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Abstract: Dual risk models are popular for modeling a venture capital or high-tech company, for
which the running cost is deterministic and the profits arrive stochastically over time. Most of the
existing literature on dual risk models concentrates on the optimal dividend strategies. In this paper,
we propose to study the optimal investment strategy on research and development for the dual
risk models to minimize the ruin probability of the underlying company. We will also study the
optimization problem when, in addition, the investment in a risky asset is allowed.
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1. Introduction

The classical Cramér–Lundberg model, or the classical compound Poisson risk model,
assumes that the surplus process of an insurance company follows the dynamics:

dXt = ρdt− dJt, X0 = x > 0, (1)

where ρ > 0 is the premium rate and Jt = ∑Nt
i=1 Yi is a compound Poisson process, where

Nt is a Poisson process with intensity λ > 0 and claim sizes Yi are i.i.d. positive random
variables independent of the Poisson process with E[Y1] < ∞. One central question in the
ruin theory is to study the ruin probability P(τ < ∞), where τ := inf{t > 0 : Xt < 0}.

In recent years, there have been a lot of studies in the insurance and finance literature
on the so-called dual risk model, see, e.g., (Afonso et al. 2013; Avanzi et al. 2013; Avanzi
et al. 2007; Bayraktar and Egami 2008; Cheung 2012; Cheung and Drekic 2008; Ng 2009,
2010; Rodríguez-Martínez et al. 2015; Yang and Sendova 2014),

with wealth process following the dynamics:

dXt = −ρdt + dJt, X0 = x > 0, (2)

where ρ > 0 is the cost of running the company and Jt = ∑Nt
i=1 Yi, is the stream of profits,

where Nt is a Poisson process with intensity λ > 0 and Yi are i.i.d. R+ valued random
variables with common probability density function p(y), y > 0, independent of the
Poisson process. The dual risk model is used to model the wealth of a venture capital,
whose profits depend on the research and development. The classical risk model (1) is
most often interpreted as the surplus of an insurance company. On the other hand, the
dual risk model (2) can be understood as the wealth of a venture capital or high-tech
company. The analogue of the premium in the classical model is the running cost in the
dual model, and the claims become the future profits of the company. The ruin probability
and the Laplace transform of the ruin time have been well studied for the dual risk model;
see, e.g., Afonso et al. (2013). When there is a random delay for the innovations turned to
profits, the dual risk model becomes time-inhomogeneous and the ruin probabilities and
the distribution of the ruin times are studied in Zhu (2017).

One of the most fundamental questions in the dual risk model is the optimal dividend
strategy. Avanzi et al. (2007) worked on optimal dividends in the dual risk model where
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the optimal strategy is a barrier strategy. Avanzi et al. (2013) studied a dividend barrier
strategy for the dual risk model, whereby dividend decisions are made only periodically,
but still allow ruin to occur at any time. A dual model with a threshold dividend strategy
with exponential interclaim times was studied in Ng (2009). Afonso et al. (2013) also
worked on dividend problem in the dual risk model, assuming exponential interclaim
times. A new approach for the calculation of expected discounted dividends was presented
and ruin and dividend probabilities, number of dividends, time to a dividend, and the
distribution for the amount of single dividends were studied. Dividend moments in the
dual risk model were considered in Cheung and Drekic (2008). They derived integro-
differential equations for the moments of the total discounted dividends which can be
solved explicitly assuming the jump size distribution has a rational Laplace transform.
The expected discounted dividends assuming the profits follow a Phase Type distribution
were studied in Rodríguez-Martínez et al. (2015). The Laplace transform of the ruin time,
expected discounted dividends for the Sparre–Andersen dual model were derived in Yang
and Sendova (2014). More recently, Yang et al. (2020) obtained an explicit expression of the
expected discounted discounted dividends in a dual risk model with the threshold dividend
strategy and the optimal threshold level were derived. Avanzi et al. (2020) considered
the optimal periodic dividend strategies for a general class of dual risk models with fixed
transaction costs. In Fahim and Zhu (2022), they obtained the asymptotic analysis for
optimal dividends in the dual risk model. Liu et al. (2023) studied the optimal dividend
strategy for the dual model with surplus-dependent expense.

So far, the optimization problems studied in the literature on dual risk models have
been almost exclusively devoted to the optimal dividend strategy. In this paper, we consider
a different type of optimization problem. For a venture capital, or a high-tech company, the
investment strategy on research and development (R&D) is crucial. A decision to increase
the investment on research and development will increase the running cost of the company,
but that will also boost the possibility of the future profits. Therefore, we believe that it is
of fundamental interest to understand the optimal investment strategy to strengthen the
position of the company.

It is well known that research and development is a basic engine of economic and
social growth. It is a considerable amount of spending among many leading corporations
in the world. A 2014 FORTUNE article listed the top ten biggest R&D spenders worldwide
in the year 2013, including Volkswagen, Samsung, Intel, Microsoft, Roche, Novartis, Toyota,
Johnson & Johnson, Google and Merck, with Intel spending as much as 20.1% of their
revenue on R&D, see Casey and Hackett (2014). Many technology giants increase their
R&D spending consistently, year over year, see, e.g., Table 1 for the R&D and percentage of
the revenues of Alphabet, Amazon, Tesla in the years 2018–20211. Notice that in the case of
Alphabet, even though the R&D expenditure increases year by year, it increases in line with
the increase of the total revenues so that as the percentage of revenues, the number does
not change much. The same can be said about Amazon. For some companies, both the
absolute R&D expenditure amount and the percentage as the revenues remain reasonably
stable, see, e.g., Table 1 for Merck in the years 2018–2021, with the year of 2020 being the
only exception which witnessed an unusually high R&D expenditure. For some companies,
both the absolute R&D expenditure amount and the revenues can change dramatically,
see, e.g., Table 1 for Alphabet, Amazon, Tesla in the years 2018–2021. The case of Tesla
is exceptional but not unusual for a new high-tech company in the sense that the total
revenues has astronomical growth and the R&D expenditure as the percentage of revenues
actually declines during this period even though it had a spectacular increase in R&D
expenditure in the year of 2021. Another company that has enjoyed similar phenomenal
growth as Tesla is Amazon, see Table 1. However, Amazon’s overall growth is not as fast
as Tesla.

Since it is expensed rather than capitalized, cuts on research and development increase
profit in the short term, but they can hurt the strength of a company in the long run,
even if the detrimental impact of the cuts may not be felt for a few years. In the most
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recent recession, firms with revenues greater than 100 million USD reduced their research
and development intensity (divided by revenue) by 5.6%, even though the advertising
intensity actually increased 3.4%, see Marie Knott (2012). In the long run, the research and
development does help the company grow and increase the value of a company. Using a
measure of the so-called research quotient, a study over all publicly traded US companies
from 1981 through 2006 suggested that a 10% increase in research quotient results in an
increase in market value of 1.1%, see Marie Knott (2012). Indeed, the US government also
encourages the research and development activities. The Research & Experimentation Tax
Credit is a general business tax credit passed by the Congress in 1981, as a response to the
concerns that research spending declines had adversely affected the country’s economic
growth, productivity gains, and competitiveness within the global marketplace. According
to a study by Ernst & Young, in the year 2005, 17,700 US corporations claimed 6.6 billion
USD R&D tax credits on their tax returns2.

Table 1. R&D spending by Alphabet, Amazon, Tesla and Merck during 2018–2021.

Alphabet 2018 2019 2020 2021

R&D (millions) $21,419 $26,018 $27,573 $31,562
Revenues (millions) $136,819 $161,857 $182,527 $257,637
As % of Revenues 15.7% 16.1% 15.1% 12.3%

Amazon 2018 2019 2020 2021

R&D (millions) $28,837 $35,931 $42,740 $56,052
Revenues (millions) $232,887 $280,522 $386,064 $469,822
As % of Revenues 12.4% 12.8% 11.1% 11.9%

Tesla 2018 2019 2020 2021

R&D (millions) $1460 $1343 $1491 $2593
Revenues (millions) $21,461 $24,578 $31,536 $58,823
As % of Revenues 6.8% 5.5% 4.7% 4.4%

Merck 2018 2019 2020 2021

R&D (millions) $9,752 $9,724 $13,397 $12,245
Revenues (millions) $42,294 $39,121 $41,518 $48,704
As % of Revenues 23.1% 24.9% 32.3% 25.1%

Optimal investment problems have a long history in finance and related fields. For
example, Merton (1969, 1971) formulated and studied the problem of optimal allocation
between risky assets and a risk-free asset to maximize expected utility; Fleming and
Zariphopoulou (1991) considered the optimal investment and consumption problem where
short-selling is not allowed but borrowing is allowed. Davis (1990), and Shreve and
Soner (1994) studied optimal investment and consumption with proportional transaction
costs and Morton and Pliska (1990) considered optimal portfolio management with fixed
transaction costs. Grossman and Zhou (1993) studied optimal investment strategies for
controlling drawdowns. Fleming and Sheu (2000) studied the optimal investment problem
to maximize the long-term growth rate of expected utility of wealth. Hipp and Plum (2000)
studied the optimal investment for insurers. Carr et al. (2001) considered the problem of
optimal investment in a risky asset, and in derivatives written on the price process of this
asset. Finally, there are also a limited number of works on the optimal venture capital
investments, see, e.g., Bayraktar and Egami (2008). However, to the best of our knowledge,
the optimal investment in research and development for the dual risk model has never been
studied in the previous literature, and our paper is the first one that considers this problem.

We propose to study the optimal investment strategy on research and development
for the dual risk models to minimize the ruin probability of the underlying company. In
addition to the investment in research and development, we will also allow the investment
in a risky asset, e.g., a market index. The possibility that an insurer can invest part of the



Risks 2023, 11, 41 4 of 29

surplus into a risky asset to minimize the ruin probability was studied by Browne (1995)
for the case that the insurance business is modeled by a Brownian motion with constant
drift and the risky asset is modeled as a geometric Brownian motion. Later, Hipp and
Plum (2000) studied the optimal investment in a market index for insurers in the classical
compound Poisson risk model. We will study the optimal investment problem when
both investment in research and development and investment in a risky asset are allowed.
Unlike the problem of minimizing the ruin probability for an insurer in the classical risk
model Hipp and Plum (2000), we will obtain closed-form formulas in the dual risk model.

