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Abstract: We study the convergence of the binomial, trinomial, and more generally m-nomial tree
schemes when evaluating certain European path-independent options in the Black–Scholes setting.
To our knowledge, the results here are the first for trinomial trees. Our main result provides formulae
for the coefficients of 1/

√
n and 1/n in the expansion of the error for digital and standard put and

call options. This result is obtained from an Edgeworth series in the form of Kolassa–McCullagh,
which we derive from a recently established Edgeworth series in the form of Esseen/Bhattacharya
and Rao for triangular arrays of random variables. We apply our result to the most popular trinomial
trees and provide numerical illustrations.

Keywords: option pricing; trinomial tree; asymptotic expansion; Edgeworth series

1. Introduction

In this article, we assume that the stock price St follows the Black–Scholes model,
that is,

dSt = µStdt + σStdWt,

where µ is the drift and σ is the volatility. In order to price options, the martingale measure
is introduced under which µ is replaced by the risk-free interest rate r. After the Black–
Scholes model was introduced, the binomial model appeared and it is shown by Cox
and Rubinstein (1985) that the European call and put option price Pn, calculated by their
binomial model, converges to the Black–Scholes price PBS as the number of periods (or time
steps) n→ ∞. Later (see the literature discussion below), scholars studied the rate of the
convergence of Pn to PBS and found that for certain binomial models there was a bounded
coefficient Cn, such that Pn = PBS + Cn/n + O(n−3/2). Now, trinomial models have been
studied by many authors. However, as far as we are aware, there are no similar results
for trinomial prices. The main objective of this paper is to fill this gap. In fact, our study
comprises general self-similar m-nomial models, that is, at any positive time step, the stock
price changes to one of m prices at the next period, where the mechanism and probabilities
of these changes are independent of the value of the stock and the time of the change may
depend on n, which is the number of periods. The trinomial case corresponds to m = 3.
m-nomial models, where m > 3, have been rarely used, but it turned out that our results
were as easily proved for general m as for m = 3. The trees we study are recombining,
as models which are not recombining are not interesting from the computational point
of view. As far as we know, the models we study include all self-similar binomial and
trinomial models studied in the literature, except the somewhat pathological cases, where
the convergence of call and put option prices occurs at a speed of only 1/

√
n.

In this paper, under general conditions which ensure that the moments of the stock
price in the m-nomial model behave like the moments in the Black–Scholes model, we
demonstrate in Theorem 1 that the price Pn of a European put in the m-nomial model
satisfies the relation

Pn = PBS +
Cn

n
+ O

(
1

n3/2

)
,
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where PBS is the Black–Scholes price and Cn is a bounded sequence which we determine
explicitly. A similar result for calls is obtained by using a put-call parity. Of course, Cn
depends on the particular model being used. For digital options, we obtain an analogous
formula, where, however, the coefficient of 1/

√
n is not zero. Note that we obtain the

results of Chang and Palmer (2007) as special cases.
The proof of Theorem 1 uses an Edgeworth series. Bock and Korn (2016) were the

first to extend the Edgeworth series to triangular arrays of random variables, and they
applied their results to binomial models. Here, we demonstrate that their analysis can also
be applied to m-nomial models. The form of Edgeworth series used by Bock and Korn was
inspired by Bhattacharya and Rao (2010) and Esseen (1945). We are able to simplify their
expansion using the ideas of Kolassa and McCullagh (1990).

In the case of European path-independent options, the following results have been
obtained for binomial trees. If the price Pn of an option calculated in a tree model with n
time steps converges to the Black–Scholes price PBS of the same option, we say that there
exists an asymptotic expansion of the error Pn − PBS of order O(n−(i0+1)/2) in the powers
of 1/

√
n if there exist bounded coefficients cn,k, such that

Pn = PBS +
i0

∑
k=1

cn,kn−k/2 + O(n−(i0+1)/2) (1)

for some integer i0 > 1. Using Skorokhod embedding, Walsh (2003) found an explicit
expansion of the error of order O

(
n−3/2

)
for European path-independent options subject

to a general class of payoff functions, but in the specific case of where the discounted
process satisfies the Cox–Ross–Rubinstein (CRR) scheme. Diener and Diener (2004) used
an integral expression for the price of call options in a general class of binomial models to
demonstrate how an expansion in the powers of 1/

