on the optimal allocation, and the sharp
downside movements toward the end of the horizon are corrected in all cases.

(b) Bear market conditions.
The bear market analysis is illustrated in Figures A31–A33. Here also, optimal
allocation remains insensitive to changes in κy and σy. Larger deviations of βt
(away from 0) occur for large negative values of θy, which combined with a
downturn in prices (bear market), lead to a more conservative stock allocation.
In the absence of the SV component, the fluctuations in optimal allocations are
very small, and the sharp downside movement toward the end of the horizon,
as in Section 5.1–2(b), is also eliminated.

(c) Normal market conditions.
The case of normal market conditions is depicted in Figures A34–A36. This
behaves as in the corresponding Section 5.1–2(c). More interestingly, in the
absence of the SV component, the fluctuations in optimal allocations are very
small, and, as expected, the sharp downside movement toward the end of the
horizon disappears.

6. Conclusions, Limitations and Future Research

This paper presents the first portfolio optimization analysis using a hybrid structure
of the SEV and SV models. We obtained closed-form solutions for the optimal strategy,
value function, and optimal wealth process within EUT for two choices of prices of risk. We
also explored two sub-models arising from an Ornstein–Uhlenbeck driver for the elasticity
of volatility.

Using three simulated paths, each capturing three key market states, bull, bear and
normal, we analyze the impact of the three main new parameters (i.e., κy, θy, σy) on the
optimal stock allocation. This is done for two separate functions (i.e., a Gaussian and
Arctan) describing the behavior of the SEV component.

When applying the Gaussian function, for both bull and bear markets, we see that
changes in the elasticity factor (i.e., βt) has remarkable impact on stock allocations. In partic-
ular, the larger the deviation of βt from zero, the more aggressive the optimal stock strategy
in the bull market, and the more conservative the optimal strategy in the bear market. Large
variations in βt can be incited by larger values of σy or smaller values of κy, while changes
in θy do not affect the behaviors of βt, and therefore there is little influence on allocation.
These observations confirm the practitioners view that small volatility combined with an
increase in stock prices (bull market) would lead to an excellent investment environment
(higher risky allocation), while large volatility combined with a decrease in stock prices
(bear market) generate a bad market condition, and accordingly, investors should take a
prudent and conservative strategy in their investment of stocks.

For the Arctan function, only variations in the long-term mean (θy) played an important
role on the optimal stock allocations in the case of bull and bear markets. That is, larger
negative values of θy generate larger deviations of βt (away from 0), leading to more
aggressively optimal stock strategy in bull financial markets; whereas, more conservatively
optimal stock allocations would be recommended in bear financial markets.

Interestingly, in normal market conditions, no clear pattern in terms of aggressive/
conservative behavior on the optimal allocation was observed for both functions, arctan
and Gaussian. This was due to the small fluctuations in stock prices and βt. We also notice
that the presence of SV component incites a sharp downward movements in the optimal
allocation toward short maturities, this is well-known in the SV literature.

Overall, we found that the SEV process plays a more significant role in optimal
allocations than the SV component, with some of the new parameters playing a bigger role,
depending on the functional representation for the SEV. This has implications to financial
institutions and policy makers in terms of what are the relevant models and the important
parameters to check in order to ensure safe investment decisions.
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In terms of limitations and future horizons for research, the problem addressed in this
paper (i.e., SEV-SV in EUT) shall be extended to complete markets and HARA utilities.
There might be a lost in closed-form solutions for complete-markets due to the non-linear
nature of financial derivatives (on the single stock), but this might be solvable with a
convenient change of control. The presence of consumption can be also considered as
a way to tackle insurance-type problems. An estimation methodology should also be
implemented using a combination of volatility indexes, intraday data, long series of stock
prices and options prices to capture instantaneous volatilities and expected returns.
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Appendix A. Proofs and Figures

Appendix A.1. Proof of Proposition 1

Proof.
Step 1: we first verify the change of measures (8)–(10) are well defined by checking

the Novikov’s condition. That is:

E
[
exp

(1
2

∫ T

0
λ2

1(
√

vs)
2ds
)]

= E
[
exp

(λ2
1

2

∫ T

0
vsds

)]
< ∞,

E
[
exp

(1
2

∫ T

0
(λ2
√

vs + λ2,c)
2ds
)]

< ∞,

E
[
exp

(1
2

∫ T

0
(λ3,c)

2ds
)]

= E
[
exp

(λ2
3,c

2
T
)]

< ∞.