Since the works of Browne (1995) and Hipp and Plum (2000), the optimal investment
in the market for the classical risk model and related models have been extensively studied.
In Liu and Yang (2004), they generalized the works by Hipp and Plum (2000) by including
a risk-free asset. In Schmidli (2002), the optimization problem of minimizing the ruin
probability for the classical risk model is studied when investment in a risky assent and
proportional reinsurance are both allowed. The asymptotic ruin probability for the classical
risk model under the optimal investment in a risky asset is obtained by Gaier et al. (2003)
for large initial wealth. The asymptotics for small claim sizes were obtained in Hipp
and Schmidli (2004). In Yang and Zhang (2005), they studied the optimal investment for
an insurer when the risk process is compound Poisson process perturbed by a standard
Brownian motion and the insurer can invest in the money market and in a risky asset.
In Gaier and Grandits (2002), the case when the claim sizes are of regularly varying
tails were studied. The results were then extended to include interest rates in Gaier and
Grandits (2004). The case for subexponential claims was investigated in Schmidli (2005).
In Promislow and Young (2005), they studied the problem of minimizing the probability
of ruin of an insurer when the claim process is modeled by a Brownian motion with drift
optimizing over the investment in a risky asset and purchasing quota-share reinsurance. In
Wang et al. (2007), they adopted the martingale approach to study the optimal investment
problem for an insurer when the insurer’s risk process is modeled by a Lévy process
with possible investment in a security market described by the standard Black–Scholes
model. When the underlying investor is an individual rather than an insurance company,
the optimal investment problem of minimizing the ruin probability was studied in, e.g.,
Bayraktar and Young (2007). In Azcue and Muler (2009), they studied the minimization
of the ruin probability for the classical risk model with possible investment in a risky
asset that follows a geometric Brownian motion under the borrowing constraints. There
have been many other works in this area. For a survey, we refer to Paulsen (2008) and the
references therein.

This paper is organized as follows. We first introduce a state-dependent dual risk
model that generalizes the classical dual risk model (Section 2). When the size of a company
increases, the cost usually also increases, while the resource of income will also increase
in general, which makes it natural to study a state-dependent dual risk model. Then, we
study the optimal investment strategy on research and development to minimize the ruin
probability of the company (Section 3), with a further discussion of a state-dependent
example in Section 3.1. As a special case, the state-independent model is discussed in
Section 3.2, with a further discussion of a state-independent example in Section 3.3. Next,
we study the joint investment in research and development and a market index to minimize
the ruin probability in Section 4. Finally, we provide some numerical studies in Section 5 to
better understand how the minimized ruin probability and the optimal strategy depend on
the parameters in the model.

2. A State-Dependent Dual Risk Model

We introduce a state-dependent dual risk model with the wealth process being defined
as follows:

dXt = −ρ(Xt)dt + dJt, X0 > 0, (3)

where Jt = ∑Nt
i=1 Yi, where Nt is a simple point process with intensity λ(Xt−) at time t, and

Yi are i.i.d. positive random variables with finite mean and independent of Fτi−, where
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Ft is the natural filtration generated by Xt process, τi is the i-th arrival time of Nt and we
further assume that ρ(·), λ(·) : R+ → R+ are increasing functions. The state-dependent
dual risk model (3) was first introduced in Zhu (2015b), in which ruin probability and the
Laplace transform of the ruin time were studied.

The motivation of introducing state dependence for the dual risk model is the follow-
ing. First, the cost of a company usually increases as the size of the company increases.
For example, the running cost of a small business and a Fortune 500 company are vastly
different. Second, as the size of a company increases, the arrival intensity of the future
profits might increase. It may be due to the fact that the larger a company gets, the more
resources for income it will obtain. It is also well known in the finance literature that as a
company gets larger and stronger, it can enjoy more benefits, e.g., net present value (NPV),
which for example might be due to the opportunities brought by franchising. As we can
see from Table 1, the R&D expenditure may be far from being constant as the size of the
company and the revenue of the company change. More realistically, the R&D expenditure
and other costs of running the company should be state-dependent.

Let τ := inf{t > 0 : Xt ≤ 0} be the ruin time of Xt process. The eventual ruin
probability is defined as the function ψ(x) := P(τ < ∞|X0 = x) to emphasize the de-
pendence on the initial wealth x. Note that for the state-independent dual risk model,
λ(·) ≡ λ and ρ(·) ≡ ρ, under the assumption λE[Y1] > ρ, the ruin probability ψ(x) is less
than 1. Indeed, ψ(x) = e−αx, where α > 0 is the unique solution to the equation; see, e.g.,
Afonso et al. (2013):

ρα + λ
∫ ∞

0
[e−αy − 1]p(y)dy = 0. (4)

For the state-dependent dual risk model, there is no simple closed-form formula for
the ruin probability. Nevertheless, for the special case when the jump sizes Yi are i.i.d.
exponentially distributed, there is a closed-form expression for the ruin probability; see
Theorem 1 in Zhu (2015b).

Finally, we notice that the Xt process in (3) is an extension of the (nonlinear) marked
Hawkes process with exponential kernel (see, e.g., Brémaud and Massoulié 1996; Gao and
Zhu 2018a, 2018b; Hawkes 1971; Zhu 2015a),

that is, Nt is a simple point process with intensity λ(Xt), where

Xt := X0e−βt + ∑i:τi<t Yie−β(t−τi), (5)

where τi is the i-th arrival time of Nt, and Yi are i.i.d. positive random variables independent
of Fτi− with finite mean and X0, β > 0 are given constants, where Xt in (5) satisfies the
dynamics (3) with ρ(x) := βx. When λ(·) is linear, it is called linear Hawkes process,
named after Hawkes (1971). When λ(·) is nonlinear, the Hawkes process is said to be
nonlinear which was first introduced by Brémaud and Massoulié (1996). Hawkes processes
have wide applications in finance, neuroscience, social networks, criminology, seismology,
and many other fields; see Gao and Zhu (2021) and the references therein. Since the Xt
process in (3) is an extension of the (nonlinear) marked Hawkes process with exponential
kernel, our paper also contributes to the literature on the Hawkes process.

3. Minimizing the Ruin Probability

In this section, we study the optimization control problem of minimizing the ruin
probability for the dual risk model. The management of the underlying company can decide
whether or not to increase the capital spending on research and development to boost the
future profits. Our goal is to find the optimal expenditure on research and development to
minimize the probability that the company is eventually ruined.

Before we proceed, we introduce the investment on research and development C ∈ C,
where C is the set of all admissible strategies, defined as

C := {C : [0, ∞)×Ω→ R≥0 : C is progressively measurable, bounded and predictable}. (6)
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Given the control C ∈ C, the wealth process has the dynamics

dXC
t = −(ρ(Xt) + Ct)dt + dJC

t , (7)

where ρ : R+ → R+ is increasing and Jt = ∑Nt
i=1 Yi, where Yi are defined same as before and

Nt is a simple point process with intensity F(Xt−, Ct−) at time t, where F(x, c) : R+×R+ →
R+ is measurable in (x, c) and increasing in both x and c and F(x, 0) = λ(x) for every
x ∈ R+, where λ : R+ → R+ is increasing.

We define τC as the ruin time of the XC process under the control C ∈ C by τC :=
inf{t ≥ 0 : XC

t ≤ 0}. We are interested in studying the optimization problem:

V(x) := min
C∈C

P
(

τC < ∞|XC
0 = x

)
. (8)

From the optimal control point of view, it is also interesting to study the state-
dependent case, which adds a technical contribution to the literature of stochastic optimal
control theory. We will show that the optimal strategy is in general state-dependent when
the underlying dual risk model is state-dependent, and it exhibits a closed-form expression.

Theorem 1. The optimal strategy C∗ is given by

C∗t = C∗(Xt) ∈ arg min
C≥0

ρ(Xt) + C
F(Xt, C)

, (9)

provided that the minimum exists.

Proof of Theorem 1. For any control C ∈ C, we have

dXC
t = −(ρ(Xt) + Ct)dt + dJC

t , (10)

where JC
t = ∑

NC
t

i=1 Yi, where NC
t is a simple point process with intensity F(Xt−, Ct−) at time

t and Yi are i.i.d. with probability density function p(y) defined as before.
Let us introduce a random time change and define the random time T(t) via:

∫ T(t)

0
F(Xs−, Cs−)ds = t. (11)

Then, it is easy to see that T(0) = 0 and T(t)→ ∞ as t→ ∞ since C ∈ C is bounded.
It follows from (10) that

dXT(t) = −(ρ(XT(t)) + CT(t))dT(t) + dJC
T(t). (12)

Under the random time change (11), we have

dT(t)
dt

=
1

F(Xt, Ct)
,

and JC
T(t) is distributed as Jt := ∑Nt

i=1 Yi, where Nt is a standard Poisson process with
intensity 1; see, e.g., Meyer (1971) for the random time change for simple point processes.
Therefore, we obtain

dXT(t) = −
ρ(XT(t)) + CT(t)

F(Xt, Ct)
dt + dJt. (13)

Let us also notice that P(Xt ever gets ruined) = P(XT(t) ever gets ruined). Therefore,
the optimal strategy is given by (9) provided that the minimum exists. This completes
the proof.
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In Theorem 1, we obtain the closed-form expression of the optimal strategy C∗. How-
ever, we do not have a closed form for the minimized ruin probability P(τC∗ < ∞|XC∗

0 = x).
Next, we will show that we can obtain a closed form for the ruin probability in the special
case when the jump sizes Yi follow exponential distributions. We first recall the following
result from Zhu (2015b), which states that the ruin probability for a state-dependent dual
risk model with the exponentially distributed Yi has a closed-form expression.

