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Abstract: Metaverses have been evolving following the popularity of blockchain technology. They
build their own cryptocurrencies for transactions inside their platforms. These new cryptocurrencies
are, however, still highly speculative, volatile, and risky, motivating us to manage their risk. In
this paper, we aimed to forecast the risk of Decentraland’s MANA and Theta Network’s THETA.
More specifically, we constructed an aggregate of these metaverse cryptocurrencies as well as their
combination with Bitcoin. To measure their risk, we proposed a modified aggregate risk measure
(AggM) defined as a convex combination of aggregate value-at-risk (AggVaR) and aggregate expected
shortfall (AggES). To capture their dependence, we employed copulas that link their marginal models:
heteroskedastic and ensemble learning-based models. Our empirical study showed that the latter
outperformed the former when forecasting volatility and aggregate risk measures. In particular, the
AggM forecast was more accurate and more valid than the AggVaR and AggES forecasts. These risk
measures confirmed that an aggregate of the two metaverse cryptocurrencies exhibited the highest risk
with evidence of lower tail dependence. These results are, thus, helpful for cryptocurrency investors,
portfolio risk managers, and policy-makers to formulate appropriate cryptocurrency investment
strategies, portfolio allocation, and decision-making, particularly during extremely negative shocks.

Keywords: metaverse cryptocurrency; conditional heteroskedasticity; ensemble learning; copula;
modified aggregate risk measure

1. Introduction

Technological advancements are currently extending our reality into a new digital
world called the metaverse (or extended reality). The terminology was first introduced in a
science fiction novel describing a three-dimensional virtual environment (Stephenson 1992).
Nowadays, the metaverse enhances how we do things in our society, how we entertain
others, and is the path to having a plethora of cultural experiences (Xi et al. 2022). It
also enables many creators (individuals, groups, or companies) to open their business
outlets digitally. Furthermore, it is accessible anytime, anywhere in the world, mixing our
physical world with the digital world. Many metaverses have built their own financial
instruments, i.e., metaverse cryptocurrencies, and have adopted them as objects inside their
platforms. The goods in the metaverse can be commercialized or transferred through the
corresponding metaverse cryptocurrency (Ordano et al. 2022).

An example of metaverses is Decentraland, one of the game platforms built on a
blockchain. This metaverse enables players to buy a private virtual LAND, digital parcels
of the metaverse, in which they publish their content (Ante 2022b; Ordano et al. 2022). The
LAND can be customized by the owner for public or private use. It can also be traded, where
each transaction process and each change in ownership is permanently recorded in a smart
contract (Dowling 2022a). Decentraland allows application developers to fully capitalize on
the economic interactivity between their applications and users (Ordano et al. 2022). All the
transactions and interactions are performed using MANA, the name of its cryptocurrency.
When launched in 2017, MANA was sold for about $0.02. Its price has, since then, increased

Risks 2023, 11, 32. https://doi.org/10.3390/risks11020032 https://www.mdpi.com/journal/risks

https://doi.org/10.3390/risks11020032
https://doi.org/10.3390/risks11020032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0003-3972-1131
https://orcid.org/0000-0001-6675-1040
https://doi.org/10.3390/risks11020032
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks11020032?type=check_update&version=1


Risks 2023, 11, 32 2 of 25

to the highest level of around $5.20 on 26 November 2021, with a market capitalization
of around $9.49 billion; see CoinMarketCap.com (https://coinmarketcap.com, access on
17 January 2023). Another metaverse comes from a blockchain company, namely, Theta
Network. Theta Network is an early pioneer in new blockchain innovations that support
many creators in building and customizing their blockchains, specifically video, media,
and entertainment blockchains, for online security advancement. It allows them to bring
their content to its decentralized data and peer-to-peer delivery network safely (Theta Labs
2022). THETA, one of its two native cryptocurrency tokens, handles various governance
tasks within the network. THETA was launched in 2018 with a value of $0.18. As of 26
March 2021, it reached its highest value of $13.27 and highest market capitalization of
$13.27 billion; see CoinMarketCap.com (https://coinmarketcap.com, 17 January 2023).

Metaverses are examples of the development of non-fungible tokens (NFTs). NFTs are
basically blockchain-traded rights to any digital instrument. In addition to an object inside
a metaverse, an NFT can be anything digital, such as an image, a video, a song, a virtual
character from a game, or a virtual tunic for this virtual character to wear (Dowling 2022a).
While traded through cryptocurrencies, NFTs behave quite differently from cryptocurren-
cies. More specifically, while cryptocurrencies are regarded as currencies with speculative
but fungible behaviors, NFTs are viewed as pure assets with non-fungible characteristics,
as their name suggests (Dowling 2022b). As a new class of emerging digital assets, NFTs
are still illiquid, speculative (Urom et al. 2022), antipersistent (Pereira et al. 2022), and
even immature and inefficient (Ante 2022b; Dowling 2022a), as in the early stage of cryp-
tocurrencies (Cheah and Fry 2015; Urquhart 2016). Consequently, they may have created a
fluctuating price in the cryptocurrencies used as a means of payment.

The unique characteristics of NFTs and their exploding popularity in early 2021 led
academia to investigate the NFT market more deeply, resulting in growing, but limited,
empirical studies since last year. For instance, Dowling (2022a) explored the pricing of
parcels of virtual real estate in Decentraland and found that their price series were char-
acterized by market inefficiency and an increase in value. However, the market for NFTs
was more efficient than the markets for cryptocurrencies and decentralized finance (DeFi)
assets, suggesting more significant portfolio diversification avenues when investing in
NFTs (Karim et al. 2022; Yousaf and Yarovaya 2022c). When studying the relationship
between volumes and returns for the NFT market and three submarkets, namely, Cryp-
toKitties, CryptoPunks, and Decentraland, Urom et al. (2022) provided significant evidence
of dependence between NFT returns and volumes. Similarly, Yousaf and Yarovaya (2022b)
pointed out that the trading volumes of three NFTs (i.e., THETA, Tezos [XTZ], Enjin Coin
[ENJ]) possessed a stronger connection with their returns and volatilities in extremely
bullish market circumstances than other quantile levels, indicating asymmetric return–
volume and volatility–volume relationships. There also existed co-integrations and causal
short-run connections among various NFT submarkets, including Decentraland (Ante
2022b). See also Umar et al. (2022b). In addition, some studies investigated the relationship
between NFTs and other financial assets, including cryptocurrencies. Using a volatility
spillover index, Dowling (2022b) demonstrated limited volatility spillover effects between
three NFTs (i.e., Decentraland LAND tokens, CryptoPunk images, Axie Infinity game
characters) and the two largest cryptocurrencies (i.e., Bitcoin [BTC] and Ethereum [ETH]).
NFTs also showed weak volatility spillovers with equities, gold, oil, bonds, fiat currencies,
and DeFi assets (Aharon and Demir 2022; Yousaf and Yarovaya 2022a). This means that
these new digital assets were still distinct and decoupled from traditional asset classes.
Nevertheless, their relationship might intensify in the face of the COVID-19 pandemic
(Umar et al. 2022a, 2022c).

Despite providing diversification, hedging, and safe-haven opportunities for other assets
(Karim et al. 2022; Ko et al. 2022; Yousaf and Yarovaya 2022a, 2022c; Zhang et al. 2022), NFTs
exhibit bubble behaviors (Maouchi et al. 2022; Vidal-Thomás 2022a; Wang et al. 2022a), which
are typical features of conventional cryptocurrencies (Agosto and Cafferata 2020; Cheah
and Fry 2015). NFT bubbles have even higher explosive magnitudes than crypto bubbles
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(Maouchi et al. 2022), suggesting that NFTs might be prone to higher risk and uncertainty
than cryptocurrencies. Accordingly, it is necessary to manage NFT risks quantitatively
with the purpose of helping investors, portfolio risk managers, and policy-makers design
appropriate investment strategies, portfolio allocation, and decision-making. Concerning
conventional cryptocurrencies, quantitative risk management has been intensively per-
formed for single cryptocurrencies (Almeida et al. 2022; Jiménez et al. 2020b, 2022; Troster
et al. 2019) and their aggregates or portfolios (Boako et al. 2019; Cheng 2023; Jiménez et
al. 2020a; Syuhada and Hakim 2020; Syuhada et al. 2022; Trucíos et al. 2020; Wang et al.
2020). While NFTs have been researched from some perspectives, as described above, quan-
titative risk management for the market for these new digital assets remains unexplored.
To the best of our knowledge, Ko et al. (2022) and Yousaf and Yarovaya (2022a) are the
only two studies to have analyzed a portfolio composed of NFTs and conventional assets,
including cryptocurrencies. Nevertheless, they focused only on the portfolio weight, based
on Markowitz’s mean–variance framework. Furthermore, they did not evaluate the risk
forecast accuracy.

