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Abstract: This study presents an easy-to-handle approach to measuring the severity of reinsurance
that faces a system of dependent claims, where the reinsurance contracts are of excess loss or propor-
tional loss. The proposed approach is a natural generalization of common reinsurance methodologies
providing a conservative framework that deals with the fundamental question of how much money
should a government hold to prepare for natural or human-made extreme risk events that the govern-
ment will cover? Although the ruin theory is commonly used for extreme risk events, we suggest a
new risk measure to deal with such events in a new framework based on multivariate risk measures.
We analyze the results for the log-elliptical model of dependent claims, which are commonly used in
risk analysis, and illustrate our novel risk measure using a Monte Carlo simulation.

Keywords: loss retention; reinsurance policy; reinsurance claim; catastrophic events; risk manage-
ment; financial simulation

1. Introduction

Insurance policies promise to pay claims to the policyholders when accidents occur;
however, if the insurer defaults, policyholders may lose their claims. To avoid potential
insolvency, insurance companies typically manage residual risks through reinsurance
arrangements that transfer all or part of their liabilities arising from sold insurance policies
to another insurer. Hence, in cases of high aggregate claims, the reinsurer will pay the
primary insurer part of their excess loss (Cai and Chi 2020).

However, while reinsurance arrangements help insurers reduce risk exposure and
protect them against catastrophic losses and possible insolvency (Berger et al. 1992; Powell
and Sommer 2007), they do not completely eliminate the risk. More specifically, an insurer
may significantly reduce underwriting risk when reinsurance programs manage small and
uncorrelated risks (Cummins and Trainar 2009); however, in cases of correlated risks, a
single event can cause losses to many policyholders simultaneously, which might pose
a significant risk of default for both the primary insurer and reinsurer (Cummins et al.
2021). In fact, the positive-dependence structure among the risks plays a critical role in
the risk transfer to the reinsurer, as noted by Cai and Chi (2020), and thus the reinsurer
should consider the correlation among the risks when managing his terminal risk, to avoid
potential insolvency.

Large catastrophic events, in particular, significantly increase the insurer’s risk of
default, as noted by Cummins and Trainar (2009), and thus have a large potential to cause
extreme losses to the reinsurer. More particularly, reinsurance is the traditional mechanism
for hedging catastrophe events (Drexler and Rosen 2022; Zhao et al. 2021); thus, extreme
catastrophe events, which evidently cause high losses to many policyholders (Cummins
et al. 2021), may result in a large aggregate loss to the reinsurer and potential insolvency.
Moreover, Cai and Wei (2012) and Zhao et al. (2021) argue that multiple reinsurance
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treaties are commonly positive-dependent, since the number of property losses and dead
people in such catastrophes, for instance, are usually positively dependent; thus, if the
reinsurer has many lines of business, one catastrophe may cause him severe and unexpected
aggregate loss.

The impacts of catastrophe events on reinsurance is evident in recent natural disasters.
For example, Cummins et al. (2004) document that Hurricane Andrew in 1992 and the
Northridge Earthquake in 1994 resulted in a USD $30 billion loss in the reinsurance industry;
Chang et al. (2018) show that Hurricanes Katrina and Wilma in 2005 resulted in an estimated
USD $60 billion loss to the insurance and reinsurance industries; Cummins and Trainar
(2009) also argue that World Trade Center terrorist attacks in 2001 and Hurricanes Katrina,
Rita, and Wilma in 2005 seriously weakened the reinsurers’ capital. Hence, if the reinsurers’
programs are subject to highly correlated risks, the potential aggregate loss might exceed
the reinsurers’ capital, and the reinsurers will fail to pay the loss to the primary insurers.
Since reinsurers typically manage several reinsurance programs with correlated risks, we
argue that reinsurers may default, even if they have high capital reserves.