Theorem 2 (Theorem 1 in Zhu (2015b)). Consider the dual risk model: dXt = −ρ(Xt)dt + dJt,
where X0 = x > 0, Jt = ∑Nt

i=1 Yi, where Yi are exponential random variables with the probability
density function p(y) = νe−νy, ν > 0, and Nt is a simple point process with intensity λ(Xt−) at
time t, where ρ(·), λ(·) : R+ → R+ are increasing functions. Then,

P(τ < ∞|X0 = x) =

∫ ∞
x

λ(y)
ρ(y) eνy−

∫ y
0

λ(w)
ρ(w)

dwdy∫ ∞
0

λ(y)
ρ(y) eνy−

∫ y
0

λ(w)
ρ(w)

dwdy
. (14)

As a corollary of Theorems 1 and 2, we obtain the closed form for the minimized ruin
probability when the jump sizes Yi are i.i.d. exponentially distributed.

Proposition 1. Assume p(y) = νe−νy, where ν > 0. Assume also the integral∫ ∞

0

F(y, C∗(y))
ρ(y) + C∗(y)

eνy−
∫ y

0
F(w,C∗(w))

ρ(w)+C∗(w)
dwdy

exists and is finite. Then,

min
C∈C

P
(

τC < ∞|XC
0 = x

)
=

∫ ∞
x

F(y,C∗(y))
ρ(y)+C∗(y) eνy−

∫ y
0

F(w,C∗(w))
ρ(w)+C∗(w)

dwdy∫ ∞
0

F(y,C∗(y))
ρ(y)+C∗(y) eνy−

∫ y
0

F(w,C∗(w))
ρ(w)+C∗(w)

dwdy
. (15)

Proof of Proposition 1. The proposition follows immediately from Theorems 1 and 2.

3.1. A State-Dependent Example

In this section, we study a state-dependent example in detail. We assume that

F(x, c) = λ(x) + δ(x)cγ, (16)

where δ(·) : R+ → R+ is increasing, and γ > 0. We recall that λ(·) is increasing and thus,
λ(·) ≥ λ(0) > 0. Let us also assume that ρ(·) ≤ ρ(∞) < ∞. Under our assumptions, F(x, c)
is increasing in both x and c, and F(x, 0) = λ(x).

Notice when γ > 1, for any constant strategy Ct ≡ C, where C > 0 is sufficiently large,
the ruin probability is bounded above by the ruin probability of the following process:

dXt = −(ρ(∞) + C)dt + dJt, (17)

where Jt = ∑Nt
i=1 Yi is compound Poisson with Nt being the Poisson process with intensity

λ(0) + δ(0)Cγ.
By the ruin probability for state-independent dual risk model (see, e.g., Afonso et al.

2013), the ruin probability of the Xt process defined in (17) is given by e−αC x, where αC is
the unique positive solution to the equation:

(ρ(∞) + C)αC + (λ(0) + δ(0)Cγ)
∫ ∞

0
[e−αCy − 1]p(y)dy = 0. (18)
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We can rewrite this equation as:

ρ(∞) + C
λ(0) + δ(0)Cγ

αC =
∫ ∞

0
[1− e−αCy]p(y)dy. (19)

The right-hand side of the above equation is bounded between 0 and 1. In the left-hand
side of the above equation, limC→∞

ρ(∞)+C
δ(0)Cγ = 0, which implies that αC → ∞ as C → ∞.

Hence, V(x) ≤ infC>0 e−αC x = 0 and the minimized ruin probability is trivially zero.
Therefore, in the rest of this section, we only consider two cases: (i) 0 < γ < 1;

(ii) γ = 1.

3.1.1. The 0 < γ < 1 Case

Under the assumption that 0 < γ < 1, it is easy to see from Theorem 1 that the optimal
strategy CT(t) is the strategy that minimizes the drift:

ρ(XT(t)) + CT(t)

λ(XT(t)) + δ(XT(t))C
γ
T(t)

. (20)

It is easy to compute from (20) that the optimal strategy satisfies

λ(XT(t)) + δ(XT(t))(1− γ)Cγ
T(t) = ρ(XT(t))δ(XT(t))γCγ−1

T(t) . (21)

Therefore, for any t > 0, the optimal strategy Ct satisfies

λ(Xt) + δ(Xt)(1− γ)Cγ
t = ρ(Xt)δ(Xt)γCγ−1

t . (22)

It is clear that the optimal strategy Ct is a function of Xt and we denote it as C∗(Xt).
Then, under the optimal strategy,

dXt = −(ρ(Xt) + C∗(Xt))dt + dJt, (23)

where Jt = ∑Nt
i=1 Yi, where Nt has intensity λ(Xt−) + δ(Xt−)C∗(Xt−)γ at time t.

When the probability density function p(y) = νe−νy of jump sizes Yi is exponential, it
follows from Proposition 1 that we have the following result:

Proposition 2. Assume p(y) = νe−νy, where ν > 0. Assume also the integral∫ ∞

0

λ(y) + δ(y)C∗(y)γ

ρ(y) + C∗(y)
eνy−

∫ y
0

λ(w)+δ(w)C∗(w)γ

ρ(w)+C∗(w)
dwdy

exists and is finite. Then,

V(x) =

∫ ∞
x

λ(y)+δ(y)C∗(y)γ

ρ(y)+C∗(y) eνy−
∫ y

0
λ(w)+δ(w)C∗(w)γ

ρ(w)+C∗(w)
dwdy∫ ∞

0
λ(y)+δ(y)C∗(y)γ

ρ(y)+C∗(y) eνy−
∫ y

0
λ(w)+δ(w)C∗(w)γ

ρ(w)+C∗(w)
dwdy

. (24)

Proof of Proposition 2. The proposition follows immediately from Proposition 1.

Next, in the following example, we show that with particular model specifications,
the optimal C∗ and the minimized ruin probability V(x) in (24) admit a simpler closed-
form formula.
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Example 1. Let ρ(x) = ρ0, λ(x) = λ0(c1x + c2), and δ(x) = δ0(c1x + c2), where ρ0, λ0, δ0, c1,
c2 are positive constants. Then, the optimal investment rate C∗(x) is a constant C∗(x) ≡ C0, where
C0 is the unique positive solution to the equation:

λ0 + δ0(1− γ)Cγ
0 = ρ0δ0γCγ−1

0 . (25)

Hence, the minimized ruin probability in (24) can be computed as:

V(x) =

∫ ∞
x

λ0+δ0Cγ
0

ρ0+C0
(c1y + c2)e

νy−
∫ y

0
λ0+δ0Cγ

0
ρ0+C0

(c1w+c2)dwdy∫ ∞
0

λ0+δ0Cγ
0

ρ0+C0
(c1y + c2)e

νy−
∫ y

0
λ0+δ(w)Cγ

0
ρ0+C0

(c1w+c2)dwdy

(26)

=

∫ ∞
x (c1y + c2)e

(
ν−

λ0+δ0Cγ
0

ρ0+C0
c2

)
y−

λ0+δ0Cγ
0

ρ0+C0

c1
2 y2

dy∫ ∞
0 (c1y + c2)e

(
ν−

λ0+δ0Cγ
0

ρ0+C0
c2

)
y−

λ0+δ0Cγ
0

ρ0+C0

c1
2 y2

dy

=

1
4d3/2 e−dy2

[√
πe

c2
4d +dy2

(ac + 2bd)erf( 2dy−c
2
√

d
)− 2a

√
decy

]∣∣∣∣∞
y=x

1
4d3/2 e−dy2

[√
πe

c2
4d +dy2

(ac + 2bd)erf( 2dy−c
2
√

d
)− 2a

√
decy

]∣∣∣∣∞
y=0

=
2a
√

decx−dx2
+
√

πe
c2
4d (ac + 2bd)erfc( 2dx−c

2
√

d
)

2a
√

d +
√

πe
c2
4d (ac + 2bd)erfc( −c

2
√

d
)

,

where erf(x) := 2√
2π

∫ x
0 e−t2

dt is the error function and erfc(x) := 1− erf(x) is the complemen-
tary error function and a := c1, b := c2, and

c := ν−
λ0 + δ0Cγ

0
ρ0 + C0

c2, d :=
λ0 + δ0Cγ

0
ρ0 + C0

c1

2
. (27)

3.1.2. The γ = 1 Case

When γ = 1, it follows from Theorem 1 that the optimal C∗(x) satisfies C∗(x) = 0 in
the region where δ(x) ≤ λ(x)

ρ(x) and the “optimal” C∗(x) = ∞ in the region where δ(x) > λ(x)
ρ(x) .

Remark 1. If we impose a research and development budget constraint by M ∈ (0, ∞), the
maximum capacity, then the admissible set of controls is given by CM := {C ∈ C : supt≥0 Ct ≤
M}. Then, the above analysis implies that C∗(x) = 0 in the region δ(x) ≤ λ(x)

ρ(x) and C∗(x) = M

in the region δ(x) > λ(x)
ρ(x) .

Next, in the following example, we show that with particular model specifications,
the optimal C∗ the minimized ruin probability V(x) admit simpler closed-form formulas.

Example 2. Let ρ(x) = ρ0(c1x + c2), λ(x) =
(

ν + λ0
1+x

)
ρ(x), and δ(x) = δ0, where ρ0, c1, c2,

λ0, δ0 are positive constants. We further assume that ν < δ0 < ν + λ0. Then, the optimal C∗ is
given by:

C∗(x) =

{
0 if x ≤ λ0−δ0+ν

δ0−ν ,

+∞ if x > λ0−δ0+ν
δ0−ν .