From Grasselli (2017) and Cheng and Escobar-Anel (2021), the following two cases
can be solved:

If λ2,c = 0:

λ2
i

2
<

κ2
v

2σ2
v
=⇒ |λi| <

κv

σv
=⇒ max

{
|λ1|, |λ2|

}
<

κv

σv
. (A1)

No condition is needed if λ2 = 0.
Step 2: verify the drift of the asset price equal to the short rate under the risk-neutral

measure Q, which is obviously satisfied here.
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Step 3: performing the Feller non-explosion test under the new measure. Recall that
under Q, the SDE is given by

dSt

St
= rdt + Sβt

t

(
a
√

vt +
b√
vt

)(
ρdZQ

1t +
√

1− ρ2dZQ
2t

)
We shall check the CIR process do not reach zero under Q :

dvt = κv(θv − vt)dt + σv
√

vtdZP
1t

=⇒ dvt = κv(θv − vt)dt− σvλ1vtdt + σv
√

vtdZQ
1t

=⇒ dvt = (κv + λ1σv)

(
θvκv

κv + σvλ1
− vt

)
dt + σv

√
vtdZQ

1t.

This implies the following conditions hold:

2κvθv ≥ σ2
v ⇐⇒ σ2

v ≤ 2κvθv

κv + λ1σv > 0 (as the variance driver is mean-reverting.).

Now we check the OU process do not reach zero under Q:

dyt = κy(θy − yt)dt + σydZP
3t

=⇒ dyt = κy(θy − yt)dt− σyλ3,cdt + σydZQ
3t

=⇒ dyt = κy

(
θyκy − λ3,cσy

κy
− yt

)
dt + σydZQ

3t

which boils down to the existing condition:

κy > 0.

These together lead to condition (13)–(15).

Appendix A.2. Proof of Proposition 2

Proof. Let us start with a change of control that would reduce the complexity of the
problem:

ψt = πtS
βt
t

(
a
√

vt +
b√
vt

)
, (A2)

The problem of interest under this new control becomes

V(t, x, v) = max
π

Et,x,v[u(XT)] = max
ψ

Et,x,v[u(XT)]

with wealth process (under real-world measure P) as follows:

dXt

Xt
=
(
r + ψt(λ̄

√
vt + λ̄c)

)
dt + ψt

(
ρdZ1t +

√
1− ρ2dZ2t

)
, X(0) = x > 0,

dvt = κv(θv − vt)dt + σv
√

vtdZ1t, v(0) = v0 > 0.

This indicates that the value function is no longer dependent on βt or St. For conve-
nience of presentation, we denote κv, θv and σv by κ, θ and σ in the calculations next.

Let V := V(t, x, v), with state process (X, v), and consider the HJB equation:

0 = sup
ψ

{
Vt + κ(θ − v)Vv +

1
2

σ2vVvv + x
(
r + ψ(λ̄

√
v + λ̄c

)
Vx +

1
2

x2ψ2Vxx + xψσρ
√

vVxv

}
= Vt + κ(θ − v)Vv +

1
2

σ2vVvv + sup
ψ

{
x
(
r + ψ(λ̄

√
v + λ̄c

)
Vx +

1
2

x2ψ2Vxx + xψσρ
√

vVxv

}
,
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which can be rewritten as

0 = Vt + κ(θ − v)Vv +
1
2

σ2vVvv + sup
ψ
{ f (ψ)} (A3)

with boundary condition V(T, x, v) = xγ

γ where γ ∈ (−∞, 0)
⋃
(0, 1). To eliminate the

supremum, with the first order condition we have a candidate optimal investment strategy
ψ, i.e., ψ∗ such that

f ′(ψ) = x
(
λ̄
√

v + λ̄c
)
Vx + ψx2Vxx + xσρ

√
vVxv = 0.