√
n of the price of call options can be

obtained up to an arbitrary order of n−(i0+1)/2 using a Computer Algebra System (CAS)
such as Maple. Chang and Palmer (2007) introduced a general class of binomial models
with an additional drift parameter λn that smooths the convergence of the option prices.
Using a result by Uspensky (1937), they provided an explicit formula for the coefficient
of 1/

√
n and 1/n in the expansion of the error for digital call and call options. In Joshi

(2009a), Joshi showed that when n is odd and the terminal layer of the tree is centered
around the strike, the coefficients cn,k in the expansion (1) of European call and put options
are independent of n. In a follow-up paper, Joshi (2010) constructed binomial trees with an
arbitrarily fast convergence for vanilla European options. Korn and Müller (2013) found
an expression for the optimal drift λn in Chang and Palmer’s general class of binomial
models. Using a localization of the error, Leduc (2013) found an explicit expansion of the
error of order O

(
n−3/2

)
in the case of general payoff functions for the general class of

binomial models introduced by Chang and Palmer. Using the expansion in Diener and
Diener (2004), Leduc (2016) showed how the drift λn can be chosen to reach an arbitrarily
fast convergence in Chang and Palmer’s model. Bock and Korn (2016) developed a formula
for the Edgeworth expansion of the cumulative distribution of

Sn =
1√
n
(Xn,1 + . . . + Xn,n − nµn)

for independent and identically distributed Zd-valued triangular arrays Xn,1, . . . , Xn,n,
n = 1, 2, . . ., of random variables with mean µn, and they used it to improve the convergence
of option prices. Using the expansion in Leduc (2013), Leduc and Nurkanovic Hot (2020)
found an explicit expression for the coefficient of 1/n (the coefficient of 1/

√
n being zero)

in the expansion in powers of 1/
√

n for the price of a European put option calculated using
a two-parameter non self-similar split tree introduced by Joshi (2009b), which was designed
to improve the convergence for the American put option.
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To further motivate this paper, let us mention that, due to their simplicity and flexibil-
ity, binomial and multinomial trees are used in the pricing of a broad class of options such as
barrier options (Appolloni et al. 2014; Leduc and Palmer 2020; Lin and Palmer 2013), look-
back options (Grosse-Erdmann and Heuwelyckx 2016; Heuwelyckx 2014; Leduc and Palmer
2019), Asian options (Gambaro et al. 2020; Hsu and Lyuu 2011; Klassen 2001), Parisian
and ParAsian options (Gaudenzi and Zanette 2017). Binomial and multinomial trees are
also used for pricing options in several models, such as Levy models (Maller et al. 2006),
stochastic volatility models (Akyıldırım et al. 2014) and regime switching models (Leduc
and Zeng 2017; Liu 2010). In Muroi (2020), the discrete Malliavin calculus is developed
for option sensitivity with binomial tree models, and spectral binomial trees are used to
price double barrier options. A discrete cosine transform approach for the binomial tree
is developed in (Muroi and Suda 2022). In spite of (Lamberton 1998, 2002, 2020; Leisen
1998; Liang et al. 2007), it remains an open problem to establish a sharp convergence speed
for the price of the American put options evaluated in a binomial tree approximation of
the Black–Scholes model. In Li and Zhang (2018), it is pointed out that “a particularly
interesting work would be to provide an error analysis for numerical methods based on
trees for general diffusion models”. The techniques developed for vanilla options in the
Black–Scholes model have often been central in papers dealing with more complex options,
and we believe that Edgeworth price expansions based on moments and cumulants, such
as the one developed in this paper, will find applications in a future work dealing with
more complex options.

Now, we summarize the contents of the paper. In Section 2, we define m-nomial
models and find an expression for the m-nomial prices of put options in terms of the
prices of two digital put options using a change of numeraire. In Section 3, we state our
main theorem, Theorem 1, providing the coefficients of 1/

√
n and 1/n in the expansion (1)

for digital put and standard put options. Next, in Section 4, we verify that our result
coincides with the result of Chang and Palmer (2007) for binomial trees. Then, we use
Theorem 1 to find expressions for the coefficients of 1/

√
n and 1/n in the expansion of the

error in four well-known trinomial models, and we run some simulations to support our
result numerically. In Section 5, we prove Theorem 1. The proof is based on a theorem
(Theorem 2) for the expansion of the m-nomial prices of digital put options. Theorem 2
is proved in Section 6. Theorem 2 follows in turn from Theorem 3, which is proved
in Section 7. Theorem 3 derives from the Edgeworth series in the form of Kolassa and
McCullagh (1990), using the result of Korn and Müller (2013). The proof of Theorem 3
depends on the technical results that we put in the Appendix A.