(28)

Let us define:

x∗ :=
λ0 − δ0 + ν

δ0 − ν
. (29)
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Then, we can compute that for any y ≤ x∗,∫ y

0

λ(w) + δ(w)C∗(w)

ρ(w) + C∗(w)
dw =

∫ y

0

(
ν +

λ0

1 + w

)
dw = νy + λ0 log(1 + y), (30)

and for any y > x∗,∫ y

0

λ(w) + δ(w)C∗(w)

ρ(w) + C∗(w)
dw = νx∗ + λ0 log(1 + x∗) + δ0(y− x∗). (31)

Therefore, for x > x∗, we have∫ ∞

x

λ(y) + δ(y)C∗(y)
ρ(y) + C∗(y)

eνy−
∫ y

0
λ(w)+δ(w)C∗(w)

ρ(w)+C∗(w)
dwdy (32)

=
∫ ∞

x
δ0eνy−νx∗−λ0 log(1+x∗)−δ0(y−x∗)dy =

e−νx∗+δ0x∗

(1 + x∗)λ0

δ0

δ0 − ν
e−(δ0−ν)x,

and for x ≤ x∗, we have

∫ ∞

x

λ(y) + δ(y)C∗(y)
ρ(y) + C∗(y)

eνy−
∫ y

0
λ(w)+δ(w)C∗ (w)

ρ(w)+C∗ (w) dwdy (33)

=
∫ x∗

x

(
ν +

λ0
1 + y

)
eνy−νy−λ0 log(1+y)dy +

1
(1 + x∗)λ0

δ0
δ0 − ν

=
ν

1− λ0

[
(1 + x∗)−λ0+1 − (1 + x)−λ0+1

]
+ (1 + x)−λ0 − (1 + x∗)−λ0 +

1
(1 + x∗)λ0

δ0
δ0 − ν

.

Hence, we conclude that for x > x∗, we have

V(x) =
e−νx∗+δ0x∗

(1+x∗)λ0
δ0

δ0−ν e−(δ0−ν)x

ν
1−λ0

[
(1 + x∗)−λ0+1 − 1

]
+ 1− (1 + x∗)−λ0 + 1

(1+x∗)λ0
δ0

δ0−ν

, (34)

and for x ≤ x∗, we have

V(x) =
ν

1−λ0

[
(1 + x∗)−λ0+1 − (1 + x)−λ0+1

]
+ (1 + x)−λ0 − (1 + x∗)−λ0 + 1

(1+x∗)λ0
δ0

δ0−ν

ν
1−λ0

[
(1 + x∗)−λ0+1 − 1

]
+ 1− (1 + x∗)−λ0 + 1

(1+x∗)λ0
δ0

δ0−ν

. (35)

3.2. The State-Independent Case

In this section, we consider the state-independent case, that is,

ρ(·) ≡ ρ, λ(·) ≡ λ, (36)

and
F(·, c) ≡ F(c), (37)

where ρ, λ > 0 and F : R+ → R+ is increasing. Under the assumptions (36) and (37), we
have the following result, which is a corollary of Theorem 1 and the ruin probability for the
state-independent dual risk model (Equation (4)).

Theorem 3. The optimal strategy C∗ is constant, given by

C∗ = arg min
C≥0

ρ + C
F(C)

, (38)
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provided that the minimum exists and the minimized ruin probability is V(x) = e−βx, where

(ρ + C∗)β + F(C∗)
∫ ∞

0
[e−βy − 1]p(y)dy = 0. (39)

Proof of Theorem 3. Under the assumptions (36) and (37), it follows from Theorem 1 that
the optimal strategy C∗ is constant, which is given by C∗ = arg minC≥0

ρ+C
F(C) . With the

optimal C∗, we have
dXt = −(ρ + C∗)dt + dJt, (40)

where Jt = ∑Nt
i=1 Yi is compound Poisson, where Nt is Poisson with intensity F(C∗).

By the formula for the ruin probability for the state-independent dual risk model, see,
e.g., Equation (4), we have V(x) = e−βx, where β satisfies the equation (39). This completes
the proof.

3.3. A State-Independent Example

In this section, we consider a state-independent example, that is,

ρ(·) ≡ ρ, λ(·) ≡ λ, (41)

and
F(x, c) = λ + δcγ, δ, γ > 0. (42)

In this special case, by Theorem 3, the optimal strategy C∗ is constant and given by

C∗ = arg min
C≥0

ρ + C
λ + δCγ

. (43)

By following the discussions in the more general state-dependent case in Section 3.1,
the case γ ≥ 1 is trivial and in the rest we only consider the cases 0 < γ < 1 and γ = 1.

3.3.1. The 0 < γ < 1 Case

We first consider the case that 0 < γ < 1. In this case, the intensity F(Xt, Ct) = λ+ δCγ
t

is a concave and increasing function of Ct. What this indicates is that the initial investment
of research and development can boost the prospect of future profits, but the margin
decreases with the increase of the investment.

When it is allowed to invest in research and development, we will see later that
the condition

(ρ− λE[Y1])− (δγ)
1

1−γ

(
1
γ
− 1
)
(E[Y1])

1
1−γ < 0 (44)

is sufficient to guarantee that V(x) < 1. Note that this is weaker than the usual condition
ρ− λE[Y1] < 0 for the dual risk model. We have the following result.

Proposition 3. Under the assumption (44),

V(x) = min
C∈C

P
(

τC < ∞|XC
0 = x

)
= e−βx, (45)

where β is the unique positive value that satisfies the equation:

β

ρ +

(
1

δγ

) 1
γ−1
(

β

1−
∫ ∞

0 e−βy p(y)dy

) 1
γ−1
 (46)

−

λ + δ

(
1

δγ

) γ
γ−1
(

β

1−
∫ ∞

0 e−βy p(y)dy

) γ
γ−1
(1−

∫ ∞

0
e−βy p(y)dy

)
= 0,
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and the optimal strategy is given by

C∗ =
(

1
δγ

) 1
γ−1
(

β

1−
∫ ∞

0 e−βy p(y)dy

) 1
γ−1

, (47)

which also satisfies the following equation:

λ + (1− γ)δ(C∗)γ = ρδγ(C∗)γ−1. (48)

Proof of Proposition 3. It follows from Theorem 3 that the optimal strategy is given by

C∗ =
(

1
δγ

) 1
γ−1
(

β

1−
∫ ∞

0 e−βy p(y)dy

) 1
γ−1

, (49)

and the minimized ruin probability V(x) satisfies Equation (46).
To show that (46) has a unique positive solution, it is equivalent to show that F(β) = 0

has a unique positive solution where

F(β) := β

[
ρ− (δγ)

1
1−γ

(
1
γ
− 1
)
[g(β)]

1
1−γ − λg(β)

]
, (50)

and

g(β) :=
1−

∫ ∞
0 e−βy p(y)dy

β
. (51)

It is easy to compute that for β > 0,

g′(β) =
1
β2

∫ ∞

0

[
βye−βy − 1 + e−βy

]
p(y)dy. (52)

Let h(x) := xe−x − 1 + e−x, x ≥ 0. Then, h(0) = 0 and h(x) → −1 as x → ∞.
Moreover, h′(x) = −xe−x < 0 for x > 0. Thus, h(x) ≤ 0 for any x ≥ 0 and therefore,
g′(β) ≤ 0 for any β > 0 and g(β) is a decreasing function of β.

Note that F(β) = 0 for β > 0 if and only if G(β) = 0 for β > 0, where

G(β) := ρ− (δγ)
1

1−γ

(
1
γ
− 1
)
[g(β)]

1
1−γ − λg(β). (53)

Note that by L’Hôpital’s rule, limβ→0+ g(β) = E[Y1]. Therefore,

lim
β→0+

G(β) = (ρ− λE[Y1])− (δγ)
1

1−γ

(
1
γ
− 1
)
(E[Y1])

1
1−γ < 0. (54)

On the other hand, g(β)→ 0 as β→ ∞; therefore, G(β)→ ρ > 0 as β→ ∞. Since g(β)
is a decreasing function in β and 0 < γ < 1, it follows that G(β) is increasing in β. Hence,
we conclude that G(β) = 0 has a unique positive solution. This completes the proof.

In the following example, we show that when Yi are exponentially distributed, we are
able to compute out β and C∗ in simple closed forms.

Example 3. When p(y) = νe−νy, ν > 0, β satisfies

β

[
ρ +

(
1

δγ

) 1
γ−1

(β + ν)
1

γ−1

]
=

[
λ + δ

(
1

δγ

) γ
γ−1

(β + ν)
γ

γ−1

]
β

β + ν
, (55)
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which implies that

ρ(β + ν) = λ +

(
1
γ
− 1
)(

1
δγ

) 1
γ−1

(β + ν)
γ

γ−1 . (56)

In particular, when γ = 1
2 , we obtain ρ(β + ν)2 = λ(β + ν) + δ2

4 , which implies β =
λ+
√

λ2+ρδ2

2ρ − ν, and thus, the optimal C∗ is given by

C∗ =
δ2ρ2

(λ +
√

λ2 + ρδ2)2
. (57)

Remark 2. We have already shown in Proposition 3 that V(x) = e−βx, where β is the unique
positive solution to Equation (46) and that it is equivalent to

ρ− (δγ)
1

1−γ

(
1
γ
− 1
)
[g(β)]

1
1−γ − λg(β) = 0, (58)

where g(β) is defined in (51). Now, let us discuss how the value β (and hence the value function
V(x) = e−βx) and the optimal investment rate C∗ depend on the parameters ρ, λ and δ. By (58),
we have the following observations:

(i) As ρ increases, g(β) increases. Since g(β) is decreasing in β, we conclude that β decreases
as ρ increases. Intuitively, this means that as the fixed running cost for research and investment
increases, the ruin probability increases. Asymptotically, as ρ→ 0, g(β)→ 0. When g(β)→ 0,

since 0 < γ < 1, we must have [g(β)]
1

1−γ � g(β). Therefore, by (58), as ρ → 0, we have
g(β) ∼ ρ

λ . From the definition of g(β), we have g(β) ∼ 1
β as β → ∞. Hence, we conclude that

β ∼ λ
ρ , as ρ→ 0. Therefore, the optimal C∗ satisfies

C∗ ∼ (δγ)
1

1−γ

( ρ

λ

) 1
1−γ , as ρ→ 0. (59)

(ii) As δ increases, g(β) decreases. Since g(β) is decreasing in β, we conclude that β increases
as δ increases. Intuitively, this indicates that if the prospect of future profits given the investment
in research and development increases, then the ruin probability decreases. Asymptotically, as

δ → ∞, we have g(β) → 0, and thus, (δγ)
1

1−γ

(
1
γ − 1

)
[g(β)]

1
1−γ → ρ, which implies that as

δ → ∞, we have g(β) ∼ ρ1−γ

γδ

(
1
γ − 1

)γ−1
. Since g(β) ∼ 1

β as β → ∞, we conclude that

β ∼ γδ
ρ1−γ

(
1
γ − 1

)1−γ
, as δ→ ∞. Moreover, the optimal C∗ satisfies:

C∗ → ρ
1
γ − 1

, as δ→ ∞. (60)

Now, if δ → 0, then g(β) → ρ
λ . Therefore, as δ → 0, β → α, where we recall that α is

the unique positive value so that 1−
∫ ∞

0 e−αy p(y)dy = α
ρ
λ , which is the same as defined in (4).