The candidate ψ∗ can be obtained as:

ψ∗ = −
x
(
λ̄
√

v + λ̄c
)
Vx + xσρ

√
vVxv

x2Vxx

= −
(
λ̄
√

v + λ̄c
)
Vx

xVxx
− σρ

√
vVxv

xVxx
(A4)

under the assumption that Vxx < 0 due to γ < 1. Secondly, substituting ψ∗ into the HJB
equations yields the following non-linear PDE for the value function:

0 = Vt + κ(θ − v)Vv +
1
2

σ2vVvv + xrVx + x(λ̄
√

v + λ̄c)

[
−
(
λ̄
√

v + λ̄c
)
Vx

xVxx
− σρ

√
vVxv

xVxx

]
Vx

+
1
2

x2

[
−
(
λ̄
√

v + λ̄c
)
Vx

xVxx
− σρ

√
vVxv

xVxx

]2

Vxx + xσρ
√

v

[
−
(
λ̄
√

v + λ̄c
)
Vx

xVxx
− σρ

√
vVxv

xVxx

]
Vxv

= Vt + κθVv + xrVx +
1
2

σ2vVvv − κvVv −
1
2

[(
λ̄
√

v + λ̄c)Vx + σρ
√

vVxv
]2

Vxx
. (A5)

To find the solution we use the separation ansatz:

V(t, x, v) =
xγ

γ
h(t, v) with h(T, v) = 1,

Then, using

Vx =
γxγ−1

γ
h = xγ−1h, Vxx = (γ− 1)xγ−2h, Vxv = xγ−1hv,

Vt =
xγ

γ
ht, Vv =

xγ

γ
hv, Vvv =

xγ

γ
hvv.

Thereby we have

ψ∗ = −
(
λ̄
√

v + λ̄c
)
Vx

xVxx
− σρ

√
vVxv

xVxx

= − λ̄
√

v + λ̄c

γ− 1
− σρ

√
vhv

(γ− 1)h
(A6)

Substituting the ansatz into the HJB equation yields

0 = ht + κθhv + γrh +
1
2

σ2vhvv − κvhv +
1
2

γ
[
(λ̄
√

v + λ̄c)h + σρ
√

vhv
]2

(1− γ)h
. (A7)
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The structure implies that h(t, v) is in the following exponential affine form

h(t, v) = exp
(
α1(τ(t)) + α2(τ(t))v

)
:= h (A8)

with time horizon τ(t) = T− t, and thus using boundary condition h(T, z) = 1 for ∀z gives
us that

α1(0) = α1(τ(T)) = 0, α2(0) = α2(τ(T)) = 0.

Again since,

ht = −(α′1(τ(t)) + α′2(τ(t)v)h, hv = α2(τ(t))h and hvv = α2(τ(t))hv = α2
2(τ(t))h,

we rearrange to emphasize the linearity in v by using this structure of h(t, v) to obtain

0 = −
(
α′1(τ) + α′2(τ)v

)
h + κθα2(τ)h + γrh +

1
2

σ2vα2
2(τ)h− κvα2(τ)h

+
1
2

γ
[
λ̄
√

v + λ̄c)h + σρ
√

vα2(τ)h
]2

(1− γ)h

+ v
[
−α′2(τ)h + α2

2(τ)h
(

1
2

σ2 +
γσ2ρ2

2(1− γ)

)
− α2(τ)κh

]
= −α′1(τ)h + α2(τ)κθh + γrh +

1
2

γλ̄2
c

1− γ
h

+ v
[
−α′2(τ)h + α2

2(τ)h
(

1
2

σ2 +
γσ2ρ2

2(1− γ)

)
+ α2(τ)h

(
− κ +

γλ̄σρ

1− γ

)
+

1
2

γλ̄2

1− γ
h
]

+
√

v
[

γλ̄λ̄c

1− γ
h + α2(τ)h

γσρλ̄c

1− γ

]
(A9)

To solve Equation (A9), we shall discuss two cases as follows:
Case 1: Assume that λ̄c = 0 and λ̄ 6= 0 , then we cancel h out leading to the following
Riccati equations for α1 and α2:

α′1(τ) = κθα2(τ) + γr, (A10)

α′2(τ) =
1
2

(
σ2 +

γσ2ρ2

1− γ

)
︸ ︷︷ ︸

k2

α2
2(τ)−

(
κ − γλ̄σρ

1− γ

)
︸ ︷︷ ︸

k1

α2(τ) +
1
2

γλ̄2

1− γ︸ ︷︷ ︸
k0

.