Our study aimed to fill the gap in the above literature by providing an in-depth
analysis of quantitative risk management for NFTs, particularly metaverses. We selected the
native cryptocurrency of two metaverses, i.e., Decentraland’s MANA and Theta Network’s
THETA. The reason for taking these into consideration was that Decentraland is the largest
metaverse, ever since the invention of NFTs. It is also supported by the Theta Network,
specifically, to secure online transactions, deliver fast and complete information, and track
assets in a business network. This suggests that they evidently exhibit a direct relationship.
In addition, we included Bitcoin and constructed the following to compare the MANA–
THETA aggregate: (1) an aggregate of MANA and Bitcoin and (2) an aggregate of THETA
and Bitcoin. Bitcoin was the choice because it is the most prominent cryptocurrency with
the largest market capitalization. As argued by Dowling (2022a), Bitcoin traders may be the
leading traders of MANA and THETA, because of their familiarity with buying and using
Bitcoin. Although Bitcoin investor attention was unable to significantly predict NFT market
returns (Borri et al. 2022), the (larger) Bitcoin market was found by Ante (2022a) to affect the
growth of the (smaller) NFT market. In this paper, we attempted to address the following
question: Does an aggregate of MANA and THETA have a higher risk than an aggregate of
each metaverse cryptocurrency and Bitcoin? Due to evidence that NFTs, including MANA
and THETA, are risky assets offering higher returns than other assets, including Bitcoin
(Yousaf and Yarovaya 2022a), we hypothesized that aggregating MANA and THETA would
result in a higher risk than aggregating MANA and Bitcoin and combining THETA and
Bitcoin (H1).

To quantify possible future losses resulting from aggregating the aforementioned
cryptocurrencies, one needs to construct aggregate risk measures. These measures may
include aggregate value-at-risk (AggVaR) and aggregate expected shortfall (AggES), which
are basically the VaR and ES for an aggregate of returns at a given significance level over a
specified time horizon. The former is determined based on the probability of the occurrence
of the losses. The latter overcomes the former by accounting for the magnitude of all
the losses exceeding the former. However, ES is sensitive to extreme losses, resulting
in a risk forecast that may be too excessive, inaccurate, and not robust. This motivated
Jadhav et al. (2009), Cont et al. (2010), and Josaphat and Syuhada (2021) to modify ES by
truncating the losses beyond the VaR. This also led Zhang et al. (2014), Emmer et al. (2015),
and Kratz et al. (2018) to approximate it using an average of VaRs at some significance
levels based on the Riemann sum concept. Notwithstanding, these approaches removed
information about extreme losses that may have important effects. Therefore, we proposed a
convex combination of VaR and ES. In the context of aggregates or portfolios, we formulated
a modified aggregate risk measure (AggM) by incorporating AggVaR and AggES with
optimal weight. The idea behind employing AggM was to adjust the aggregate risk
forecast by increasing the risk magnitude measured by AggVaR, while decreasing the
risk magnitude measured by AggES such that the potential aggregate risk forecast was
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ideal. Using Syuhada’s (2020) coverage probability approach and Christoffersen’s (1998)
backtesting technique, we needed to address the following question: Is AggM more accurate
and more valid than AggVaR and AggES when quantifying the risk of the MANA–THETA,
MANA–BTC, and THETA–BTC aggregates? Since AggM is a combination of AggVaR
and AggES, it might have the advantages of both AggVaR and AggES. Accordingly, we
hypothesized that the AggM for aggregates of the MANA–THETA, MANA–BTC, and
THETA–BTC pairs would have higher forecast accuracy and validity than the respective
AggVaR and AggES (H2).

When computing the above aggregate risk measures, we had to account for the de-
pendence between the returns of the above-mentioned cryptocurrencies. This study aimed
to construct a dependent risk model for these cryptocurrencies through copulas. Cop-
ulas provide a way to model the dependence between two or more random variables
(McNeil et al. 2015). Thus, we thought copulas might be useful to accommodate the depen-
dence structure in each pair of these cryptocurrencies. Previous studies on cryptocurrencies
have employed copulas to examine the best optimal portfolio (Boako et al. 2019), to deter-
mine a cryptocurrency able to maximize returns on investment (Tiwari et al. 2019), and to
monitor the risk of various portfolios (Syuhada et al. 2022). In this paper, we employed
copulas belonging to the Archimedean copula family: Clayton, Gumbel, and Frank. The
Clayton (Gumbel) copula enabled us to handle lower (upper) tail dependence. Meanwhile,
the Frank copula exhibiting lower and upper tail independence was taken into consider-
ation as a benchmark. Employing Cramér–von Mises test, we attempted to address the
following question: Are the lower tails of the MANA–THETA, MANA–BTC, and THETA–
BTC pairs more dependent than their upper tails? We hypothesized that these pairs would
tend to have lower tail dependence (H3).

In addition, we proposed the use of heteroskedastic models (HMs) as statistical tools
to capture the stylized facts of the return and volatility of each cryptocurrency. The HMs
chosen included generalized autoregressive conditional heteroskedastic (GARCH), expo-
nential GARCH (EGARCH), and Glosten–Jagannathan–Runkle GARCH (GJR-GARCH)
models. The GARCH model was first introduced by Engle (1982) and then perfected by
Bollerslev (1986). Meanwhile, the EGARCH and GJR-GARCH models were the devel-
opments of the standard GARCH model. The former overcame the nonnegativity of the
GARCH model’s constant and coefficient terms (Nelson 1991). Both of them allowed for
leverage effects, i.e., the asymmetric responses of volatility to past negative and positive
returns (Glosten et al. 1993; Nelson 1991). These HMs have been widely utilized for cryp-
tocurrencies in the following instances: to forecast their volatility during bearish markets
(Kyriazis et al 2019), to observe their skewed returns (Cerqueti et al 2020), to study common
features of their returns (Fung et al. 2021), and to analyze asymmetry in their volatility
(Apergis 2022; Wajdi et al. 2020). In addition to HMs, we considered other predictive
models employing bagging and boosting methods, i.e., ensemble learning-based models
(ELs), that can generate better generalization ability in time series forecasting (Khairalla
2022). More specifically, we selected three famous ELs to model the return and volatility of
metaverse cryptocurrencies and Bitcoin. They included extreme gradient boosting (XG-
Boost), light gradient boosting machine (LightGBM), and categorical boosting (CatBoost).
Many works have adopted these ELs, specifically for classification and regression tasks
in engineering (Bo et al. 2022; Liu et al. 2022; Mahmood and Ali 2022) and medical sci-
ence (Gao et al. 2020; Wang et al. 2022b). XGBoost performs risk assessment better than
other machine learning models (Shi et al. 2022) and provides better accuracy than neural
networks (Abdikan et al. 2022). It also provides stability and preciseness compared to the
classical support vector model (Fan et al. 2018). Furthermore, XGBoost also provides the
role of one of the comparable models with less time consumed (Dong et al. 2018). Mean-
while, LightGBM has better prediction results than k-nearest neighbors, decision trees, and
random forest, specifically for corporate finance risk (Wang et al. 2022c). It also provides
better accuracy in the stock selection model (Li et al. 2022) and outperforms the classical
machine learning models (Ben Jabeur et al. 2021b; Laifa et al. 2021). CatBoost exhibits
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effective improvement compared to other advanced approaches (Ben Jabeur et al. 2021a),
surpasses the accuracy of classical machine learning and artificial neural networks as a
predictive model (Dutta and Roy 2022; Lu et al. 2022), and potentially increases accuracy
as a hybrid model (Bileki et al. 2022). However, implementing ELs for cryptocurrencies is
still scarce, especially to extract their return and volatility. Thus, we attempted to apply the
aforementioned ELs to model the return and volatility of the metaverse cryptocurrencies
and Bitcoin and address the following question: Do ELs perform better than HMs in fore-
casting the volatility and aggregate risk measures for the metaverse cryptocurrencies and
Bitcoin? Based on their superior performance mentioned above, we hypothesized that ELs
would produce volatility and aggregate risk measure forecasts with higher accuracy (H4).

The remainder of this paper is organized as follows. Section 2 describes the data, the
models, and the way to construct AggVaR, AggES, and AggM through copulas. In the same
section, we provide the coverage probability calculation and backtesting procedures to
confirm that our aggregate risk measure forecasts are accurate and valid. Section 3 presents
our findings and analyses regarding the modeling, forecasting, and validity. In Section 4,
we then provide our concluding remarks.

2. Data and Methodology

This section discusses the datasets, the models, the aggregate risk measures, and the
way to examine the accuracy and validity of their forecasts statistically.

2.1. Datasets

The daily price dataset for metaverse cryptocurrencies (i.e., Decentraland’s MANA
and Theta Network’s THETA) and Bitcoin (BTC) was retrieved from CoinMarketCap.com
(https://coinmarketcap.com, access on 20 May 2022), one of the cryptocurrency databases
shown by Vidal-Tomás (2022b) to be an appropriate database for conducting an empirical
cryptocurrency analysis. The data period started from 6 March 2020 to 30 April 2022.
The training dataset used to estimate the model parameters took a ratio of 80% (628
observations). The remaining 20% data (157 observations) were used for testing and
evaluation.