In practice, if the reinsurer fails to pay the promised claims, the primary insurer will
face unexpected aggregate claims, resulting in a potential risk of default and a significant
loss to many policyholders (Cai and Chi 2020; Boonen and Jiang 2022). To avoid the
potential insolvency of the primary insurer, the reinsurer has to hold sufficient economic
capital (Boonen 2017). Typically, insurers and reinsurers set their capital requirements based
on the new Solvency II supervisory framework, which sets solvency capital standards based
on the risks that the insurer and reinsurer face (Boonen 2017; Cai and Chi 2020). In this
regard, an immense body of literature uses the common value-at-risk (VaR) measure, which
quantifies the potential excess loss using a high quantile of the loss distribution, or the
expected shortfall (ES), which quantifies the average of expected loss when it exceeds the
VaR for reinsurance applications (Zhou and Wu 2009; Cai and Tan 2007; Cai et al. 2008;
Chi and Tan 2011; Cai et al. 2014; Mao and Cai 2018; Cai and Chi 2020). Other studies use
the well-known Tail Conditional Expectation (TCE) measure, which quantifies the average
exceedance of the insurance claims given that the claim exceeds a certain quantile level, to
derive optimal reinsurance arrangements that minimize the insurer’s risk after reinsurance
(Dhaene et al. 2006; Chi 2012; Chi and Tan 2011; Chi and Weng 2013). However, almost
all of these studies assume only two agents in the market, that is, one insurer and one
policyholder, thus assuming that the insurer (or reinsurer) is facing one risk.

On the contrary, in practice, most insurers have many lines of business with several
reinsurance arrangements (Cai and Chi 2020; Zhao et al. 2021). Thus, the reinsurer should
employ a risk management strategy that is associated with multiple and correlated risks.
In this regard, the world of risks is in fact multivariate, and thus dealing with a univariate
risk measure is inadequate, as noted by Landsman et al. (2016).

More recent studies have attempted to deal with multivariate risks to determine
optimal reinsurance strategies (Cai and Wei 2012; Cai et al. 2014; Cheung et al. 2014; Zhu
et al. 2014). We argue that these studies had two major limitations. First, most studies
assume that the reinsurer will always be able to pay promised claims, regardless of the
reinsurer’s solvency; in fact, the reinsurer may also bear extreme losses, in cases of positive-
dependent risks, as evident from Cummins et al. (2004) and Zhao et al. (2021). Second, the
vector of risks in the common TCE measure does not consider the dependence structure
among the various risks, which is fully determined by the variance–covariance structure
of the underlying distributions of the risks, as noted by Landsman et al. (2016) and Cai
et al. (2017). Hence, most of these studies do not consider the correlation among these
risks, which evidently affects the reinsurer’s capital reserve and risk of default (Froot 2007;
Cummins and Trainar 2009; Cai and Chi 2020; Zhao et al. 2021).

In this study, we propose a novel systemic risk reinsurance measure (SRRM) for
government reinsurance contracts for national disasters that quantifies the reinsurer’s
expected aggregate loss as a function of dependent multivariate risks. The proposed model
has several advantages. By focusing on tail losses, we can directly capture the dependence



Risks 2023, 11, 50 3 of 11

structure of the losses. Furthermore, the model is easy to handle and is distributed because
it is based on (nontrivial) conditional expectations. In the present work, we both model
reinsurance contracts of systemic risks and consider extreme risk events by conditioning
the model to be at a certain level of risk; this also allows measuring the tail distributions of
the losses faced by governments when signing reinsurance contracts. Our approach does
not assume a particular distribution for risks; therefore, it provides a flexible and general
framework for modelling reinsurance between the government and private sectors.

2. Literature Review

The literature proposes several models for an optimal reinsurance design under dif-
ferent risk measures. These models suggest that the insurer has an optimal reinsurance
program based on maximizing his terminal wealth’s expected utility function and minimiz-
ing his retained risk, measured by various risk measures. For example, Verlaak and Beirlant
(2003) and Kaluszka and Okolewski (2008) derive optimal reinsurance under premium
principles based on the mean and variance of the reinsurer’s share of the total claim amount.
Other studies, such as Wang et al. (2005), Huang (2006), Zhou and Wu (2009), Cai et al.
(2008), and Chi and Tan (2011), employ VaR and ES measures to assist insured parties
in determining the optimal insurance policy. Furthermore, Cai and Tan (2007), Cai et al.
(2008), and Chi and Tan (2011) derive optimal reinsurance strategies that minimize the
insurer’s VaR and ES. Other studies, including Cheung (2010), Chi (2012), Chi and Tan
(2011), and Chi and Weng (2013), consider the TCE measure to derive an optimal one-period
reinsurance model with a minimal insurer risk. However, almost all these studies assume
a one-period reinsurance model with one loss variable, while in practice, most reinsurers
have many lines of business.