Then α′2(τ) can be written as

α′2(τ) =
1
2

k2α2
2(τ)− k1α2(τ) +

1
2

k0 (A11)

with boundary conditions α1(0) = 0, α2(0) = 0 with constants k0, k1, k2 that have to satisfy
k2

1 − k0k2 > 0.
Now we will solve the Riccati Equation (A11). First of all we need to find a particular

solution α̃2(τ). By observing it is quite easy to check that

α̃2(τ) =
k1 −

√
k2

1 − k0k2

k2
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is a solution, and denote
√

k2
1 − k0k2 by k3 and then α̃2(τ) =

k1−k3
k2

. Set w = 1
α2(τ)−

k1−k3
k2

,

then we get α2(τ) =
k1−k3

k2
+ 1

w , which implies

α′2(τ) = −
w′

w2 .

Hence, from the equation satisfied by α2(τ), we obtain

−w′

w2 =
1
2

k2

(
k1 − k3

k2
+

1
w

)2
− k1

(
k1 − k3

k2
+

1
w

)
+

1
2

k0

=
1
2

k2

(
k2

1 − 2k1k3 + k2
3

k2
2

+
2k1 − 2k3

k2w
+

1
w2

)
− k1(k1 − k3)

k2
− k1

w
+

1
2

k0

=
k2

1 − 2k1k3 + k2
3

2k2
+

k1 − k3

w
+

k2

2w2 −
k1(k1 − k3)

k2
− k1

w
+

1
2

k0

=
k2

2w2 −
k3

w
,

and thus w′ = k3w− k2
2 . This is a linear equation. The general solution is given by

∫ 1

k3w− k2
2

dw =
∫

dτ ⇐⇒
ln (k3w− k2

2 )

k3
= τ + C1 (where C1 is a constant)

⇐⇒ k3w = Cek3τ +
k2

2
(where C is a constant)⇐⇒ w =

Cek3τ + k2

2k3
.

Therefore, we have

α2(τ) =
k1 − k3

k2
+

(
Cek3τ + k2

2k3

)−1

. (A12)

The initial condition α2(0) = 0 gives

0 =
k1 − k3

k2
+

(
C + k2

2k3

)−1
⇐⇒ C =

k2k3 + k1k2

k3 − k1

Substituting into Equation (A12) yields

α2(τ) =
k1 − k3

k2
+

 ( k2k3+k1k2
k3−k1

)ek3τ + k2

2k3

−1

=
2k3(k3 − k1) + (k1 − k3)

[
(k3 + k1)ek3τ + (k3 − k1)

]
k2
[
(k3 + k1)ek3τ − k1 + k3

]
= k0

ek3τ − 1
ek3τ(k3 + k1)− k1 + k3

(A13)

with k3 =
√

k2
1 − k0k2.

Next we shall solve the Riccati equation. Integrating Equation (A10) we have∫
α′1(τ)dτ =

∫
κθα2(τ)dτ +

∫
γrdτ

⇐⇒ α1(τ) = κθ
∫

α2(τ)dτ + γrτ + c (c is a constant). (A14)
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Clearly, we only need to solve
∫

α2(τ)dτ. Let g := ek3τ and then τ = ln g
k3
⇒ dτ =

1
k3g dg. Let s1 := k1 + k3 and s2 := k1 − k3. Then Equation (A13) can be rewritten as

α2(τ) = k0
g− 1

s1g− s2

So, ∫
α2(τ) dτ =

∫
k0

g− 1
s1g− s2

1
k3g

dg =
k0

2k3s1

∫ 2g− 2
g2 − s2

s1
g

dg.