2.2. Dynamic Return Processes

The returns of the two metaverse cryptocurrencies and Bitcoin prices are defined as
follows:

Xt = log

(
PM

t
PM

t−1

)
, Yt = log

(
PT

t
PT

t−1

)
, Zt = log

(
PB

t
PB

t−1

)
, (1)

where PM
t , PT

t , and PB
t denote the prices of MANA, THETA, and BTC at time t, respec-

tively. We assumed that each of the return processes {Xt}t≥0, {Yt}t≥0, and {Zt}t≥0 has a
zero mean and follows a heteroskedastic model (see Section 2.3) due to the conditional
heteroskedasticity property of the volatility. This process is also modeled through ensemble
learning in Section 2.4.

2.3. Heteroskedastic Models

To model the return series in Equation (1), we utilized three heteroskedastic models
(HMs). The first one was Bollerslev’s (1986) first-order generalized autoregressive condi-
tional heteroskedastic or GARCH(1,1) model. More specifically, the GARCH(1,1) models
for {Xt}t≥0, {Yt}t≥0, and {Zt}t≥0 are given as follows:

Xt = σx,t εx,t, σ2
x,t = a0x + a1x σ2

x,t−1 + a2x X2
t−1, (2)

Yt = σy,t εy,t, σ2
y,t = a0y + a1y σ2

y,t−1 + a2y Y2
t−1, (3)

Zt = σz,t εz,t, σ2
z,t = a0z + a1z σ2

z,t−1 + a2z Z2
t−1, (4)

https://coinmarketcap.com
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respectively, where a0x, a0y, a0z > 0 and ajx, ajy, ajz ≥ 0, for j = 1, 2. The restriction of these
parameters, i.e., a1x + a2x < 1, a1y + a2y < 1, and a1z + a2z < 1, is required to ensure the
stationarity of the return process.

The second HM, used to model the returns, was the first-order exponential GARCH
or EGARCH(1,1) model of Nelson (1991) that can be written as follows:

Xt = σx,t εx,t, log
(

σ2
x,t

)
= b0x + b1x log

(
σ2

x,t−1

)
+ b2x

(
|Xt−1|
σx,t−1

−
√

2
π

)
+ b3x

(
Xt−1
σx,t−1

)
, (5)

Yt = σy,t εy,t, log
(

σ2
y,t

)
= b0y + b1y log

(
σ2

y,t−1

)
+ b2y

(
|Yt−1|
σy,t−1

−
√

2
π

)
+ b3y

(
Yt−1
σy,t−1

)
, (6)

Zt = σz,t εz,t, log
(

σ2
z,t

)
= b0z + b1z log

(
σ2

z,t−1

)
+ b2z

(
|Zt−1|
σz,t−1

−
√

2
π

)
+ b3z

(
Zt−1
σz,t−1

)
, (7)

with bjx, bjy, bjz ∈ R, for j = 0, 1, 2, 3. The above models allow past negative and positive
returns to have asymmetric impacts on the current volatility controlled by the parameter
b3·. More specifically, when b3· < 0, the impact of past negative returns (b2· − b3·) is higher
than the impact of past positive returns (b2· + b3·). This is what we call the leverage effect.
In contrast, the inverse leverage effect can be accommodated when b3· > 0, where the latter
impact is larger than the former impact.

The last HM utilized to model the return series was a first-order Glosten–Jagannathan–
Runkle GARCH or GJR-GARCH(1,1) model, proposed by Glosten et al. (1993). This model
also permits us to capture the asymmetric volatility property determined by an indicator
function; that is,1

Xt = σx,t εx,t, σ2
x,t = c0x + c1x σ2

x,t−1 + c2x X2
t−1 + c3x X2

t−1 I(−∞,0)(Xt−1), (8)

Yt = σy,t εy,t, σ2
y,t = c0y + c1y σ2

y,t−1 + c2y Y2
t−1 + c3y Y2

t−1 I(−∞,0)(Yt−1), (9)

Zt = σz,t εz,t, σ2
z,t = c0z + c1z σ2

z,t−1 + c2z Z2
t−1 + c3z Z2

t−1 I(−∞,0)(Zt−1). (10)

The restriction of the parameters is as follows: c0x, c0y, c0z > 0, cjx, cjy, cjz ≥ 0, for
j = 1, 2, and c3x, c3y, c3z ∈ R, with c1x +

1
2 c3x > 0, c1y +

1
2 c3y > 0, c1z +

1
2 c3z > 0, c1x + c2x +

1
2 c3x < 1, c1y + c2y +

1
2 c3y < 1, and c1z + c2z +

1
2 c3z < 1. If the leverage parameter c3· is

positive (negative), the (inverse) leverage effect is allowed.
All the parameters of the GARCH(1,1), EGARCH(1,1), and GJR-GARCH(1,1) models

are commonly estimated using the maximum likelihood method by assuming that each
of the innovation processes {εx,t}t≥0, {εy,t}t≥0, and {εz,t}t≥0 is a standard Gaussian white
noise with a distribution function Φ(·) and a probability function φ(·). The maximized
log-likelihood function can be employed to compare their goodness-of-fit performances.

2.4. Ensemble Learning-Based Models

For the comparisons, we also considered utilizing ensemble learning-based models
(ELs) to model the return series of the metaverse cryptocurrencies and Bitcoin. Basically,
ELs are multiple learning algorithms reconstructed through a statistical method, such as
bootstrapping, bagging, and averaging. As mentioned in the Introduction section, we used
three prominent ELs, including extreme gradient boosting (XGBoost), light gradient boost-
ing machine (LightGBM), and categorical boosting (CatBoost). The standard algorithms for
these ELs are provided in Tables 1–3.
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Table 1. XGBoost algorithm (Chen and Guestrin 2016; Mushava 2022).

Stage

Input 1. Training set consisting of predictors x = (xi)
n
i=1 and responses y = (yi)

n
i=1.

2. Differentiable loss function L(y, f (x)).
3. K number of weak learners.
4. Learning rate r ∈ (0, 1).

Process 1. Model initialization with a constant value:

f̂ (0)(x) = arg min
θ

n

∑
i=1
L(yi, θ).

2. for k = 1 to K do
a. Compute the Gradient:

Ĝk =
∂L(y, f (x))

∂ f (x)

∣∣∣∣
f (x)= f̂ (k−1)(x)

b. Compute the Hessian:

Ĥk =
∂2L(y, f (x))

∂ f (x)2

∣∣∣∣
f (x)= f̂ (k−1)(x)

c. Solve the optimization:

ϕ̂k = arg min
ϕ∈Φ

n

∑
i=1

1
2

Ĥk

[
− Ĝk

Ĥk
− ϕ(xi)

]2

f̂k(x) = rϕ̂k(x)
d. Update:

f̂ (k)(x) = f̂ (k−1)(x) + f̂k(x).

Output f̂XGBoost(x) = f̂ (K)(x) =
K

∑
k=0

f̂ (k)(x).

Table 2. LightGBM algorithm (Ke et al. 2017; Li et al. 2021).

Stage

Input 1. Training set consisting of predictors x = (xi)
n
i=1 and responses y = (yi)

n
i=1.

2. Differentiable loss function L(y, f (x)).
3. K number of basic classifiers.
4. Constant λ, γ ∈ (0, 1).
5. T number of leaf nodes.

6. Random weights of node ω0 =
(

ω
(0)
j

)T

j=1
.

Process 1. Model initialization with a constant value:

f̂ (0)(x) = arg min
θ

n

∑
i=1
L(yi, θ).

2. for k = 1 to K do
a. Find ϕk by solving the optimization:

ϕk = arg min
ϕ∈Φ

n

∑
i=1
L
(

yi, f (k−1)(xi) + ϕ(xi)
)

.

b. Compute:

gi =
∂L(yi, f (xi))

∂ f (xi)
.

hi =
∂2L(yi, f (xi))

∂ f (xi)2 .

c. Calculate:

Ji = L
(

yi, f (k−1)(xi)
)
+ gi ϕk(xi) +

1
2

hi ϕ2
k(xi).

Ω(ϕk) = γT +
1
2

λ
T

∑
j=1

(
ω
(k)
j

)2
.

f (k)(x) = Ω(ϕk) +
n

∑
i=1

Ji.

d. Update the weights of node:

ω
(k+1)
j = ω

(k)
j −

∑i∈I gi
λ + ∑i∈I hi

.

Output f̂LighGBM(x) = f̂ (K)(x) =
K

∑
k=0

f̂ (k)(x).
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Table 3. CatBoost algorithm (Prokhorenkova et al. 2018).