Recent studies have extended univariate risk models to include several business lines
and multivariate risk factors. Cheung et al. (2014) and Bernard et al. (2020) considered
multivariate risks with given dependencies among these risks to model optimal multivari-
ate reinsurance programs. Denuit and Vermandele (1998) and Cai and Wei (2012) show
that the excess-of-loss treaty is the optimal reinsurance form for an insurer with dependent
risks among a class of individualized reinsurance contracts. Cheung et al. (2014) proposed
a minimax model that establishes an optimal stop-loss reinsurance that minimizes the total
retained risk obtained by several dependent risks. Asimit et al. (2013b) and Zhu et al. (2014)
study the optimal risk transfer among multiple reinsurance counterparties, where insurer
risk is a function of quantile-based risk measure criteria, including VaR and ES. However,
most studies on optimal reinsurance programs do not consider the likelihood of reinsurer
insolvency; hence, they assume that the reinsurer will always be able to pay the loss in
case of a catastrophic event. In practice, the reinsurer is also subject to the risk of default in
extreme catastrophic events, as evident from Cummins et al. (2004).

Recent studies discuss the impact of the risk of default by the reinsurer and its impact
on the insurer. Bernard and Ludkovski (2012) studied the impact of reinsurers’ defaults
by applying a multiplicative default risk model in which the probability of the reinsurer’s
default depends on the loss incurred by the insurer, concluding that reinsurance becomes
unreliable in the presence of counterparty risk. Asimit et al. (2013a) studied the optimal
reinsurance contract in the presence of the reinsurer’s default and found that the reinsurer’s
risk of default affects the policyholders’ welfare and the default risk may change the
insurer’s ideal arrangement. Cai et al. (2014) studied the impact of the reinsurer’s initial
capital and default risk on the insurer and derived an optimal reinsurance model that
maximizes the expected utility of an insurer’s terminal wealth or minimizes the insurer’s
VaR. However, these studies assume a constant initial capital for the reinsurer or derive
the regulatory requirements of the reinsurer’s initial capital reserve as a function of the
reinsurer’s promised amount.

In individual reinsurance programs, the reinsurer is mainly concerned with dependent
risks, which may have a large impact on the risk of default by the reinsurer in the case
of a catastrophic event. For example, the number of property losses and the number of
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deaths in earthquakes or hurricanes are usually dependent (Cai and Wei 2012). Hence,
we argue that it is vital to describe the effect of dependent risks on the aggregate loss for
the reinsurer.

In this study, we propose a novel methodology that measures the tail distributions of
reinsurers’ aggregate losses in extreme events when these risks are mutually dependent.
We extend the concept of the MTCE risk measure (Landsman et al. 2016; Cai et al. 2017) to
measure reinsurance systemic risk. We develop a novel SRRM that quantifies the reinsurer’s
excess aggregate loss under a system of dependent risks and different quantile levels of
risks. We also provide a simulated example of quantifying this risk using a Monte Carlo
simulation, which may be used as an actuarial tool for quantifying the reinsurer’s risk and
capital requirements.

3. Methodology
3.1. Systemic Excess Loss Reinsurance Model

Let X = (X1, X2, . . . , Xn)
T be a random number vector of n independent claims

X1, X2, . . . , Xn with value-at-risk (VaR) measures VaRq1(X1), VaRq2(X2), . . . , VaRqn(Xn),
respectively, where the VaR of each claim Xj has qj-th quantile, qj ∈ (0, 1), j = 1, 2, . . . , n.
The multivariate tail value at risk (MTVaR) is defined (Landsman et al. 2016):

MTVaRq(X) = E
(
X
∣∣X > VaRq(X)

)
= E

(
X
∣∣X1 > VaRq1(X1), . . . , Xn > VaRqn(Xn)

)
. (1)

here, VaRq(X) =
(
VaRq1(X1), VaRq2(X2), . . . VaRqn(Xn)

)T is the n× 1 vector of VaRs, and
the inequality U ≤ V of two random vectors U, V ∈ Rn

+ means that Ui ≤ Vi almost surely
for every i = 1, 2, . . . , n. We also define the aggregate loos of X, Y, and Z, respectively, by
SX = X1 + X2 + . . . + Xn, SY = Y1 +Y2 + . . . +Yn, SZ = Z1 + Z2 + . . . + Zn, where clearly,
SX = SY + SZ.