To solve
∫ g−1

g2− s2
s1

g
dg, we use the method of partial fraction decomposition, that is,

2g− 2
g2 − s2

s1
g
=

A
g
+

B
g− s2

s1

=
A(g− s2

s1
) + Bg

g(g− s2
s1
)

,

which indicates

A =
2s1

s2
, B = 2− A = 2− 2s1

s2
=

2s2 − 2s1

s2
.

Accordingly,

κθ
∫

α2(τ) dτ =
κθk0

2k3s1

∫ 2g− 2
g2 − s2

s1
g

dg

=
κθk0τ

k1 − k3
− 2κθ

k2
ln
(

ek3τ − k1 − k3

k1 + k3

)
. (A15)

We substitute Equation (A15) into Equation (A14) to obtain

α1(τ) = κθ
∫

α2(τ)dτ + γrdτ + c

=
κθk0τ

k1 − k3
− 2κθ

k2
ln
(

ek3τ − k1 − k3

k1 + k3

)
+ γrτ + c (A16)

When initial value α1(0) = 0, we can find the constant c from Equation (A16):

0 = −2κθ

k2
ln
(

1− k1 − k3

k1 + k3

)
+ c

⇐⇒ c =
2κθ

k2
ln

2k3

k1 + k3
,

and hence

α1(τ) =
κθk0τ

k1 − k3
− 2κθ

k2
ln
(

ek3τ − k1 − k3

k1 + k3

)
+ γrτ +

2κθ

k2
ln

2k3

k1 + k3

= γrτ +
2κθ

k2
ln

(
2k3e

1
2 (k1+k3)τ

2k3 + (k1 + k3)(ek3τ − 1)

)

Therefore, the solutions are

α1(τ) = γrτ +
2θκ

k2
ln

(
2k3e

1
2 (k1+k3)τ

2k3 + (k1 + k3)(ek3τ − 1)

)
(A17)
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α2(τ) = k0
ek3τ − 1

ek3τ(k1 + k3)− k1 + k3
. (A18)

with k3 =
√

k2
1 − k0k2. In addition, we have

k2
1 − k0k2 = κ2 − 2κ

γ

1− γ
λ̄σρ +

γ2

(1− γ)2 λ̄2σ2ρ2 − γ

1− γ
λ̄2σ2 − γ2

(1− γ)2 λ̄2σ2ρ2

= κ2 − γ

1− γ
λ̄σ(2κρ + λ̄σ) > 0

⇐⇒ γ

1− γ
λ̄

(
κρ

σ
+

λ̄

2

)
<

κ2

2σ2 (assumption holds)

which indicates the system to be well-defined. As a consequence, substituting Equa-
tions (A17) and (A18) into Equation (A8) we can get h(t, v). Furthermore, we can also
obtain the value function V(t, x, v) = xγ

γ h(t, v) as well as its partial derivatives. Thereby,
by substituting these partial derivatives of V into Equation (A6) gives

ψ∗ =
λ̄
√

v
1− γ

+
σρ
√

v
1− γ

hv

h
=
√

v
(

σρ

1− γ
α2(τ) +

λ̄

1− γ

)
.

As per (A2), we get

π∗ =
ψ∗

Sβ
(

a
√

v + b√
v

) =
v

Sβ(av + b)

(
σρ

1− γ
α2(τ) +

λ̄

1− γ

)
.

Case 2: Assume that λ̄ = 0, λ̄c 6= 0, and α2(τ) = 0, then cancelling h out leads to the
following Riccati equations for α1

α′1(τ) = γr +
1
2

γλ̄2
c

1− γ
, (A19)

As we know γ < 1, γ 6= 0, and σ > 0, it follows that

α1(τ) =

(
γr +

1
2

γλ̄2
c

1− γ

)
τ + C where C is constant.

with boundary conditions α1(0) = 0. Thus the solutions are

α1(τ) =

(
γr +

1
2

γλ̄2
c

1− γ

)
τ. (A20)

α2(τ) = 0. (A21)

As a consequence, substituting Equations (A20) and (A21) into Equation (A8) we
can get h(t, v). Furthermore, we can also obtain the value function V(t, x, v) = xγ

γ h(t, v) as
well as its partial derivatives. Thereby, by substituting these partial derivatives of V into
Equation (A6) gives

ψ∗ =
λ̄c

1− γ
+

σρ
√

v
1− γ

hv

h
=

λ̄c

1− γ
,
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which indicates

π∗ =
ψ∗

Sβ
(

a
√

v + b√
v

) =

√
vt

Sβt
t (avt + b)

λ̄c

1− γ
.