Moreover, the optimal C∗ satisfies

C∗ ∼ (δγ)
1

1−γ

( ρ

λ

) 1
1−γ , as δ→ 0. (61)

Intuitively, it says that as δ→ 0, there is no value investing in research and development.
(iii) Similarly, as λ increases, β increases, and the ruin probability decreases. As λ→ ∞, we

have g(β)→ 0. Thus, λg(β)→ ρ, and g(β) ∼ ρ
λ . Since g(β) ∼ 1

β as β→ ∞, we conclude that

β ∼ λ
ρ , as λ→ ∞. Moreover, the optimal C∗ satisfies:

C∗ ∼ (δγ)
1

1−γ

( ρ

λ

) 1
1−γ , as λ→ ∞. (62)
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(iv) Assume that the parameters are chosen so that

(ρ− λE[Y1])− (δγ)
1

1−γ

(
1
γ
− 1
)
(E[Y1])

1
1−γ → 0. (63)

Then, it follows that g(β) → E[Y1] and β → 0. More precisely, as β → 0, g(β) ∼
E[Y1]− β

2E[Y
2
1 ] if E[Y2

1 ] < ∞, and (58) becomes

ρ− (δγ)
1

1−γ

(
1
γ
− 1
)(

E[Y1]−
β

2
E
[
Y2

1

]) 1
1−γ

− λ

(
E[Y1]−

β

2
E
[
Y2

1

])
= O(β2), (64)

as β→ 0. Then, it follows that

ρ− (δγ)
1

1−γ

(
1
γ
− 1
)(

E[Y1]
1

1−γ − 1
2(1− γ)

(E[Y1])
γ

1−γ E
[
Y2

1

]
β

)
(65)

− λ

(
E[Y1]−

β

2
E
[
Y2

1

])
= O(β2),

as β→ 0. Hence, we conclude that

β ∼
−(ρ− λE[Y1]) + (δγ)

1
1−γ

(
1
γ − 1

)
(E[Y1])

1
1−γ

(δγ)
1

1−γ 1
2γ (E[Y1])

γ
1−γ E[Y2

1 ] +
λ
2E[Y2

1 ]
. (66)

Moreover, the optimal C∗ satisfies:

C∗ ∼ (δγ)
1

1−γ (E[Y1])
1

1−γ . (67)

Remark 3. The value function V(x) = e−βx and the optimal investment rate C∗ also depend
on the parameter γ. We will study the γ = 1 case in details later. For the moment, let us try
to understand the asymptotic behavior of the value function and the optimal investment rate as
γ→ 1−. We will also obtain the asymptotics as γ→ 0+. Let us recall that the optimal C∗ satisfies
the equation:

λ + (1− γ)δ(C∗)γ = ρδγ(C∗)γ−1. (68)

Thus, we have (1− γ)δ(C∗)γ ≤ ρδγ(C∗)γ−1 which implies that C∗ ≤ ργ
1−γ . Thus, C∗ → 0

as γ→ 0. Note that limγ→0+ γγ = 1. Therefore, we can check that

C∗ ∼ ρδ

λ + δ
γ, as γ→ 0+. (69)

Now, let us consider the γ→ 1− limit. Let us rewrite that Equation (68) as

λ

(1− γ)1−γ
+ δDγ =

ρδγ

D1−γ
, (70)

where D = (1− γ)C∗. Let us first consider the case ρδ > λ. Notice first that limγ→1−(1−
γ)1−γ = 1. First, D cannot go to 0 as γ→ 1−, because otherwise, the left-hand side of (70) goes
to λ and as D goes to 0, D < 1 and D1−γ ≤ 1, so the right-hand side of (70) is greater than ρδγ.
Then, in the limit as γ→ 1−, we obtain λ ≥ ρδ, which is a contradiction. Second, D cannot go to
∞ as γ → 1−. To see this, notice that as D → ∞, the left hand side of (70) goes to ∞ and in the
right-hand side of (70), for large D, D > 1 and D1−γ ≥ 1 and hence, the right-hand side is less
than ρδ, which is a contradiction.
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Therefore, if ρδ > λ, D converges to a positive constant, which from (70) we can see that the
limit is ρδ−λ

δ , and we have

C∗ ∼ ρδ− λ

δ

1
1− γ

, as γ→ 1−. (71)

If ρδ < λ, then the optimal C∗ → 0 as γ→ 1−. To see this, notice that if lim supγ→1− C∗ ∈
(0, ∞), then in (68), we have lim supγ→1− ρδγ(C∗)γ−1 = ρδ and lim supγ→1− [λ + (1 −
γ)δ(C∗)γ] = λ, which is a contradiction since ρδ < λ. If lim supγ→1− C∗ = ∞, then for
C∗ > 1, we have from (68) that λ < λ + (1− γ)δ(C∗)γ = ρδγ(C∗)γ−1 < ρδ, which is again a
contraction. Hence, we must have C∗ → 0.

Since C∗ → 0, (1− γ)δ(C∗)γ � ρδγ(C∗)γ−1, and thus

C∗ ∼
(

λ

ρδγ

) 1
γ−1
∼ 1

e

(
ρδ

λ

) 1
1−γ

, as γ→ 1−. (72)

If ρδ = λ, the optimal C∗ satisfies the equation:

λ =
(1− γ)δ(C∗)γ

γ(C∗)γ−1 − 1
. (73)

Assume that C∗ > 0 is fixed, then by L’Hôpital’s rule,

lim
γ→1−

(1− γ)δ(C∗)γ

γ(C∗)γ−1 − 1
= lim

γ→1−

−δ(C∗)γ + (1− γ)δ(C∗)γ log C∗

(C∗)γ−1 + γ(C∗)γ−1 log C∗
=

−δC∗

1 + log C∗
. (74)

Therefore, as γ → 1−, C∗ converges to the unique positive solution to the equation: δx +
λ(1 + log x) = 0.

3.3.2. The γ = 1 Case

When γ = 1, it follows from Theorem 3 that the optimal strategy C∗ is constant and it
is given by

C∗ = arg min
C≥0

ρ + C
λ + δC

. (75)

When ρ
λ < 1

δ , then infC≥0
ρ+C

λ+δC = ρ
λ and the optimal strategy is Ct ≡ 0. In this case,

the value function V(x) = e−βx, where

ρβ + λ
∫ ∞

0
[e−βy − 1]p(y)dy = 0. (76)

When ρ
λ > 1

δ , then infC≥0
ρ+C

λ+δC = 1
δ . Additionally, for any C ∈ C and C := ‖C‖∞, the

strategy C is more optimal than C. The “optimal strategy” is Ct ≡ ∞. Let us also assume
that δE[Y1] > 1. In this case, the value function V(x) = e−βx, where

β + δ
∫ ∞

0
[e−βy − 1]p(y)dy = 0. (77)

When ρ
λ = 1

δ , in terms of ruin probability, it does not make a difference whether the
company decides to invest in research and development or not.

Remark 4. When ρ
λ ≥

1
δ , V(x) = e−βx, where β satisfies (77) that is independent of ρ and λ.

Asymptotically, when ρ
λ → 0, it is easy to see that β ∼ λ

ρ .
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Example 4. In the special case that p(y) = νe−νy, when ρ
λ < 1

δ , then the optimal C ≡ 0 and

V(x) = e−(
λ
ρ−ν)x, and when ρ

λ > 1
δ and δ

ν > 1, then the optimal C ≡ ∞ and V(x) = e−(δ−ν)x.

4. Investing in a Market Index

We have already studied the optimal investment in research and development for a
venture capital or high-tech company in the dual risk model in Section 3, and now, let us
also add the possibility of the alternative investment in a risky asset in the market, which is
a capital market index modeled by a geometric Brownian motion.

For simplicity, we restrict our discussions to the state-independent case as in Section 3.3:

ρ(·) ≡ ρ, λ(·) ≡ λ, (78)

where ρ, λ > 0 and
F(x, c) = λ + δcγ, δ, γ > 0. (79)

Let us assume that the market index St follows a geometric Brownian motion:

dSt = µStdt + σStdWt, (80)

where µ, σ > 0 and Wt is a standard Brownian motion.
Assume that at time t, the company can invest θt shares of the market index St and Ct in

research and development. Thus, the wealth process of the company satisfies the dynamics:

dXt = −(ρ + Ct)dt + dJC
t + θtdSt, X0 = x > 0 (81)

The invested amount in the market index is At = θtSt at time t.
We are interested in finding optimal investment strategies to minimize the probability

of ruin:
V(x) := inf

C∈C,A∈A
P(τ < ∞|X0 = x), (82)

where C is the same as defined before and A is the admissible strategies for investment in
the market index, defined as:

A :=
{

A : [0, ∞)×Ω→ R : A is progressively measurable (83)

and for any t > 0, E
[∫ t

0
A2

s ds
]
< ∞.