We start by considering a reinsurance contract between the primary insurance com-
pany and the reinsurer, in which the reinsurer is obligated to pay the primary insurer all
the excess losses in case of a catastrophic event. We let Xi be a univariate random insurance
claim from catastrophic events, which represents the loss or the claim in line i for the
policyholder (i = 1, 2, . . . , n). Under the reinsurance model, for the i-th business line, we
let Yi be the claims paid by the insurer party, namely:

Yi =

{
Xi if Xi ≤ Mi
Mi if Xi > Mi

, (2)

and we let Zi be the excess loss paid by the reinsurer, namely:

Zi =

{
0 if Xi ≤ Mi

Xi −Mi if Xi > Mi
(3)

Since we assume that, in general, X = (X1, X2, . . . , Xn)
T is a vector of mutually depen-

dent claims from n business lines, we define Y = (Y1, Y2, . . . , Yn)
T and Z = (Z1, Z2, . . . , Zn)

T

as the respective vectors of payments for the primary insurer and reinsurer, derived from
positive-dependent catastrophic events.

Assuming the dependence structure of X, we argue that the correlation between rein-
surance claims may potentially cause a high aggregate loss for the reinsurer, as in Cummins
et al. (2004) and Cummins and Trainar (2009). Hence, we argue that reinsurer’s capital
may not be determined by simply taking TCEq(X), as desired by regulatory requirements,
which do not consider the aggregate loss of the reinsurer and do not consider mutually
dependent risks.
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The simplest measure of the reinsurer vector of risks Z is given by taking the expecta-
tion E(Z), which gives the expected value of reinsurance-dependent claims Z1, Z2, . . . , Zn.
Because E(Z) = E(X)− E(Y), we can consider the expectation of Y, which is given by:

E(Y) = E
(
XIXi≤Mi + MIXi>Mi

)
, (4)

where IXi≤Mi = diag
(
1X1≤M1 , 1X2≤M2 , . . . , 1Xn≤Mn

)
and IX1>M1 = diag(1X1>M1 , 1X2>M2 ,

. . . , 1Xn>Mn) are diagonal matrices with indicator components.
However, the problem with the measure in (4) is that it does not take into account the

dependence structure between the risks, since the i-th element of E(Y) is E(Yi), which is
the i-th claim paid by the primary insurer independent of the other claims.

Instead, we suggest a different approach to measure the reinsurer’s systemic risk,
using conditioning on the expectation of Y that focuses on the values of the riskier claims of
X. Following Landsman et al. (2016), we propose a quantile-based conditional expectation
measure that quantifies the reinsurer’s systemic risk by taking the tail systemic projection
of X over Y. However, we extend Landsman et al. (2016) by considering the common tail
systemic projection X→ X

∣∣∪n
i Xi > VaRq(Xi) and suggest quantifying the expectation of

Y given the unification of the common tail region of X, namely:

Eq,X(Y) := E
(
Y
∣∣∪n

i Xi > VaRq(Xi)
)
= E

(
XIXi≤Mi + MIXi>Mi

∣∣∪n
i Xi > VaRq(Xi)

)
. (5)

3.2. Systemic Proportional Reinsurance

For the same vector of claims X, we can have a proportional reinsurance contract. The
most straightforward reinsurance contract is just paying for some percentage of the claim
using a quota share arrangement:

E(X) := E(Y) + E(Z) = E(AX) + E
(

AX
)
, (6)

where A = diag(α1, α2, . . . , αn) is the matrix of the retention levels 0 ≤ αi ≤ 1 for
i = 1, 2, . . . , n, and A = In − A = diag(1− α1, 1− α2, . . . , 1− αn), and In is the n × n
identity matrix.