Stage

Input 1. Training set consisting of predictors x = (xi)
n
i=1 and responses y = (yi)

n
i=1.

2. Maximum iteration, I.
3. Learning rate γ ∈ (0, 1).
4. Loss function L with type Mode.
5. {σi}s

i=1.

Preprocess 1. σ = random permutation of [1, n].
2. Mi = 0 for i = 1, 2, . . . , n.
3. for t = 1 to I do

a. Calculate:
ri = yi −Mσ(i)−1(xi), for i = 1, 2, . . . , n.

b. Compute:
∆Mi = LearnModel((xj, rj) : σ(j) ≤ i), for i = 1, . . . , n.
Mi = Mi + ∆Mi, for i = 1, 2, . . . , n.

Process grad← CalcGradient(L, M, y).
r← random(1, s)
if Mode = Plain then⌊

G ← (gradr(i) for i = 1, 2, . . . , n)

if Mode = Ordered then⌊
G ←

(
gradr,σr(i)−1(i) for i = 1, 2, . . . , n

)
T ← empty tree
for each step of top-down procedure do:

for each candidate split c do:

Tc ← add split c to T
if Mode = Plain then⌊

∆(i)← avg(gradr,σr(i)−1(p) for
p : leafr(p) = leafr(i), σr(p) < σr(i)) for i = 1, . . . , n

if Mode = Ordered then⌊
∆(i)← avg(gradr,σr(i)−1(p) for
p : leafr(p) = leafr(i), σr(p) < σr(i)) for i = 1, . . . , n

loss(Tc)← cos(∆, G)
T ← arg min

Tc

(loss(Tc))

if Mode = Plain then⌊
Mr′ (i)← Mr′ (i)− γavg(gradr′ (p) for p : leafr′ (p) = leafr′ (i))
for r′ = 1, 2, . . . , s, i = 1, 2, . . . , n

if Mode = Ordered then⌊
Mr′ ,j(i)← Mr′ ,j(i)− γavg(gradr′ ,j(p) for p : leafr′ (p) = leafr′ (i),
σr′ (p) ≤ j) for r′ = 1, 2, . . . , s, i = 1, 2, . . . , n, j ≥ σr′ (i)− 1

Output Set of values, M, and decision tree T.

2.5. Copulas

We assumed that cryptocurrency returns are dependent. We modeled their depen-
dence using the so-called copula. A d-dimensional copula is a joint distribution function for
random variables U1, . . . , Ud uniformly distributed on a unit hypercube [0, 1]d (McNeil et al.
2015). This means that a copula C is a mapping of [0, 1]d into [0, 1], i.e., C : [0, 1]d → [0, 1],
with C(u) = C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud) for all u ∈ [0, 1]d. There are three
properties that must hold (McNeil et al. 2015):

1. C(u1, . . . , ud) = 0 if ui = 0 for any i.
2. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , d} and ui ∈ [0, 1].
3. For all (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with ai ≤ bi, we have

2

∑
i1=1

. . .
2

∑
id=1

(−1)i1+...+id C(u1i1 , . . . , udid) ≥ 0,

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , d}.
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The existence of a copula C for any multivariate distribution function F is guaranteed
by Sklar’s theorem, allowing us to express it as follows:

F(x) = F(x1, . . . , xd) = C[F1(x1), . . . , Fd(xd)], x ∈ Rd,

where F1, . . . , Fd are marginal distribution functions.
In this study, we considered d = 2, since we attempted to model the dependence

structure in each pair of two cryptocurrencies. To do a limitation, we only fitted three
copulas from the Archimedean copula family described in the following:

1. Clayton Copula
CCl(u, v; θ) = (u−θ + v−θ − 1)−1/θ (11)

where θ ∈ (0, ∞).
2. Gumbel Copula

CGu(u, v; θ) = exp
{
−
[
(− ln(u))θ + (− ln(v))θ

]1/θ
}

(12)

where θ ∈ [1, ∞).
3. Frank Copula

CFr(u, v; θ) = −1
θ

ln
[

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

]
(13)

where θ ∈ R\{0}.
The plot of their copula density c(u, v; θ) = ∂2C(u, v; θ)/∂u ∂v is provided in Figure 1,

demonstrating that the Clayton (Gumbel) copula exhibited lower (upper) tail dependence,
and the Frank copula had tail independence. Suppose that two random variables X and Y
had marginal distribution functions FX and FY and a joint distribution function determined
by these copulas. In that case, we could compute their Pearson’s correlation coefficient ρ
using the following equation (Schweizer and Wolff 1981; Syuhada and Hakim 2020):

ρ =

∫∫
[0,1]2

[C(u, v; θ)− uv]dF−1
X (u)dF−1

Y (v)√
Var(X)

√
Var(Y)

. (14)

In this study, the copula parameter θ was estimated using the maximum likelihood
method, and the goodness of copula fitting was evaluated using the Cramér–von Mises test.
More specifically, this hypothesis test was utilized to examine whether the copula fitting
was statistically adequate (Genest et al. 2006).
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Figure 1. Plot of Archimedean copula densities.

2.6. Aggregate Risk Measures

Aggregating individual risks is expected to create a low value with high accuracy
instead of simply summing them up (Syuhada and Hakim 2020). This reason urged us to
formulate risk measures for an aggregate of future risks or returns at time t + 1, given Ft
denoting a set of information available at time t. In this study, we attempted to forecast the
risk measures for three aggregates, including Xt+1 + Yt+1, Xt+1 + Zt+1, and Yt+1 + Zt+1,
by using three aggregate risk measures described as follows:

1. Aggregate Value-at-Risk (AggVaR)
The first risk measure was aggregate value-at-risk (AggVaR), the VaR for an aggregate
of returns. We linked these returns through a copula and derived its formula by
using the variance–covariance principle with zero-mean assumptions E(Xt+1|Ft) =
E(Yt+1|Ft) = E(Zt+1|Ft) = 0. Note that the VaR for the return Xt+1 at a given
significance level α ∈ (0, 1) is given by VaRα

x,t+1 = Φ−1(α)
√

Var(Xt+1|Ft). For the
case of Xt+1 + Yt+1, we can, thus, obtain its AggVaR as follows:

AggVaRα
x+y,t+1 = Φ−1(α)

√
Var(Xt+1 + Yt+1|Ft), (15)

where

Var(Xt+1 + Yt+1|Ft)

= Var(Xt+1|Ft) + Var(Yt+1|Ft) + 2ρx,y

√
Var(Xt+1|Ft)Var(Yt+1|Ft)

= σ2
x,t+1 + σ2

y,t+1 + 2ρx,y σx,t+1 σy,t+1, (16)

with

ρx,y = Corr(Xt+1, Yt+1|Ft)

= Corr(εx,t+1, εy,t+1)

=
∫∫

[0,1]2

[
C(u, v; θx,y)− uv

]
dΦ−1(u)dΦ−1(v)

=
∫∫

[0,1]2

[
C(u, v; θx,y)− uv

] 1
φ[Φ−1(u)]

1
φ[Φ−1(v)]

du dv. (17)
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Similarly, we formulate the AggVaR for Xt+1 + Zt+1 and the AggVaR for Yt+1 + Zt+1
as follows:

AggVaRα
x+z,t+1 = Φ−1(α)

√
σ2

x,t+1 + σ2
z,t+1 + 2ρx,z σx,t+1 σz,t+1, (18)

AggVaRα
y+z,t+1 = Φ−1(α)

√
σ2

y,t+1 + σ2
z,t+1 + 2ρy,z σy,t+1 σz,t+1, (19)

respectively.
2. Aggregate Expected Shortfall (AggES)

The second risk measure was aggregate expected shortfall (AggES), the ES for an
aggregate of returns. We adopted a simple ES under the normality assumption to
construct this risk measure. Note that the ES for the return Xt+1 is given as follows:

ESα
x,t+1 = E

(
Xt+1

∣∣∣Xt+1 ≤ VaRα
x,t+1,Ft

)
=

1
α

∫ α

0
VaRu

x,t+1 du

=

√
Var(Xt+1|Ft)

α

∫ α

0
Φ−1(u)du

= −φ[Φ−1(α)]

α

√
Var(Xt+1|Ft).