}
.

For any given C ∈ C and A ∈ A, we write XC,A = X to emphasize the dependence on
C and A.

With additional investment in a market index, the random time change argument
in the analysis in Section 3 no longer applies. Instead, we rely on the stochastic optimal
control theory (see, e.g., Fleming and Soner 1993), which suggests that the Hamilton–Jacobi–
Bellman equation for V(x) is given by

inf
C≥0,A∈R

{
− (ρ + C)V′(x) + (λ + δCγ)

∫ ∞

0
[V(x + y)−V(x)]p(y)dy (84)

+ AµV′(x) +
1
2

A2σ2V′′(x)
}

= 0,

with boundary condition V(0) = 1.
Similar to the case in Section 3, the case γ ≥ 1 leads to triviality and for the rest, we

consider two cases: 0 < γ < 1 and γ = 1.
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4.1. The 0 < γ < 1 Case

In this section, we consider the 0 < γ < 1 case. We start with the following techni-
cal lemma.

Lemma 1. V(x) = e−βx is a solution to the Hamilton–Jacobi–Bellman Equation (84), where
β > 0 is the unique solution to the equation:

β

ρ +

(
1

δγ

) 1
γ−1
(

β

1−
∫ ∞

0 e−βy p(y)dy

) 1
γ−1
 (85)

−

λ + δ

(
1

δγ

) γ
γ−1
(

β

1−
∫ ∞

0 e−βy p(y)dy

) γ
γ−1
(1−

∫ ∞

0
e−βy p(y)dy

)
− 1

2
µ2

σ2 = 0.

Given V(x) = e−βx and let

(C∗, A∗) ∈ argmin
{
− (ρ + C)V′(x) + (λ + δCγ)

∫ ∞

0
[V(x + y)−V(x)]p(y)dy

+ AµV′(x) +
1
2

A2σ2V′′(x)
}

. (86)

Then, we have

C∗ =
(

1
δγ

) 1
γ−1
(

β

1−
∫ ∞

0 e−βy p(y)dy

) 1
γ−1

, A∗ =
µ

σ2β
. (87)

Proof of Lemma 1. Assume that V′(x) < 0 and V′′(x) > 0, then the optimal C and A are
given respectively by

C =

(
1

δγ

) 1
γ−1
(

V′(x)∫ ∞
0 [V(x + y)−V(x)]p(y)dy

) 1
γ−1

, A = − µV′(x)
σ2V′′(x)

, (88)

and the Hamilton–Jacobi–Bellman equation becomes

−

ρ +

(
1

δγ

) 1
γ−1
(

V′(x)∫ ∞
0 [V(x + y)−V(x)]p(y)dy

) 1
γ−1
V′(x) (89)

+

λ + δ

(
1

δγ

) γ
γ−1
(

V′(x)∫ ∞
0 [V(x + y)−V(x)]p(y)dy

) γ
γ−1


·
∫ ∞

0
[V(x + y)−V(x)]p(y)dy− 1

2
µ2

σ2
(V′(x))2

V′′(x)
= 0.

We can see that V(x) = e−βx, where β > 0 is the unique solution to the equation:

β

ρ +

(
1

δγ

) 1
γ−1
(

β

1−
∫ ∞

0 e−βy p(y)dy

) 1
γ−1
 (90)

−

λ + δ

(
1

δγ

) γ
γ−1
(

β

1−
∫ ∞

0 e−βy p(y)dy

) γ
γ−1
(1−

∫ ∞

0
e−βy p(y)dy

)
− 1

2
µ2

σ2 = 0.
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Recall the definition g(β) = 1
β

[
1−

∫ ∞
0 e−βyp(y)dy

]
and we want to show that the equation

H(β) := ρ− (δγ)
1

1−γ

(
1

γ− 1

)
[g(β)]

1
1−γ − λg(β)− 1

2
µ2

σ2
1
β
= 0 (91)

has a unique positive solution. It is easy to see that limβ→0+ g(β) = E[Y1] and limβ→∞ g(β) = 0.

Thus, H(β) ∼ − 1
2

µ2

σ2β
< 0 as β → 0+ and H(β) → ρ as β → ∞. We have already proved

that g(β) is decreasing in β. Moreover, 1
β is also decreasing in β. Therefore, H(β) is

increasing in β and hence, there exists a unique positive value β so that H(β) = 0.
Finally, we can compute that the optimal C∗ and A∗ are given by (87). This completes

the proof.

A Verification Theorem

Let us recall from (84) that the Hamilton–Jacobi–Bellman equation is given by

0 = inf
C>0,A∈R

{
− (ρ + C)V′(x) + (λ + δCγ)

∫ ∞

0
[V(x + y)−V(x)]p(y)dy

+ AµV′(x) +
1
2

A2σ2V′′(x)
}

,
(92)

with boundary condition V(0) = 1.

Theorem 4 (Vertification). If w ∈ C2
b is a solution of (92) with w(0) = 1, such that for any

C ∈ C and A ∈ A
lim

K→∞
w(K) = 0, (93)

then, w ≤ V. In addition, if

C∗(x) :=
(

1
δγ

) 1
γ−1
(

w′(x)∫ ∞
0 [w(x + y)− w(x)]p(y)dy

) 1
γ−1

and A∗(x) = − µw′(x)
σ2w′′(x)

,

are such that
dX∗t = −(ρ + C∗(X∗t ))dt + dJ

C∗(X∗t−)
t + A∗(X∗t )dSt

has a solution and C∗· := C∗(X∗· ) ∈ C and A∗· := A∗(X∗· ) ∈ A, then w = V.

Proof of Theorem 4. We follow the supermartingale argument presented in (Rogers 2013,
Theorem 1.1). Since w is bounded and continuously differentiable with bounded derivative,
by Itô lemma for jump processes, we have

E
[
w
(

XC,A
t

)∣∣∣Fs

]
= w

(
XC,A

s

)
+E

[ ∫ t

s

(
− (ρ + Cu)w′

(
XC,A

u

)
(94)

+ (λ + δCγ
u )
∫ ∞

0

[
w
(

XC,A
u + y

)
− w

(
XC,A

u

)]
p(y)dy

+ Auµw′
(

XC,A
u

)
+

1
2

A2
uσ2w′′

(
XC,A

u

))
du
∣∣∣∣Fs

]
≥ w

(
XC,A

s

)
,

for any C ∈ C and A ∈ A. Therefore, w(XC,A
t ) is a submartingale. Let τK be the first

time that the XC,A
t process hits K > 0. Since w is uniformly bounded, by optional

stopping theorem,

w(x) ≤ E
[
w
(

XC,A
τK∧τ

)]
= E

[
w
(

XC,A
τK

)
1{τK<τ} + 1{τK≥τ}

]
= w(K)P(τK < τ) + P(τ < τK).
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It follows from (93) and monotone convergence theorem that the right-hand side above
converges to P(τ < ∞) as K → ∞ and thus,

w(x) ≤ P(τ < ∞).

By taking infimum over C ∈ C and A ∈ A, we obtain w ≤ V. All the above inequalities
change to equality for Ct = C∗(X∗t−) and At = A∗(X∗t−). This completes the proof.

Corollary 1. w(x) = e−βx with β defined in (85) satisfies (93) and thus, w = V.

Proof of Corollary 1. We already showed, in Lemma 1, that w is a classical solution of
the boundary value problem (92). Moreover, since C∗ and A∗ defined by (86) are ad-
missible controls (constants). By Theorem 4 and because (93) trivially holds, we have
V(x) = w(x) = e−βx. The proof is complete.

Next, we provide some asymptotic analysis.

Remark 5. As in Remark 2, let us discuss the dependence of C∗, β and hence, V(x) = e−βx on
the parameters ρ, λ and δ. Since the results are similar to Remark 2, we omit the details and only
summarize the results here. Note that β satisfies

ρ− (δγ)
1

1−γ

(
1
γ
− 1
)
[g(β)]

1
1−γ − λg(β)− 1

2
µ2

σ2
1
β
= 0, (95)

where g(β) is defined in (51).

(i) As ρ→ 0+, we have β ∼
λ+ 1

2
µ2

σ2
ρ , and C∗ ∼ (δγ)

1
1−γ

(
ρ

λ+ 1
2

µ2

σ2

) 1
1−γ

.

(ii) As δ→ ∞, we have β ∼ γ
ρ1−γ

(
1
γ − 1

)1−γ
δ, and C∗ → ρ

1
γ−1

. As δ→ 0, we have β→ α,

where α is the unique positive value so that

ρα + λ
∫ ∞

0
[e−αy − 1]p(y)dy− 1

2
µ2

σ2 = 0. (96)

Moreover, as δ→ 0, we have C∗ ∼ (δγ)
1

1−γ

(
1
λ

(
ρ− 1

2α
µ2

σ2

)) 1
1−γ

.

(iii) As λ→ ∞, we have β ∼ λ
ρ , and C∗ ∼ (δγ)

1
1−γ
( ρ

λ

) 1
1−γ .