For a surplus proportional-based reinsurance model, a possible reinsurance contract is:

Y =

{
AX if AX ≤M
M if AX > M

, (7)

and the reinsurers’ claims are then given by:

Z =

{
AX if AX ≤M

X−M if AX > M
. (8)

For the systemic proportional reinsurance model, we observe that the expected value
of Y is given by:

E(Y) = E
(

AXIαiXi≤Mi + MIαiXi>Mi

)
. (9)

We consider quantiles q ∈ [0, 1]n that satisfy the inequalities VaRq(X) ≤M, since VaR
is assumed to be a lower bound for the claims. We then define SRMM, which is given by:

Eq,α,X(Y) = E
(
Y
∣∣∪n

i Xi > VaRq(Xi)
)

= E
(

AXIαiXi≤Mi + MIαiXi>Mi

∣∣∪n
i Xi > VaRq(Xi)

)
= AE

(
XIαiXi≤Mi

∣∣∪n
i Xi > VaRq(Xi)

)
+ ME

(
IαiXi>Mi

∣∣∪n
i Xi > VaRq(Xi)

)
.

(10)

Lastly, following Chen and Yuen (2012) we propose evaluating the risk on the primary
insurer and the reinsurer by measuring the SRRM over SY and over SZ. Namely, we
propose evaluating the reinsurer’s risk by measuring the multivariate conditional tail
expectation of the aggregate amount of claims, from a large insurance portfolio, given the
unification of the common tail region of X.
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3.3. Monte Carlo Simulation

To illustrate the proposed SRRM, we provide a simulated example of the reinsurer
risk measure by calculating the quantile-based risk of the aggregated claims of Z under
different quantile levels according to Equation (9). We exemplify this methodology by
calculating the SRRM value of the aggregated claims for i = 1, 2, . . . , 10 business lines,
assuming positive-dependent risks.

To simulate insurance severity losses, in which losses are rare but each has a high fi-
nancial value, we follow the strand of literature by assuming that these claims are modelled
by a lognormal distribution (see Nowak and Romaniuk 2013). Hence, we start by assuming
that the insurance claims X are lognormally distributed, with the respective vector means
µ and vector of standard deviations σ. We construct µ by generating random numbers
between 0 and 1, which represent the average risk claims (in billions $), and we construct σ
by generating random numbers between 0 and 0.1 which represent the standard deviations
of the claims (in billions $).

Further, we generate X claims by assuming that the insurance claims among the
reinsurance treaties are mutually dependent with the respective correlation matrix r. To
illustrate the effect of the system of risks on the reinsurer, we construct two variance–
covariance matrices Σ and respective simulated datasets: (1) the first dataset considers
independent risks (i.e., Σ is a diagonal matrix with respective standard deviations), while
the second dataset considers positively dependent risks, as noted by Cai and Wei (2012).
For the second dataset, we constructed Σ using the σ vector and by simulating a positively
highly correlated correlation matrix r, which considers random numbers that vary between
0.85 and 0.95. This implies that Σ was highly correlated. Finally, we simulated both datasets
using Matlab’s MVLOGRAND function (Lienhard 2023), in order to generate multivariate
lognormal random numbers with correlation. We use µ,σ and the respective variance–
covariance matrices Σ as inputs to the function, and generate one million lognormal random
numbers, which represent the insurance claims Xi for business line.

Following Asimit et al. (2013b), we assume that the primary insurer is VaR regulated;
thus, the reinsurance strategy will protect from extreme losses only. We assume that the
primary insurer retains 95% of the loss in line i and the reinsurer covers the rest of the loss.
Accordingly, we set the maximal payment Mi made by the insurer to be the inverse of the
theoretical cumulative distribution of the lognormal distribution. Furthermore, for the i-th
claim, we calculate the payments Zi made by the reinsurer according to Equation (3) and
the respective value of Mi, and we calculate the aggregate payments made by the reinsurer
by taking different quantile levels, ranging from 0.05 to 0.95. Finally, based on our novel
SRRM, we plot the results of the tail conditional expectation of the aggregate claims of Z as
a function of these quantiles for both the positive-dependent and independent simulated
dataset; we plot the difference between these conditional expectations.

4. Results

Table 1 shows the random correlation matrix used to generate the simulated correlated
risks. The correlation matrix shows highly positive dependent risks, indicating that a large
reinsurance claim resulting from one risk results in large reinsurance claims for other risks.
Hence, we use a correlation matrix to generate dependent risks, which captures a system of
multivariate risks on a reinsurer, resulting in several individualized reinsurance treaties.