By adopting this result, we could obtain the AggES for Xt+1 + Yt+1, the AggES for
Xt+1 + Zt+1, and the AggES for Yt+1 + Zt+1 as follows:

AggESα
x+y,t+1 = −φ[Φ−1(α)]

α

√
σ2

x,t+1 + σ2
y,t+1 + 2ρx,y σx,t+1 σy,t+1, (20)

AggESα
x+z,t+1 = −φ[Φ−1(α)]

α

√
σ2

x,t+1 + σ2
z,t+1 + 2ρx,z σx,t+1 σz,t+1, (21)

AggESα
y+z,t+1 = −φ[Φ−1(α)]

α

√
σ2

y,t+1 + σ2
z,t+1 + 2ρy,z σy,t+1 σz,t+1, (22)

respectively.
3. Modified Aggregate Risk Measure (AggM)

The last risk measure was a convex combination of AggVaR and AggES called modi-
fied aggregate risk measure (AggM). The AggM for the three aggregates is expressed
as follows:

AggMα
x+y,t+1 = ωx,y AggVaRα

x+y,t+1 + (1−ωx,y)AggESα
x+y,t+1, (23)

AggMα
x+z,t+1 = ωx,z AggVaRα

x+z,t+1 + (1−ωx,z)AggESα
x+z,t+1, (24)

AggMα
y+z,t+1 = ωy,z AggVaRα

y+z,t+1 + (1−ωy,z)AggESα
y+z,t+1, (25)

with ωx,y, ωx,z, ωy,z ∈ (0, 1) denoting optimal weights determined by applying a sim-
ple adaptive random search algorithm on the training dataset. As we know, (Agg)ES
quantifies losses beyond (Agg)VaR, implying that (Agg)VaR is an essential infimum of
loss (Cascos and Molchanov 2013; Rohmawati and Syuhada 2015). The idea of using
AggM was to increase the risk magnitude measured by AggVaR while decreasing the
risk magnitude measured by AggES, resulting in an optimal risk magnitude.

2.7. Coverage Probability

The value of the risk measure forecast shows the possible future loss of a specific
asset at a certain level of significance. Based on this fact, we had an important question
concerning how accurate our risk measure forecasts were. To ensure that the risk measure
forecasts were accurate, the role of coverage probability was required (Syuhada 2020).
Suppose that R̂iskMα

s,t+1 denotes the forecast for an aggregate risk measure (i.e., either
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AggVaR, AggES, or AggM) at time t + 1 with a significance level α. In that case, its accuracy
could be evaluated by calculating its coverage probability as follows (Syuhada 2020):

P
(

St+1 ≤ R̂iskMα
s,t+1

∣∣∣Ft

)
= E

[
FSt+1|Ft

(
R̂iskMα

s,t+1

)∣∣∣Ft

]
, (26)

where St+1 is equal to either Xt+1 + Yt+1, Xt+1 + Zt+1, or Yt+1 + Zt+1. For the case of
AggES, the coverage probability was calculated by finding the value of α in Equation (22).

2.8. Backtesting Methods

It was also important to examine whether the resulting risk measure forecast was valid.
To do so, Christoffersen’s (1998) backtesting technique was employed. The procedure starts
by defining a binary sequence of violations in our simulation for each aggregate dataset
{St+1}. We denote it by {It+1}, with

It+1 =

{
0, St+1 > R̂iskMα

s,t+1,

1, St+1 ≤ R̂iskMα
s,t+1.

(27)

Christoffersen’s test aims to evaluate the null hypothesis

H0 : It+1 ∼ Bernoulli(α) (i.i.d.). (28)

This sequence must satisfy unconditional coverage and independence properties to
ensure that the risk forecast is valid (Christoffersen 1998). Thus, to evaluate the above
null hypothesis, we required two test statistics in the form of the likelihood ratio (LR) that
must be computed. First, the test statistic for Christoffersen’s unconditional coverage is
given as follows:

LRuc = −2 log
[(

1− α

1− π

)n0( α

π

)n1
]

, (29)

where n0 and n1 denote the number of “0” and “1” in {It+1}, respectively, and π =
n1/(n0 + n1). The second test statistic is the likelihood ratio for the independence test. The
test statistic for Christoffersen’s independence test is formulated as follows:

LRind = −2 log
(

L2

L1

)
, (30)

where L1 = (1 − π01)
n00 π

n01
01 (1 − π11)

n10 πn11
11 , L2 = (1 − π)(n00+n10)π(n01+n11), π01 =

n01/(n00 + n01), and π11 = n11/(n10 + n11), with nij denoting the number of the term
i followed by the term j in {It+1}. In summary, the test statistic for Christoffersen’s test is
the summation of the statistics LRuc and LRind; that is,

LRcc = LRuc + LRind. (31)

This LRcc asymptotically follows a chi-square distribution with two degrees of freedom.
If the resulting p-value is less than the considered significance level (α) of the test, then the
null hypothesis stated in Equation (28) is rejected.

3. Empirical Findings
3.1. Data Visualization and Preliminary Analysis

We depict in Figure 2 the dynamic of the daily prices and returns of MANA, THETA,
and BTC from 6 March 2020 to 30 April 2022. From this figure, we observed a tendency for
the prices of all the cryptocurrencies to be dependent. More specifically, a peak occurred
in the four hundredth observation, and after the six hundredth observation, all the prices
gradually decreased. This fact signified that these three cryptocurrencies were likely depen-
dent on each other. Figure 2 also shows that MANA and THETA returns were relatively
higher in value and more volatile than BTC returns. This evidence was confirmed by their
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summary statistics, reported in Table 4, where the means (respectively, standard deviations)
of MANA and THETA returns were two times higher than the mean (respectively, stan-
dard deviation) of BTC returns. This suggested that the two metaverse cryptocurrencies
provided higher returns for investors, but were riskier than BTC, in line with what Yousaf
and Yarovaya (2022a) concluded from their study. This was also preliminary support for
our first hypothesis (H1) that they had a higher risk than BTC.

Figure 2. Daily prices and returns of metaverse cryptocurrencies and Bitcoin.

Table 4. Summary statistics of metaverse cryptocurrencies and Bitcoin returns.

Statistic MANA THETA BTC

Mean 0.0043 0.0036 0.0018
Standard Deviation 0.0860 0.0767 0.0419
Skewness 1.5330 −1.0949 −2.0434
Kurtosis 25.1130 9.5274 29.1885
ADF (p-Value) −8.9563 ** (0.0100) −8.8064 ** (0.0100) −9.3992 ** (0.0100)
Ljung–Box (p-Value) 22.8975 (0.2939) 42.2619 *** (0.0026) 32.4647 ** (0.0386)
ARCH (p-Value) 34.4689 *** (0.0000) 6.9104 *** (0.0085) 3.7134 * (0.0539)

The asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

We also observe from Table 4 that the metaverse cryptocurrencies and BTC return
series were stationary processes with a weak serial correlation, based on the augmented
Dickey–Fuller (ADF) and Ljung–Box tests. Engle’s (1982) ARCH test confirmed that they
possessed a conditional heteroskedasticity effect, leading us to make use of GARCH-type
specifications to model the return and volatility. Surprisingly, the ARCH test statistic for
MANA and THETA returns was higher than that for BTC returns, indicating that the
former’s heteroskedasticity effect was stronger than the latter’s heteroskedasticity effect.
In addition, the scatter and correlation plots for the MANA–THETA, MANA–BTC, and
THETA–BTC return pairs in Figure 3 highlighted that they were highly correlated, which
was statistically significant at the 1% level. Figure 3 also shows that the correlation between
MANA and THETA (0.4993) was weaker than the MANA–BTC correlation (0.5422) and
THETA–BTC correlation (0.6290). This suggested that a portfolio made up of the two
metaverse cryptocurrencies might provide a higher diversification benefit for investors. In-
terestingly, the three pairs (i.e., MANA–THETA, MANA–BTC, and THETA–BTC) exhibited
lower tail dependence, indicating that their extreme negative returns tended to co-move in
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the same direction, as we hypothesized (H3) in the Introduction section. This inspired us to
employ a dependence model, determined using a copula (in particular, a Clayton copula).

Figure 3. Scatter and correlation plots between metaverse cryptocurrencies and Bitcoin returns. The
asterisk *** indicates statistical significance at the 1% level.

For further analyses, our dataset was split into a training set (80%) and a testing set
(20%). The training set was used to estimate the marginal model parameter, model the
dependence through copulas, and extract the optimal weight for the AggM risk measure
forecasting. Afterward, the testing set was employed to assess and compare our models’
volatility and risk measure forecasting performances.

3.2. Return and Volatility Modeling Using Heteroskedastic Models and Ensemble Learning

We first considered that the return process of each cryptocurrency followed first-order
GARCH, EGARCH, and GJR-GARCH marginal models under the normality assumption
for each innovation, as formulated in Equations (2)–(10). We used the maximum simulated
likelihood method to estimate their parameters. We present in Table 5 the resulting param-
eter estimates and the maximized log-likelihood value (Log-L) for each heteroskedastic
model (HM). These estimation results showed that the HMs were suitable models for
the return and volatility of each cryptocurrency, the parameter estimates of which were
statistically significant and satisfied the stationary conditions given in Section 2.3. We also
found that the EGARCH(1,1) model exhibited the (second) highest Log-L when model-
ing MANA and BTC (THETA) returns and volatilities, meaning that it tended to be the
best-fitting HM. On the other hand, the GJR–GARCH(1,1) model had the (second) highest
Log-L when modeling THETA (MANA and BTC) returns and volatilities, indicating that
it ranked second as the best-fitting HM. Surprisingly, all the HMs worked best on BTC
with the highest Log-L and had parameter estimates with the lowest standard error among
others. This might be because of the least volatile movement of its return series.
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Table 5. Parameter estimation result for heteroskedastic models.