Remark 6. Here, we investigate the asymptotic behavior of the value function and the optimal
investment rate as γ→ 1− and γ→ 0+. Note that the optimal C∗ and β satisfy

ρ−
(

1
γ
− 1
)

C∗ − λ

δγ
(C∗)1−γ − 1

2
µ2

σ2
1
β
= 0, (97)

and

C∗ =
(

1
δγ

) 1
γ−1
(

β

1−
∫ ∞

0 e−βy p(y)dy

) 1
γ−1

. (98)

(i) As γ → 0+, C∗ ∼ ηγ for some η > 0 and β → ι for some ι > 0. It is easy to check that

η, ι > 0 satisfy η =
1−
∫ ∞

0 e−ιy p(y)dy
ι and ρ− η − λ

δ η − 1
2

µ2

σ2
1
ι = 0. Thus

ρ−
(

1 +
λ

δ

)
1−

∫ ∞
0 e−ιy p(y)dy

ι
− 1

2
µ2

σ2
1
ι
= 0. (99)

(ii) Next, let us consider γ→ 1−.
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If δE[Y1] > 1, then there exists a unique value ι > 0 such that δ = ι
1−
∫ ∞

0 e−ιy p(y)dy
. Assume

further that ρ − λ
δ −

1
2

µ2

σ2ι
> 0. Then, we have C∗ ∼ η

1−γ and β → ι as γ → 1−, where

η = ρ− λ
δ −

1
2

µ2

σ2ι
.

If ρ − λ
δ −

1
2

µ2

σ2ι
< 0, the optimal C∗ → 0 as γ → 1− and C∗ ∼

(
δγ
λ

(
ρ− 1

2
µ2

σ2
1
β

)) 1
1−γ

and β → ι as γ → 1−. We can check that η, ι satisfy the equations η = λ

δ

(
ρ− 1

2
µ2

σ2 ι

) and

ι
δ = 1−

∫ ∞
0 e−ιy p(y)dy. As γ→ 1−, we have C∗ ∼ 1

e

(
δ
λ

(
ρ− 1

2
µ2

σ2ι

)) 1
1−γ

.

If ρ− λ
δ −

1
2

µ2

σ2ι
= 0, then, as γ → 1−, we have that C∗ converges to the unique positive

solution to the equation δx + λ(1 + log x) = 0.

4.2. The γ = 1 Case

Consider the case where γ = 1, i.e., for x > 0. Then, we have a singular control
problem on C ∈ C (see, e.g., Fleming and Soner 1993) and the value function V(x) satisfies
the Hamilton–Jacobi–Bellman equation:

0 = min

{
− ρV′(x) + λ

∫ ∞

0
[V(x + y)−V(x)]p(y)dy + inf

A∈R

{
AµV′(x) +

1
2

A2σ2V′′(x)
}

,

δ
∫ ∞

0
[V(x + y)−V(x)]p(y)dy−V′(x)

}
,

(100)

with boundary condition V(0) = 1. Optimizing over A, it reduces to the following equation:

0 = min

{
− ρV′(x) + λ

∫ ∞

0
[V(x + y)−V(x)]p(y)dy− µ2(V′)2

2σ2V′′
,

δ
∫ ∞

0
[V(x + y)−V(x)]p(y)dy−V′(x)

}
,

(101)

with boundary condition V(0) = 1.
For w ∈ C2

b, we define

P :=
{

x ∈ R+ : δ
∫ ∞

0
[w(x + y)− w(x)]p(y)dy− w′(x) > 0

}
.

According to (Fleming and Soner 1993, Chapter 8), w is a classical solution of (101) if
(i) On P , w satisfies

0 = −ρw′(x) + λ
∫ ∞

0
[w(x + y)− w(x)]p(y)dy− µ2(w′)2

2σ2w′′
.

(ii) On R+, w satisfies

0 ≤ −ρw′(x) + λ
∫ ∞

0
[w(x + y)− w(x)]p(y)dy− µ2(w′)2

2σ2w′′
,

0 ≤ δ
∫ ∞

0
[w(x + y)− w(x)]p(y)dy− w′(x).

(102)

(iii) w(0) = 1.
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Lemma 2. w(x) = e−(β1∨β2)x is a classical solution of (101) where β1 is the unique positive
solutions of F(β) = 0 and β2 is the unique positive solution of G(β) = 0 if it exists or zero
otherwise. Here, F and G are given by

F(β) := ρβ + λ
∫ ∞

0
[e−βy − 1]p(y)dy− 1

2
µ2

σ2 ,

G(β) := β + δ
∫ ∞

0
[e−βy − 1]p(y)dy.

Proof of Lemma 2. If G′(0) = 1− δE[Y1] ≥ 0, then β2 = 0 and G(β1) > 0. This implies
that P = R+. By straightforward calculations,

−ρw′(x) + λ
∫ ∞

0
[w(x + y)− w(x)]p(y)dy− µ2(w′)2

2σ2w′′
= wF(β1) = 0,

δ
∫ ∞

0
[w(x + y)− w(x)]p(y)dy− w′(x) = wG(β1) > 0.

If G′(0) = 1− δE[Y1] < 0 and β1 > β2, then G(β1) > 0 and we have P = R+. Similar
to the previous paragraph, we obtain that w is a classical solution. If G′(0) = 1− δE[Y1] < 0
and β1 ≤ β2, then F(β2) ≥ 0 and we have P = ∅. Thus,

−ρw′(x) + λ
∫ ∞

0
[w(x + y)− w(x)]p(y)dy− µ2(w′)2

2σ2w′′
= wF(β2) ≥ 0,

δ
∫ ∞

0
[w(x + y)− w(x)]p(y)dy− w′(x) = wG(β2) = 0.

The proof is complete.

A Verification Theorem

Theorem 5 (Verification). Let w ∈ C2
b be a decreasing classical solution of problem (101) such

that condition (93) holds. Then, w(x) ≤ V(x), where V(x) is the value function of the ruin
probability minimization problem with investment.
In addition, if P = R+, then w(x) = V(x).

Proof of Theorem 5. Let A = {As}s≥0 be an admissible strategy and C := {Ct}t≥0 be
a non-decreasing singular function, i.e., Ct :=

∫ t
0 dcs where cs is a non-negative mea-

sure. Then,

XC,A
t = x− ρt− Ct + JC

t +
∫ t

0
AsdSs ,

where JC
t = ∑

NC
t

i=1 Yi where NC
t is a simple point process with compensator λt + δCt. Then,

by Itô’s formula for C2
b functions, we have

E
[
w
(

XC,A
t

)∣∣∣Fs

]
= w

(
XC,A

s

)
+E

[ ∫ t

s

(
− ρw′ + λ

∫ ∞

0
[w(x + y)− w(x)]p(y)dy

+ Auµw′ +
1
2

A2
uσ2w′′

)(
XC,A

u

)
du

+
∫ t

s

(
− w′ + δ

∫ ∞

0
[w(x + y)− w(x)]p(y)dy

)(
XC,A

u

)
dC0

u

+ ∑
s≤u≤t

(
w(XC,A

u − ∆Cu)− w
(

XC,A
u

))]
.

Here, Cu = C0
u + ∆Cu where C0

u is the continuous part of C and ∆Cu is the pure jump
part of Cu. Notice that by the definition of classical solution, (102) holds and therefore,
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the first two terms inside the expectation above are non-negative. In addition, since w is
non-increasing, we have w(XC,A

u − ∆Cu)− w(XC,A
u ) ≥ 0. Thus, E[w(XC,A

t )|Fs] ≥ w(XC,A
s )

and w(XC,A
t ) is a submartingale. Similar to the arguments in the proof of Theorem 4, (93)

implies that w(x) ≤ P(τ < ∞). By taking the infimum over (C, A), we obtain w ≤ V.
Now, assume that P = R+ and set C ≡ 0. It follows from the definition of A∗ and

Itô’s formula that

E[w(X∗t∧τ)] = w(x) +E
[ ∫ t∧τ

0

(
− ρw′ + λ

∫ ∞

0
[w(x + y)− w(x)]p(y)dy

+ A∗µw′ +
1
2
(A∗)2σ2w′′

)
(X∗s )ds

]
= w(x),

In the above, X∗ satisfies X∗t = x − ρt + Jλ
t +

∫ t
0 A∗(X∗s )dWs. If we let t → ∞, we

obtain w(x) = P(τ∗ < ∞) ≥ V(x) where τ∗ is the ruin time for process X∗. The proof
is complete.

Corollary 2. The classical solution w(x) = e−(β1∨β2)x of boundary value problem (92) satisfies
the assumption of the verification and thus, w = V.

Proof of Corollary 2. First, the condition (93) trivially holds. Therefore, if β1 > β2, then
P = R+ and w = V is followed by Theorem 5. It remains to show the result for
the case that when β1 ≤ β2, i.e., P = ∅. For c > 0, let wc(x) = P(τc < ∞) with
Xt = x− (ρ + c)t + Jc

t +
∫ t

0 A∗dWs with A∗ = µ

σ2β2
. Then, immediately, we obtain wc ≥ V.

We want to show that wc(x)→ w(x) = e−β2x as c→ ∞. Notice that wc satisfies the equation

0 = −(ρ + c)w′c(x) + (λ + δc)
∫ ∞

0
[wc(x + y)− wc(x)]p(y)dy− µ2(w′c)2

2σ2w′′c
,

with the boundary condition wc(0) = 1. The unique bounded solution of the above
equation is given by wc(x) = e−β(c)x where β(c) satisfies

− (ρ + c)β(c) + (λ + δc)
∫ ∞

0
[e−β(c)y − 1]p(y)dy− µ2

2σ2 = 0. (103)

Notice that for any c > 0, β(c) is uniquely determined and is continuous on c. In
addition, straightforward calculations show that β(c) is increasing, i.e.,

β′(c) =
1
c

ρ + λ
∫ ∞

0 [1− e−β(c)y]p(y)dy + µ2

2σ2

ρ + c + (λ + δc)
∫ ∞

0 e−β(c)yyp(y)dy
> 0.

Thus, β̄ := limc→∞ β(c) exists and β̄ > 0 and after dividing (103) by c and taking limit
when c→ ∞, we obtain

G(β̄) = −β̄ + λ
∫ ∞

0

[
e−β̄y − 1

]
p(y)dy = 0.

Since G has a unique positive solution, we must have β̄ = β2 and therefore, we obtain
V(x) ≤ limc→∞ wc(x) = e−β2x. This completes the proof.