To obtain the risk measure of the sum of the individualized reinsurance claims that
captures the aggregate risk for the reinsurer, we first generate two simulated insurance
claims for independent risks (by assuming the correlation matrix as an identity matrix)
and positive-dependent risks using the correlated risks in Table 1. We then calculate the
expected reinsurance claims using Equation (9).
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Table 1. Correlation matrix for generating correlated lognormal risks.

Risk 1 Risk 2 Risk 3 Risk 4 Risk 5 Risk 6 Risk 7 Risk 8 Risk 9 Risk 10

1.000 0.904 0.890 0.920 0.885 0.924 0.932 0.929 0.901 0.903
0.904 1.000 0.895 0.859 0.865 0.889 0.893 0.945 0.938 0.859
0.890 0.895 1.000 0.903 0.909 0.918 0.939 0.883 0.909 0.861
0.920 0.859 0.903 1.000 0.876 0.920 0.889 0.917 0.865 0.864
0.885 0.865 0.909 0.876 1.000 0.894 0.927 0.894 0.870 0.918
0.924 0.889 0.918 0.920 0.894 1.000 0.890 0.933 0.891 0.900
0.932 0.893 0.939 0.889 0.927 0.890 1.000 0.927 0.925 0.869
0.929 0.945 0.883 0.917 0.894 0.933 0.927 1.000 0.933 0.900
0.901 0.938 0.909 0.865 0.870 0.891 0.925 0.933 1.000 0.865
0.903 0.859 0.861 0.864 0.918 0.900 0.869 0.900 0.865 1.000

Table 2 provides the conditional expectation of reinsurance claims for independent
and positive-dependent risks according to our novel SRRM in Equation (9) for different
quantile levels of q = (0.1, 0.25, 0.5, 0.75, 0.9).

Table 2. SRRM for independent and positive-dependent reinsurance claims.

Percentile Risk 1 Risk 2 Risk 3 Risk 4 Risk 5 Risk 6 Risk 7 Risk 8 Risk 9 Risk 10

Independent insurance claims

10% 0.005 0.008 0.010 0.005 0.005 0.005 0.007 0.006 0.003 0.006
25% 0.006 0.010 0.011 0.006 0.006 0.006 0.008 0.007 0.003 0.007
50% 0.008 0.012 0.014 0.008 0.008 0.007 0.010 0.009 0.004 0.009
75% 0.010 0.016 0.019 0.011 0.010 0.010 0.014 0.012 0.005 0.012
90% 0.013 0.021 0.024 0.014 0.013 0.013 0.018 0.016 0.007 0.015

Positive-Dependent insurance claims

10% 0.019 0.030 0.034 0.019 0.019 0.018 0.025 0.022 0.010 0.022
25% 0.022 0.035 0.039 0.022 0.022 0.021 0.029 0.026 0.012 0.025
50% 0.030 0.047 0.053 0.030 0.029 0.029 0.040 0.035 0.016 0.034
75% 0.047 0.072 0.082 0.046 0.045 0.045 0.062 0.055 0.024 0.051
90% 0.072 0.109 0.126 0.070 0.069 0.069 0.096 0.086 0.036 0.078

As expected, we find that the conditional expectation measure of Z is much higher in
the case of positive-dependent risks than for independent risks for all reinsurance treaties.
For example, for the 90% quantile level, the conditional expectation measure of the first
risk is 0.072 for positive-dependent insurance risks compared to 0.013 for independent
risks. Hence, these results suggest that if the reinsurer’s capital reserve is determined
by the TCE measure, according to regulatory requirements, then the reinsurer’s capital
reserve is highly affected by the correlation among the positive-dependent risks, as noted
by Cummins and Trainar (2009) and Cai and Wei (2012). Thus, we find that a strong
positive dependency between the system of risks (seen in disasters such as earthquakes,
tornados, and hurricanes) significantly affects the individualized reinsurance risk; hence, it
intuitively, significantly increases the systemic risk on the reinsurer, which is concerned
with the aggregate risk of the entire portfolio.