MANA THETA BTC

GARCH(1,1) â0 (Std. Error) 0.0011 *** (0.0001) 0.0007 *** (0.0002) 0.0000 *** (0.0000)
â1 (Std. Error) 0.5205 *** (0.0274) 0.7837 *** (0.0448) 0.9276 *** (0.0145)
â2 (Std. Error) 0.4336 *** (0.0495) 0.1085 *** (0.0181) 0.0469 *** (0.0107)
Log-L 718.49 711.19 1102.22

EGARCH(1,1) b̂0 (Std. Error) −0.9094 *** (0.1093) −0.4542 *** (0.1618) −0.2534*** (0.0701)
b̂1 (Std. Error) 0.8105 *** (0.0224) 0.9079 *** (0.9079) 0.9586 *** (0.0112)
b̂2 (Std. Error) 0.5916 *** (0.0555) 0.2092 *** (0.0298) 0.1052 *** (0.0239)
b̂3 (Std. Error) 0.0017 (0.0331) −0.0278 ** (0.0141) −0.0646 *** (0.0103)
Log-L 722.41 712.03 1110.31

GJR-GARCH(1,1) ĉ0 (Std. Error) 0.0010 *** (0.0001) 0.0008 *** (0.0002) 0.0001 *** (0.0000)
ĉ1 (Std. Error) 0.5134 *** (0.0443) 0.7713 *** (0.0401) 0.8712 *** (0.0231)
ĉ2 (Std. Error) 0.3746 *** (0.0414) 0.0886 *** (0.0229) 0.0241 (0.0179)
ĉ3 (Std. Error) 0.0221 * (0.1209) 0.0646 ** (0.0268) 0.1208 *** (0.0000)
Log-L 720.03 712.37 1106.21

The asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Log-L stands
for the maximized log-likelihood value. The highest Log-L for each cryptocurrency is presented in boldface.

The modeling, based on the ELs, was carried out using Python programming (v3.7.6)
with specific libraries (i.e., xgboost v1.2.1, lightgbm v3.1.0, and catboost v0.24.3). We did
not tune the parameter; we, instead, used the default parameter built in each library. To
ensure that our results, based on the HMs and ELs, were comparable, we proposed the use
of root mean squared error (RMSE), weighted mean absolute percentage error (WMAPE),
and quasi-likelihood (QLIKE) to measure the accuracy of the volatility forecasts. These
measures were defined using the testing dataset as follows:

RMSE =

√√√√ 1
T

T

∑
t=1

(
σ̂2
·,N+t − σ̃2

·,N+t

)2
,

WMAPE =
∑T

t=1

∣∣∣σ̂2
·,N+t − σ̃2

·,N+t

∣∣∣
∑T

t=1 σ̃2
·,N+t

,

QLIKE =
1
T

T

∑
t=1

[
log
(

σ̂2
·,N+t

)
+

σ̃2
·,N+t

σ̂2
·,N+t

]
,

where σ̃2
·,N+t is the volatility proxy, and N and T are the size of the training and testing

datasets, respectively. In particular, we considered σ̃2
x,N+t = X2

N+t for the case of MANA,
σ̃2

y,N+t = Y2
N+t for the case of THETA, and σ̃2

z,N+t = Z2
N+t for the case of BTC, which

were realized volatilities. The use of WMAPE and QLIKE avoids the possibility of zero
division. The resulting volatility forecasts are depicted in Figure 4, and the forecast accuracy
evaluation is given in Table 6. According to WMAPE, we found that the ELs consistently
outperformed the HMs in forecasting the volatility of each cryptocurrency. This finding
was supported by the visualization in Figure 4, where the ELs produced forecasts that
could better follow the volatility trend. In particular, XGBoost, LightGBM, and CatBoost
performed best on BTC, THETA, and MANA, respectively. The RMSE and QLIKE measures
also supported LightGBM and CatBoost to provide the most accurate volatility forecasts for
THETA and MANA, respectively. In general, these results confirmed our fourth hypothesis
(H4) that the ELs tended to produce volatility forecasts with higher accuracy than the HMs.
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Figure 4. Volatility forecasts.

Table 6. Volatility forecast accuracy.

MANA THETA BTC

RMSE WMAPE QLIKE RMSE WMAPE QLIKE RMSE WMAPE QLIKE

GARCH(1,1) 0.0034 0.7005 22.5182 0.0027 0.6778 21.8645 0.0010 0.6438 34.7203
EGARCH(1,1) 0.0035 0.7542 22.3657 0.0028 0.7266 21.7566 0.0011 0.7717 33.8823
GJR-GARCH(1,1) 0.0037 0.7547 22.4564 0.0028 0.7170 21.7919 0.0010 0.7450 34.1062
XGBoost 0.0036 0.5779 36.5278 0.0030 0.5803 30.5082 0.0010 0.5864 34.7294
LightGBM 0.0028 0.5361 30.2349 0.0028 0.5439 21.4340 0.0013 0.6581 34.9123
CatBoost 0.0025 0.4553 27.0070 0.0029 0.5719 22.0944 0.0010 0.5945 34.8459

The lowest RMSE, WMAPE, and QLIKE for each cryptocurrency are presented in boldface.

3.3. Copula Fitting and Selection

After modeling metaverse cryptocurrencies and BTC returns using two classes of
marginal models (i.e., the HMs and ELs), we modeled their dependence through copu-
las. At first, we transformed the training return datasets using the estimated conditional
distribution function of these marginal models under the normality assumption, such
that we had Ut = FXt |Ft−1

(Xt; σ̌x,t) = Φ(Xt/σ̌x,t), Vt = FYt |Ft−1
(Yt; σ̌y,t) = Φ(Yt/σ̌y,t), and

Wt = FZt |Ft−1
(Zt; σ̌z,t) = Φ(Zt/σ̌z,t), where σ̌2

x,t, σ̌2
y,t, and σ̌2

z,t were the fitted volatilites. The
paired datasets {(Ut, Vt)}, {(Ut, Wt)}, and {(Vt, Wt)} were then fitted to the copulas for
the MANA–THETA, MANA–BTC, and THETA–BTC pairs, respectively. The parameter
estimation and Cramér–von Mises test results are tabulated in Table 7. This test showed
the Clayton copula to be the best copula model to represent the dependence structure in
each pair, as confirmed by its visualization in Figure 5. This indicated that our dataset
incorporated lower tail dependence, supporting our third hypothesis (H3).

Using Equation (17), we obtained the estimated value of Pearson’s ρ for each of the
MANA–THETA, MANA–BTC, and THETA–BTC pairs provided in the last column of
Table 7. According to Pearson’s ρ estimation results, the averaged value of ρ̂ for their
copula models, with HMs and ELs being their marginal models, was around 51.30% and
27.84%, respectively. Comparing these results to Figure 3, we observed that combining
copulas and HMs was better than integrating copulas and ELs. This was because the
estimated correlation coefficient produced by the former was quite similar in value to the
empirical correlation coefficient provided in Figure 3. This finding led to the deduction
that the dependence was captured well using a combination of copulas and HMs, although
these HMs might produce inaccurate volatility forecasts.
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Table 7. Copula fitting and selection.

Marginal Model Copula θ̂ (Std. Error) Log-L CvM (p-Value) ρ̂

MANA–THETA GARCH(1,1) Clayton 1.0661 (0.0611) 139.7905 0.0171 *** (0.4910) 0.5116
Gumbel 4.5793 (0.3107) 98.9511 0.2620 (0.0005) 0.4715
Frank 1.4585 (0.0335) 64.0629 0.1016 (0.0005) 0.5739

EGARCH(1,1) Clayton 1.0537 (0.0611) 136.2104 0.0181 *** (0.4431) 0.5069
Gumbel 4.5066 (0.3100) 97.2403 0.2592 (0.0005) 0.4554
Frank 1.4352 (0.0331) 59.5969 0.0958 (0.0005) 0.5665

GJR-GARCH(1,1) Clayton 1.0562 (0.0621) 134.4676 0.0178 *** (0.3981) 0.5107
Gumbel 4.5104 (0.3088) 96.0739 0.2667 (0.0005) 0.4496
Frank 1.4223 (0.0328) 56.0555 0.1000 (0.0005) 0.5703

XGBoost Clayton 0.2352 (0.0162) 139.6089 0.0245 *** (0.1663) 0.0656
Gumbel 3.0481 (0.2524) 86.8019 0.2175 (0.0005) 0.0733
Frank 1.1339 (0.0126) 48.8229 0.0809 (0.0005) 0.1661