5. Numerical Studies

In this section, we carry out numerical studies to illustrate and understand better how
the minimized ruin probability and the optimal investment rate depend on the parameters
in the dual risk model.
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5.1. State-Independent Ruin Probability with Optimal Investment

In this section, we assume that the dual risk model is state-independent, and in
particular, we assume that ρ(·) ≡ ρ, λ(·) ≡ λ, and F(·, c) ≡ λ + δcγ. We also assume that
Yi are i.i.d. exponentially distributed so that p(y) = νe−νy for some ν > 0. We also assume
that λE[Y1] =

λ
ν > ρ so that the ruin probability is less than 1 without any investment in

research and development. Indeed, the ruin probability is given by e−αx, where, according
to (4), α satisfies the equation:

ρα + λ
∫ ∞

0
[e−αy − 1]νe−νydy = ρα− λ

α

ν + α
= 0, (104)

which implies that α = λ
ρ − ν.

In Figure 1, we compare the ruin probability without any investment, the minimized
ruin probability with investment in research and development, and the minimized ruin
probability when investment in both research and development and a market index are
allowed. For simplicity, we assume that γ = 1

2 so that as in Example 3, the minimized

ruin probability is V(x) = e−βx, where β =
λ+
√

λ2+ρδ2

2ρ − ν, and by investing in research
and development, it reduces the ruin probability. Now, if additional investment in a risky
asset, e.g., a market index is allowed, then the ruin probability can be further reduced and
the minimized ruin probability becomes V(x) = e−βx, where by letting p(y) = νe−νy and
γ = 1

2 in (85), we deduce that β > 0 is the unique solution to the equation

βρ− βδ2

4
1

(ν + β)2 −
λβ

ν + β
− 1

2
µ2

σ2 = 0. (105)
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Figure 1. Illustration of the ruin probability without any investment (blue curve with circle markers),
the minimized ruin probability with investment in research and development (black curve with
triangle markers), and the minimized ruin probability when investment in both research and devel-
opment and a market index are allowed (red dashed curve). The x-axis denotes the initial wealth
of the underlying company and the y-axis denotes the (minimized) ruin probability. Here, we take
γ = 1

2 , ρ = 0.1, ν = 0.1, λ = 0.1, δ = 1, µ = 0.1 and σ = 0.2.

In Figure 2, we investigate the dependence of the optimal C∗ on the parameters γ
and δ given ρ = 2, ν = 2 and λ = 0.1. Let us recall that when investment in research and
development is allowed, the optimal investment rate C∗ is the unique positive solution to
the following equation:

λ + (1− γ)δ(C∗)γ = ρδγ(C∗)γ−1. (106)
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When additional investment in a market index is allowed, the optimal investment
rate C∗ for the investment in research and development remains the same. Notice that
from (106), the optimal C∗ is independent of the distribution of Yi. Therefore, the definition
of C∗ is independent of the condition (44) under which the minimized ruin probability is
less than 1. Intuitively, that is because C∗ optimizes over the drift term by the random time
change technique, but when the condition (44) is violated, even the optimal C∗ still gives
the ruin probability equal to 1. In Figure 2, we give the heat map plot of the optimal C∗ as
function of γ and δ. Note that for p(y) = νe−νy the condition (44) is equivalent to

ρ− λ

ν
− (δγ)

1
1−γ

(
1
γ
− 1
)

1

ν
1

1−γ

< 0. (107)

When this condition is violated, then it corresponds to the darker region in the bottom
half of the plot in Figure 2. The boundary is achieved when the left-hand side of (107) is
zero. In this region, the ruin probability is always 1 regardless of the investment in research
and development. When the condition (107) is satisfied, it corresponds to the upper half of
the plot in Figure 2. In this region, it is easy to observe that as δ increases, C∗ increases. For
the plot in Figure 2, the optimal C∗ is less sensitive to the change of the parameter γ.
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δ

γ

0

10

Figure 2. This shows C∗ as a function of γ and δ. In the darker region in the bottom half of the plot,
this is where ruin probability is always 1 regardless of the investment. In the upper half of the plot,
the minimized ruin probability is less than 1 and it shows the heat map. Here, we take ρ = 2, ν = 2
and λ = 0.1.

In Figure 3, we investigate the dependence of the optimal C∗ on the parameters ρ and
λ given δ = 1, ν = 0.1 and γ = 1

2 . For γ = 1
2 , we showed in Example 3 that the optimal C∗

is given by

C∗ =
δ2ρ2

(λ +
√

λ2 + ρδ2)2
. (108)

When p(y) = νe−νy and γ = 1
2 , the condition (44) reduces to ρ− λ

ν −
δ2

4ν2 < 0. When
this condition is violated, the ruin probability is always 1 regardless of the investment and
it corresponds to the dark region in the bottom right corner of the plot in Figure 3. When
this condition is satisfied, the heat map plot of the optimal C∗ as a function of ρ and λ is
illustrated in Figure 3. We can see that as ρ increases, the optimal C∗ increases, and as λ
increases, the optimal C∗ decreases.
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Figure 3. This shows C∗ as a function of ρ and λ. In the darker region in the bottom right corner of
the plot, this is where ruin probability is always 1 regardless of the investment. In the rest of the plot,
the minimized ruin probability is less than 1. Here, we take ν = 0.1, γ = 0.5 and δ = 1.

5.2. State-Dependent Ruin Probability with Optimal Investment

In this section, we assume that the dual risk model is state-dependent, and in particular,
we assume that F(x, c) = λ(x) + δ(x)cγ. We also assume that Yi are i.i.d. exponentially
distributed so that p(y) = νe−νy for some ν > 0.

First, let us consider a special example in the case of 0 < γ < 1. Let us consider the
model in Example 1. For simplicity, let us assume that γ = 1

2 . Recall that in Example 1,
ρ(x) = ρ0, λ(x) = λ0(c1x + c2), and δ(x) = δ0(c1x + c2). The optimal investment rate
C∗(x) ≡ C0 is a constant and is given by:

C0 =
δ2

0ρ2
0

(λ0 +
√

λ2
0 + ρ0δ2

0)
2

. (109)

The minimized ruin probability is given by

2a
√

decx−dx2
+
√

πe
c2
4d (ac + 2bd)erfc( 2dx−c

2
√

d
)

2a
√

d +
√

πe
c2
4d (ac + 2bd)erfc( −c

2
√

d
)

, (110)

where x is the initial wealth, a := c1, b := c2, c := ν− λ0+δ0C1/2
0

ρ0+C0
c2, and d := λ0+δ0C1/2

0
ρ0+C0

c1
2 . By

setting C0 = 0 in (110), we obtain the ruin probability without any investment in research
and development.

In Figure 4, the blue curve with circle markers stands for the ruin probability without
investment and the red dashed curve stands for the minimized ruin probability with
investment. These two curves differ from exponential decays, which is due to the flexibility
of the state-dependent model. As observed in Zhu (2015b), for the state-dependent dual risk
model, the ruin probability can have subexponential, exponential and superexponential
decays in terms of the initial wealth. Additionally, for the state-dependent dual risk model,
the ruin probability may not be convex in the initial wealth (as we can see from the blue
curve with circle markers in Figure 4).
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Figure 4. Illustration of the ruin probability without any investment (blue curve with circle markers),
the minimized ruin probability with investment in research and development (red dashed curve). The
x-axis denotes the initial wealth of the underlying company and the y-axis denotes the (minimized)
ruin probability. Here, we take γ = 0.5, ρ0 = 1, ν = 0.1, λ0 = 0.1, δ = 1, c1 = 1 and c2 = 1.

Next, let us consider an example for γ = 1 for the state-dependent dual risk model.
Let us recall that in Example 2, ρ(x) = ρ0(c1x + c2), λ(x) =

(
ν + λ0

1+x

)
ρ(x), and δ(x) = δ0,

and under the assumption that ν < δ0 < ν + λ0, the optimal C∗ is given by C∗ = 0 if x ≤ x∗

and C∗ = ∞ if x > x∗, where x∗ := λ0−δ0+ν
δ0−ν . From Example 2, with optimal investment,

the minimized ruin probability is given by V(x) in (34) if x > x∗ and the minimized ruin
probability is given by V(x) in (35) if x ≤ x∗, where x is the initial wealth. Without any
investment, as in Theorem 2, under the assumption that λ0 > 1, we can compute that the
ruin probability is given by

V(x) =

∫ ∞
x

(
ν + λ0

1+y

)
1

(1+y)λ0
dy∫ ∞

0

(
ν + λ0

1+y

)
1

(1+y)λ0
dy

=
ν(1 + x)−λ0+1 + (λ0 − 1)(1 + x)−λ0

λ0 + ν− 1
, (111)

which is strictly between 0 and 1.
In Figure 5, we plot the curve of the ruin probability as a function of the initial wealth

without investment (blue curve with circle markers) and the minimized ruin probability as
a function of the initial wealth with the optimal investment in research and development
(red dashed curve) as in the example of the state-dependent dual risk model we described
above. In Figure 5, the critical threshold for the optimal investment strategy is x∗ = 3
in the plot. When the wealth process is below this threshold x∗, the optimal strategy for
investment in R&D is not to invest, and when the wealth process is above this threshold
x∗, the optimal strategy for investment in R&D is to invest as aggressively as possible.
When x < x∗, from (35), we can see that V(x) decays polynomially in x, and when x > x∗,
from (34), we can see that V(x) decays exponentially in x.
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Figure 5. Illustration of the ruin probability without any investment (blue curve with circle markers),
the minimized ruin probability with investment in research and development (red dashed curve). The
x-axis denotes the initial wealth of the underlying company and the y-axis denotes the (minimized)
ruin probability. x∗ on the x-axis is the critical threshold above which the optimal strategy is to invest
as much as possible in R&D, and below which the optimal strategy is not to invest at all in R&D.
Here, we take ρ0 = 1 (irrelevant), ν = 0.1, λ0 = 1.2, δ0 = 0.4 and c1 = c2 = 1 (irrelevant) and γ = 1.
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