Appendix A.3. SEV-SV Analysis

Appendix A.3.1. Figures of Gaussian Function Analysis

1. Bull market conditions (Figures A1–A3):

(a) Changes of St (b) Changes of vt (c) Changes of yt

(d) Changes of βt (e) Changes of πt

Figure A1. Illustrate the impact on (a) stock prices, (b) driver of volatility, (c) driver of elasticity,
(d) elasticity of volatility, and (e) optimal stock allocations when varying the speed of reversion,
κy(e.g., κy = 0.5, 2, 10).

(a) Changes of St (b) Changes of yt

(c) Changes of βt (d) Changes of πt

Figure A2. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying θy(e.g., θy = −1, 0, 1).
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(a) Changes of St (b) Changes of yt

(c) Changes of βt (d) Changes of πt

Figure A3. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying σy(e.g., σy = 0.1, 1, 5).

2. Bear market conditions (Figures A4–A6):

(a) Changes of St (b) Changes of vt (c) Changes of yt

(d) Changes of βt (e) Changes of πt

Figure A4. Illustrate the impact on (a) stock prices, (b) driver of volatility, (c) driver of elasticity,
(d) elasticity of volatility, and (e) optimal stock allocations when varying the speed of reversion,
κy(e.g., κy = 0.5, 2, 10).

(a) Changes of St (b) Changes of yt

Figure A5. Cont.
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(c) Changes of βt (d) Changes of πt

Figure A5. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying θy(e.g., θy = −1, 0, 1).

(a) Changes of St (b) Changes of yt

(c) Changes of βt (d) Changes of πt

Figure A6. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying σy(e.g., σy = 0.1, 1, 5).

3. Normal market conditions (Figures A7–A9):

(a) Changes of St (b) Changes of vt (c) Changes of yt

(d) Changes of βt (e) Changes of πt

Figure A7. Illustrate the impact on (a) stock prices, (b) driver of volatility, (c) driver of elasticity,
(d) elasticity of volatility, and (e) optimal stock allocations when varying the speed of reversion,
κy(e.g., κy = 0.5, 2, 10).
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(a) Changes of St (b) Changes of yt

(c) Changes of βt (d) Changes of πt

Figure A8. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying θy(e.g., θy = −1, 0, 1).

(a) Changes of St (b) Changes of yt

(c) Changes of βt (d) Changes of πt

Figure A9. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying σy(e.g., σy = 0.1, 1, 5).

Appendix A.3.2. Figures of Arctan Function Analysis

1. Bull market conditions (Figures A10–A12):

(a) Changes of St (b) Changes of vt (c) Changes of yt

Figure A10. Cont.
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(d) Changes of βt (e) Changes of πt

Figure A10. Illustrate the impact on (a) stock prices, (b) driver of volatility, (c) driver of elasticity,
(d) elasticity of volatility, and (e) optimal stock allocations when varying the speed of reversion,
κy(e.g., κy = 125, 250, 500).

(a) Changes of St (b) Changes of yt

(c) Changes of βt (d) Changes of πt

Figure A11. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying θy(e.g., θy = −5, 2.7505, 15).

(a) Changes of St (b) Changes of yt

(c) Changes of βt (d) Changes of πt

Figure A12. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying σy(e.g., σy = 0.5, 1.7491, 5).

2. Bear market conditions (Figure A13−A15):
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(a) Changes of St (b) Changes of vt (c) Changes of yt

(d) Changes of βt (e) Changes of πt

Figure A13. Illustrate the impact on (a) stock prices, (b) driver of volatility, (c) driver of elasticity,
(d) elasticity of volatility, and (e) optimal stock allocations when varying the speed of reversion,
κy(e.g., κy = 125, 250, 500).

(a) Changes of St (b) Changes of yt

(c) Changes of βt (d) Changes of πt

Figure A14. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying θy(e.g., θy = −5, 2.7505, 15).