LightGBM Clayton 0.1681 (0.0140) 113.8266 0.0255 *** (0.1364) 0.0319
Gumbel 3.0087 (0.2582) 82.3125 0.2131 (0.0005) 0.0363
Frank 1.0968 (0.0120) 28.9728 0.0799 (0.0005) 0.1081

CatBoost Clayton 0.1886 (0.0153) 122.7711 0.0254 *** (0.1424) 0.0523
Gumbel 3.0297 (0.2526) 85.4146 0.2179 (0.0005) 0.0641
Frank 1.1188 (0.0121) 43.6361 0.0833 (0.0005) 0.1603

MANA–BTC GARCH(1,1) Clayton 1.0299 (0.0343) 139.6857 0.0244 *** (0.1543) 0.4764
Gumbel 5.4742 (0.3273) 137.2483 0.3047 (0.0005) 0.4993
Frank 1.5539 (0.0328) 91.3532 0.1508 (0.0005) 0.6047

EGARCH(1,1) Clayton 1.0639 (0.0401) 137.6463 0.0221 *** (0.2133) 0.4927
Gumbel 5.4086 (0.3260) 134.7663 0.3098 (0.0005) 0.4967
Frank 1.5334 (0.0327) 87.2230 0.1583 (0.0005) 0.6104

GJR-GARCH(1,1) Clayton 1.0780 (0.0446) 137.0641 0.0251 *** (0.1254) 0.5057
Gumbel 5.4587 (0.3251) 133.8549 0.3213 (0.0005) 0.4989
Frank 1.5199 (0.0327) 80.4585 0.1567 (0.0005) 0.6254

XGBoost Clayton 0.3612 (0.0244) 136.5784 0.0202 *** (0.2522) 0.1084
Gumbel 3.7128 (0.2753) 112.9503 0.3115 (0.0005) 0.0888
Frank 1.1427 (0.0145) 53.6425 0.1334 (0.0005) 0.2216

LightGBM Clayton 0.2502 (0.0159) 106.1571 0.0213 *** (0.2293) 0.0513
Gumbel 3.4656 (0.2715) 101.0846 0.2871 (0.0005) 0.0429
Frank 1.1022 (0.0133) 39.1920 0.1145 (0.0005) 0.1358

CatBoost Clayton 0.3369 (0.0188) 134.9239 0.0193 *** (0.3232) 0.0859
Gumbel 3.6041 (0.2719) 111.1138 0.3273 (0.0005) 0.0588
Frank 1.1084 (0.0117) 57.2974 0.1411 (0.0005) 0.1819

THETA–BTC GARCH(1,1) Clayton 0.7910 (0.0272) 109.9096 0.0409 * (0.0265) 0.4048
Gumbel 5.0437 (0.3163) 123.0158 0.1907 (0.0005) 0.5039
Frank 1.5713 (0.0388) 103.6521 0.1027 (0.0005) 0.5730

EGARCH(1,1) Clayton 0.8214 (0.0316) 110.1763 0.0415 * (0.0105) 0.4199
Gumbel 4.9739 (0.3144) 120.4956 0.1848 (0.0005) 0.4971
Frank 1.5442 (0.0381) 95.9999 0.0972 (0.0005) 0.5759

GJR-GARCH(1,1) Clayton 0.8458 (0.0332) 108.2837 0.0425 * (0.0135) 0.4378
Gumbel 5.0087 (0.3140) 118.8976 0.1873 (0.0005) 0.5065
Frank 1.5392 (0.0393) 92.3677 0.0977 (0.0005) 0.5923

XGBoost Clayton 0.2844 (0.0168) 123.3466 0.0411 * (0.0225) 0.0906
Gumbel 3.5907 (0.2625) 104.0919 0.1742 (0.0005) 0.1132
Frank 1.1873 (0.0167) 81.2063 0.1008 (0.0005) 0.2204

LightGBM Clayton 0.2149 (0.0160) 135.087 0.0366 * (0.0145) 0.0482
Gumbel 3.3654 (0.2556) 95.1094 0.1749 (0.0005) 0.0675
Frank 1.1594 (0.0139) 81.9092 0.0975 (0.0005) 0.1427

CatBoost Clayton 0.2674 (0.0154) 157.5742 0.0349 * (0.0315) 0.0699
Gumbel 3.4729 (0.2558) 100.7532 0.1945 (0.0005) 0.0848
Frank 1.1690 (0.0128) 85.6673 0.1119 (0.0005) 0.1750

Log-L and CvM stand for the maximized log-likelihood value and the Cramér–von Mises test statistic, respec-
tively. The asterisks * and *** indicate that the resulting p-value is not less than the 10% and 1% significance
levels, respectively. The highest Log-L and the highest p-value of the Cramér–von Mises test for each pair of
cryptocurrencies are presented in boldface.
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Figure 5. Best-fitting copulas.

3.4. Aggregate Metaverse Risk Forecasts and Their Accuracy Dan Validity

We now forecast the risk of three aggregates (i.e., St = Xt + Yt made up of MANA
and THETA, St = Xt + Zt composed of MANA and BTC, and St = Yt + Zt consisting of
THETA and BTC) using three types of risk measures (i.e., AggVaR, AggES, and AggM) at
the 5% level of significance. The optimal weight ωopt used to formulate the AggM was
determined through a simple searching algorithm on the training set. The risk measure
forecasting was carried out using a combination of any predictive model and the (best)
Clayton copula. The one-step-ahead risk measure forecasting results are given in Table 8.

Table 8. One-step-ahead aggregate risk measure forecasts at the 5% level of significance.

Model AggVaR AggES ωopt AggM

MANA–THETA GARCH(1,1)-Clayton −0.1851 (4.9924%) −0.2321 (5.0927%) 0.9574 −0.1871 (4.9967%)
EGARCH(1,1)-Clayton −0.1803 (5.0126%) −0.2261 (5.0841%) 0.8477 −0.1873 (5.0235%)
GJR-GARCH(1,1)-Clayton −0.1864 (5.0022%) −0.2338 (5.1037%) 0.9848 −0.1871 (5.0037%)
XGBoost-Clayton −0.1847 (4.9819%) −0.2352 (5.1033%) 0.0003 −0.2352 (5.1033%)
LightGBM-Clayton −0.1862 (4.9933%) −0.2335 (5.0948%) 0.0002 −0.2335 (5.0948%)
CatBoost-Clayton −0.1831 (4.9927%) −0.2296 (5.1111%) 0.0063 −0.2293 (5.1104%)

MANA–BTC GARCH(1,1)-Clayton −0.1424 (5.0024%) −0.1786 (5.0145%) 0.8928 −0.1463 (5.0037%)
EGARCH(1,1)-Clayton −0.1396 (4.9948%) −0.1750 (5.0234%) 0.9162 −0.1426 (4.9972%)
GJR-GARCH(1,1)-Clayton −0.1454 (4.9809%) −0.1824 (5.0020%) 0.9842 −0.1460 (4.9812%)
XGBoost-Clayton −0.1613 (5.0017%) −0.2022 (5.0040%) 0.0137 −0.2016 (5.0040%)
LightGBM-Clayton −0.1605 (4.9948%) −0.2013 (5.0105%) 0.0058 −0.2011 (5.0104%)
CatBoost-Clayton −0.1566 (4.9814%) −0.1964 (5.0016%) 0.0762 −0.1934 (5.0001%)

THETA–BTC GARCH(1,1)-Clayton −0.1375 (4.9812%) −0.1724 (5.0031%) 0.9494 −0.1393 (4.9823%)
EGARCH(1,1)-Clayton −0.1375 (4.9824%) −0.1724 (5.0146%) 0.9775 −0.1383 (4.9831%)
GJR-GARCH(1,1)-Clayton −0.1400 (4.9843%) −0.1756 (5.0015%) 0.9885 −0.1404 (4.9845%)
XGBoost-Clayton −0.1210 (4.9824%) −0.1517 (5.0132%) 0.1087 −0.1484 (5.0099%)
LightGBM-Clayton −0.1188 (4.9905%) −0.1490 (5.0139%) 0.0050 −0.1489 (5.0138%)
CatBoost-Clayton −0.1159 (5.0040%) −0.1453 (5.0144%) 0.0211 −0.1447 (5.0142%)

AggM = ωopt AggVaR+(1−ωopt)AggES, where ωopt is optimal weight. The corresponding coverage probability
is provided in parentheses. The closest coverage probability with a significance level of 5% is presented in boldface.

Table 8 shows that aggregation between MANA and THETA created a risk with a
considerably higher magnitude, compared to the risk produced from the MANA–BTC and
THETA–BTC aggregations. Meanwhile, the lowest risk arose from the latter aggregation.
The three aggregate risk measure forecasts consistently provided the same result over the
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entire period of the testing datasets (see Figure 6), confirming our first hypothesis (H1).
This evidence was also supported by Figure 2 and Table 4, demonstrating that MANA
and THETA were the most volatile cryptocurrencies with the highest return standard
deviation. This meant that, if investors combined these two metaverse cryptocurrencies
into a portfolio, they would be exposed to a higher risk, although they would probably
receive a higher diversification benefit. The portfolio would become more secure if they
replaced one of the components (in particular, MANA) with BTC.