Figure 1 depicts the conditional expectation of the reinsurer’s aggregate risks SZ for
different quantile levels ranging from 1% to 99%. Panel (a) of the figure shows the tail
conditional expectation of the aggregate sum of Z for both the independent and positive-
dependent systems of risks. Panel (b) depicts the difference between the conditional expec-
tations of the positive-dependent and independent datasets derived from our novel SRRM.
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Figure 1. Tail conditional expectation of the reinsurer’s aggregate risks, for different quantile levels.
Panel (a) shows the conditional tail expectation of the aggregate loss, assuming positive-dependent
and independent risks. Panel (b) shows the difference in the tail conditional expectation between
positive-dependent and independent risks, for various quantile levels.

The results in panel (a) show that the simulated conditional expectation of the rein-
surer’s aggregate risks is much higher for a positive-dependent system of risks than for
an independent system of risks for all quantile levels. The results in panel (b) also show
that the difference in the tail-conditional expectation of aggregate loss, which captures the
difference in the reinsurer’s risk for multivariate positive-dependent risks against indepen-
dent risks, grows as a function of the selected quantile level. Thus, the results suggest that,
the reinsurer’s risk is much higher than expected if the risks are not correlated in cases of
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positive-dependent risks. As noted, the difference in risk may not be reduced by using a
higher quantile level.

Hence, the results suggest that if the reinsurer has several excess-of-loss reinsurance
treaties from several business lines, then the reinsurer is subject to a much higher risk than
the risk captured by the common TCE measure, which does not consider the correlation
among the risks. Since Solvency II regulatory requirements commonly use the TCE measure
to define the reinsurer’s risk exposure and minimal capital requirements, the results suggest
that the reinsurer needs to set much higher capital reserves to promise payments to the
primary insurers. These results highlight the potential of the counterparty risk of default in
a multivariate risk framework, since if the reinsurer uses the common TCE measure for
setting capital requirements in common positive-dependent risks, the reinsurer may fail to
pay the claims to the primary insurer.

5. Summary and Conclusions

Classical stop-loss reinsurance contracts are useful in protecting primary insurers from
potential huge losses and the risk of default and in promising payments of insurance claims
to policyholders. However, the classical reinsurance approach assumes that the reinsurer
will always be able to pay claims to the primary insurers and ignores the possibility of
counterparty default risk. More specifically, the potential reinsurer’s default significantly
rises if the reinsurer has several individualized reinsurance treaties with strong positive
dependent risks, such as in cases of loss occurring from earthquakes or hurricanes (Cai and
Wei 2012). Motivated by Solvency II regulatory requirements, we argue that the reinsurer
should set a minimal capital reserve requirement to promise the payments of claims in
positive-dependent risks, in accordance with his risk of exposure.

In this study, we developed a model that defines the minimum capital requirements
from the reinsurer’s point of view based on the reinsurer’s risk exposure. To measure this
risk, we extended the MTCE measure (Landsman et al. 2016) to evaluate the reinsurer’s risk
based on multivariate positive-dependent risks and provided a Monte Carlo simulation.
The results show that the reinsurer’s risk, captured by our novel SRRM, is significantly
higher than the risk captured by the common TCE measure, which does not consider the
correlation among the risks.

Thus, our framework provides an appealing actuarial tool for quantifying the poten-
tial loss to the reinsurer resulting from highly correlated risks. Since historical natural
disasters have demonstrated the strong effect of multivariate and positive-dependent risks
on reinsurers’ capital reserves (Cummins et al. 2004; Cai and Chi 2020; Zhao et al. 2021),
our framework might be a useful tool for assessing the potential loss to the reinsurer
from catastrophic events that he reinsures. By quantifying the reinsurer’s risk with a
positive-dependent risk structure, our framework provides a more accurate guideline
about minimum capital requirements for reinsurers with several reinsurance contracts.

Our framework takes into account the standard stop-loss reinsurance contracts, which
do not capture more information about the aggregate risk associated with more complicated
reinsurance contracts. Future research paths may expand the present study by tailoring the
model to different reinsurance types and contracts, to quantify the effect of correlated risks
on different reinsurers’ risk exposure. Furthermore, future studies may extend the model
to include different types of loss distributions.
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