(a) Changes of St (b) Changes of yt

(c) Changes of βt (d) Changes of πt

Figure A15. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying σy(e.g., σy = 0.5, 1.7491, 5).

3. Normal market conditions (Figures A16–A18):
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(a) Changes of St (b) Changes of vt (c) Changes of yt

(d) Changes of βt (e) Changes of πt

Figure A16. Illustrate the impact on (a) stock prices, (b) driver of volatility, (c) driver of elasticity,
(d) elasticity of volatility, and (e) optimal stock allocations when varying the speed of reversion,
κy(e.g., κy = 125, 250, 500).

(a) Changes of St (b) Changes of yt

(c) Changes of βt (d) Changes of πt

Figure A17. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying θy(e.g., θy = −5, 2.7505, 15).

(a) Changes of St (b) Changes of yt

Figure A18. Cont.
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(c) Changes of βt (d) Changes of πt

Figure A18. Illustrate the impact on (a) stock prices, (b) driver of elasticity, (c) elasticity of volatility,
and (d) optimal stock allocations when varying σy(e.g., σy = 0.5, 1.7491, 5).

Appendix A.4. SEV Analysis

Appendix A.4.1. Figures of Gaussian Function Analysis

1. Bull market conditions (Figures A19–A21):

(a) Changes of St (b) Changes of πt

Figure A19. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
the speed of reversion, κy(e.g., κy = 0.5, 2, 10).

(a) Changes of St (b) Changes of πt

Figure A20. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
θy(e.g., θy = −1, 0, 1).

(a) Changes of St (b) Changes of πt

Figure A21. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
σy(e.g., σy = 0.1, 1, 5).

2. Bear market conditions (Figures A22–A24):
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(a) Changes of St (b) Changes of πt

Figure A22. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
the speed of reversion, κy(e.g., κy = 0.5, 2, 10).

(a) Changes of St (b) Changes of πt

Figure A23. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
θy(e.g., θy = −1, 0, 1).

(a) Changes of St (b) Changes of πt

Figure A24. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
σy(e.g., σy = 0.1, 1, 5).

3. Normal market conditions (Figures A25–A27):

(a) Changes of St (b) Changes of πt

Figure A25. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
the speed of reversion, κy(e.g., κy = 0.5, 2, 10).
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(a) Changes of St (b) Changes of πt

Figure A26. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
θy(e.g., θy = −1, 0, 1).

(a) Changes of St (b) Changes of πt

Figure A27. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
σy(e.g., σy = 0.1, 1, 5).

Appendix A.4.2. Figures of Arctan Function Analysis

1. Bull market conditions (Figures A28–A30):

(a) Changes of St (b) Changes of πt

Figure A28. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
the speed of reversion, κy(e.g., κy = 125, 250, 500).

(a) Changes of St (b) Changes of πt

Figure A29. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
θy(e.g., θy = −5, 2.7505, 15).
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(a) Changes of St (b) Changes of πt

Figure A30. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
σy(e.g., σy = 0.5, 1.7491, 5).

2. Bear market conditions (Figures A31–A33):

(a) Changes of St (b) Changes of πt

Figure A31. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
the speed of reversion, κy(e.g., κy = 125, 250, 500).

(a) Changes of St (b) Changes of πt

Figure A32. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
θy(e.g., θy = −5, 2.7505, 15).

(a) Changes of St (b) Changes of πt

Figure A33. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
σy(e.g., σy = 0.5, 1.7491, 5).
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3. Normal market conditions (Figures A34–A36):

(a) Changes of St (b) Changes of πt

Figure A34. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
the speed of reversion, κy(e.g., κy = 125, 250, 500).

(a) Changes of St (b) Changes of πt

Figure A35. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
θy(e.g., θy = −5, 2.7505, 15).

(a) Changes of St (b) Changes of πt

Figure A36. Illustrate the impact on (a) stock prices and (b) optimal stock allocations when varying
σy(e.g., σy = 0.5, 1.7491, 5).

Notes
1 In principle, an incomplete market setting permits infinitely many risk-neutral measures, nonetheless investors can select one

using options in an approach called market completion.
2 This provides necessary conditions.
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