We then assessed the accuracy of the one-step-ahead aggregate risk measure forecast
using Syuhada’s (2020) coverage probability in Equation (26). We provide the result in
parentheses in Table 8. We observed that all the risk measure forecasts demonstrated good
accuracy, since their coverage probability was approximately equal to the significance level
of 5%. This confirmed that our predictive models could accurately forecast the metaverse
cryptocurrencies and BTC aggregates at the significance level under consideration. For the
case of the MANA–THETA aggregate, the HMs were found to be the best model to do the
AggVaR, AggES, and AggM forecasting. In contrast, the ELs were superior to the HMs when
forecasting the aggregates of the MANA–BTC and THETA–BTC pairs. This supported our
fourth hypothesis (H4) that the ELs tended to provide more accurate aggregate risk measure
forecasts. Furthermore, we uncovered, from Table 8, that among the three aggregate
risk measures examined, AggM performed best in most cases, confirming our second
hypothesis (H2). The reason was that its forecast value had a coverage probability closer
to the significance level of 5% compared to the others. This indicated that the AggM risk
measure could be very practical in terms of the one-step-ahead risk forecast accuracy. It
could raise the AggVaR magnitude and reduce the AggES magnitude, resulting in an
optimal risk forecast.

In addition, we evaluated the statistical validity of our aggregate risk measure forecasts
by examining the violations, represented by red dots in Figure 6, using Christoffersen’s
(1998) test. More specifically, this test examined whether these forecasts possessed uncondi-
tional coverage and independence properties. We first observed, from Figure 6, that the
AggES we forecast using the HMs provided the lowest risk boundary, resulting in only
four possible violations (2.76%). Meanwhile, other risk measures provided around nine
violations (5.73%). We also found that the MANA–THETA aggregate risk forecasts, deter-
mined using the ELs, showed more violations (i.e., two more violations [1.27%] on average)
than those computed using the HMs. However, the former models seemed to work better
to forecast AggES; they produced nine violations (5.80%). If we tested the null hypothesis
(28) by employing the likelihood ratio test statistic (31), the resulting p-value of the test for
all predictive models was 0.5037 on average (see Table 9). The lowest and highest p-values
were 0.1263 and 0.7437, respectively, suggesting that most models were valid for aggregate
risk measure forecasting. In particular, the highest p-values were provided by the ELs (i.e.,
LightGBM and CatBoost) when used to forecast the risk of the THETA–BTC aggregate.
Notably, the ELs produced p-values that were 21.75% higher, on average, than the HMs.
This finding implied that the ELs were also promising (valid) predictive risk models. In
summary, according to the coverage probability (in Table 8) and backtesting results (in
Table 9), the ELs were better than the HMs for forecasting more accurate and more valid
aggregate risk measures for metaverse cryptocurrencies and BTC at the significance level
under consideration, supporting our fourth hypothesis (H4).
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Figure 6. Aggregate risk measure forecasts.
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Table 9. Christoffersen’s test statistic for aggregate risk measure forecasts at the 5% level of significance.

Model AggVaR AggES AggM

MANA–THETA GARCH(1,1)-Clayton 0.7599 *** (0.6839) 2.5114 *** (0.2849) 0.6514 *** (0.7220)
EGARCH(1,1)-Clayton 0.8721 *** (0.6466) 2.5114 *** (0.2849) 0.8721 *** (0.6466)
GJR-GARCH(1,1)-Clayton 0.7599 *** (0.6839) 4.0989 *** (0.1288) 0.7599 *** (0.6839)
XGBoost-Clayton 3.4621 *** (0.1771) 0.7312 *** (0.6938) 0.7312 *** (0.6938)
LightGBM-Clayton 1.3602 *** (0.5066) 0.8982 *** (0.6382) 0.8982 *** (0.6382)
CatBoost-Clayton 3.0661 *** (0.2159) 0.8982 *** (0.6382) 0.8982 *** (0.6382)

MANA–BTC GARCH(1,1)-Clayton 2.7459 *** (0.2534) 0.9535 *** (0.6208) 2.7459 *** (0.2534)
EGARCH(1,1)-Clayton 1.8316 *** (0.4002) 4.1384 *** (0.1263) 1.8316 *** (0.4002)
GJR-GARCH(1,1)-Clayton 1.8316 *** (0.4002) 2.5645 *** (0.2777) 1.8316 *** (0.4002)
XGBoost-Clayton 2.0900 *** (0.3517) 0.6514 *** (0.7220) 0.6514 *** (0.7220)
LightGBM-Clayton 2.7459 *** (0.2534) 0.7599 *** (0.6839) 0.7599 *** (0.6839)
CatBoost-Clayton 3.8879 *** (0.1431) 1.8316 *** (0.4002) 1.8316 *** (0.4002)

THETA–BTC GARCH(1,1)-Clayton 1.3602 *** (0.5065) 2.0861 *** (0.3523) 1.3602 *** (0.5065)
EGARCH(1,1)-Clayton 1.3602 *** (0.5065) 3.5029 *** (0.1735) 0.7044 *** (0.7031)
GJR-GARCH(1,1)-Clayton 0.8982 *** (0.6382) 2.5645 *** (0.2774) 0.7044 *** (0.7031)
XGBoost-Clayton 0.8023 *** (0.6695) 1.1827 *** (0.5535) 0.7044 *** (0.7031)
LightGBM-Clayton 2.8894 *** (0.2358) 0.5921 *** (0.7437) 0.8023 *** (0.6695)
CatBoost-Clayton 0.8023 *** (0.6695) 0.5921 *** (0.7437) 0.5921 *** (0.7437)

The corresponding p-value is provided in parentheses. The asterisk *** indicates that the resulting p-value is not
less than the 10% significance level. The highest p-value for each risk measure is presented in boldface.

4. Conclusions

Metaverse links our digital and actual worlds due to rapid technological improve-
ments. Some metaverses create not only a virtual environment, but also cryptocurrencies
for NFT transactions inside their systems. In this study, we observed two specific meta-
verse cryptocurrencies from Decentraland (MANA) and Theta Network (THETA). We were
interested in analyzing these two since Decentraland (MANA) operates the security system
from the Theta Network (THETA), and they have a direct relationship. We also compared
them with Bitcoin as a contribution to new literature, especially so as to conduct a portfolio
analysis between the metaverse and conventional cryptocurrencies. Our main aim was to
construct and forecast three risk measures (i.e., AggVaR, AggES, and AggM) for MANA–
THETA, MANA–BTC, and THETA–BTC aggregates with heteroskedastic models (HMs)
and ensemble learning-based models (ELs), by accounting for the dependence between
their components.

In the first step, we modeled their return and volatility to understand the stylized facts
in our datasets, since the volatility forecast plays a crucial role as the main component of
aggregate risk forecasts. We found that the two metaverse cryptocurrencies were more
volatile than Bitcoin with evidence of higher and more persistent volatility. We then
revealed that ELs outperformed HMs when forecasting the volatility of each cryptocurrency.
The dependence structure in each of the MANA–THETA, MANA–BTC, and THETA–BTC
pairs was captured well using the Clayton copula, indicating the presence of lower tail
dependence, as we observed in other financial assets. The risk measure forecasting results
showed that the MANA–THETA aggregate possessed a higher risk than the MANA–BTC
and THETA–BTC aggregates. This suggested that a portfolio would be safer if it involved
Bitcoin, rather than having the two metaverse cryptocurrencies. In addition, we discovered
that ELs exhibited better aggregate risk measure forecasting performances than HMs in the
majority of cases. More specifically, the former models provided more accurate and more
valid aggregate risk measure forecasts. The reason was that these forecasts had coverage
probability values nearly equal to the significance level under consideration and satisfied
unconditional coverage and independence properties.

Our empirical results provide recommendations helpful for investors, portfolio risk
managers, and policy-makers. More specifically, investors and portfolio risk managers
should adjust their investment strategies and portfolio allocation when extreme negative
shocks occur. This is because extreme downturns in one cryptocurrency market tend
to be followed by extreme downturns in other cryptocurrency markets. They may add
Bitcoin, due to its more stable and less risky characteristics, to reduce the portfolio of
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metaverse cryptocurrencies. This may be an indication that Bitcoin has a safe-haven role for
metaverse cryptocurrencies. Performing a statistical test to examine the role of Bitcoin or
other safe-haven candidates for such a class of new cryptocurrencies is, thus, an important
direction for future work. In addition, during extreme negative shocks, policy-makers
should carefully monitor both the metaverse and conventional cryptocurrency markets
and design appropriate decisions to prevent instability in these markets, which may trigger
systemic risk. In future research, it is, thus, also important to quantitatively manage
systemic risk possibly arising from these markets.
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