2. M-Nomial Models

First, we define what we mean by an m-nomial model.

Definition 1. Given initial stock price S0 > 0 and maturity T > 0, we say that S(n)
t , t = tn,k =

kT/n = k∆t, k = 0, 1, . . . , n with S(n)
0 = S0 is an n-period m-nomial model if at time tn,k+1, the

price S(n)
tn,k+1

can take any of the m values S(n)
tn,k

un,i with

un,i = e(−Λn+(i−1)∆n)
√

∆t, i = 1, . . . , m,

where Λn, ∆n > 0. The condition Λn>0 implies that un,1 < 1. We further assume that
−Λn + (m− 1)∆n > 0 so that un,m > 1. The probabilities pn,i > 0 that S(n)

tn,k+1
= S(n)

tn,k
un,i satisfy

pn,1 + · · ·+ pn,m = 1. We denote such a model by (Λn, ∆n, pn) where pn = [pn,1, · · · , pn,m]. The
model is risk neutral if

m

∑
i=1

pn,iun,i = er∆t. (2)
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Note that un,i+1/un,i = e∆n
√

∆t does not depend on i and this ensures that the tree
is recombining. This is obviously satisfied when m = 2, that is, for binomial models,
and it seems to be satisfied for all self-similar trinomial models m = 3 in the literature.
Note that once the un,i are determined, there may not exist probabilities pn,i > 0 such that
∑m

i=1 pn,iun,i = er∆t and if they do exist, they may not be unique (except in the binomial
case). For example, in the trinomial case m = 3, such probabilities exist if and only if
un1 < er∆t < un3 and pn3 can be chosen as any number in the interval(

max
{

0,
er∆t − un2

un3 − un2

}
,

er∆t − un1

un3 − un2

)
with

pn1 =
un2 − er∆t + (un3 − un2)pn3

un2 − un1
, pn2 =

er∆t − un1 − (un3 − un1)pn3

un2 − un1
.

When the probabilities pn,i are risk neutral, there are no arbitrage opportunities in the
m-nomial model. However, except in the binomial case, the risk-neutral probabilities are
not unique and an option does not have a uniquely defined price. In any case, relative to a
given set of probabilities, we take the price of an option with payoff f (S(n)

T ), where S(n)
T is

the terminal stock price, to be e−rTE( f (S(n)
T )), where the expectation is with respect to the

given probabilities, and we do this even when the probabilities are not risk neutral.
In the risk neutral case, put–call parity holds with the above definition of the price

since the payoff to a long call and a short put with exercise price K and maturity T is
S(n)

T − K and, under risk neutrality, e−rTE(S(n)
T − K) = S0 − Ke−rT . Thus, we can derive

the price of a call option from that of a put option.
Next, we demonstrate that when the probabilities pn,i are risk neutral, the formula for

the m-nomial price of a put option can be written as a combination of the formulas for two
digital put options. In the Black–Scholes world with initial stock price S0, volatility σ and
interest rate r, the price of a put option with strike K and maturity T is given by

PBS = Ke−rTΦ(−d2)− S0Φ(−d1),

where Φ(·) is the standard normal cumulative distribution function and

d1 =
log(S0/K) + (r + σ2/2)T

σ
√

T
, d2 = d1 − σ

√
T. (3)

Here, Φ(−d2) is the probability that ST ≤ K is under the risk neutral measure so that
e−rTΦ(−d2) is the price of a digital put with strike K. Φ(−d1) is the probability that
ST ≤ K under the stock measure and similarly e−rTΦ(−d1) is the price of a digital
put with strike K under the stock measure. We show that a similar result holds for a
risk-neutral m-nomial model. Our argument adapts Cox and Rubinstein’s argument in
(Cox and Rubinstein 1985) for the binomial model.

The possible values of the terminal stock price S(n)
T are

S0un,k1 · · · un,kn = S0λn
nδk1+···+kn−n

n ,

where λn = e−Λn
√

∆t, δn = e∆n
√

∆t and 1 ≤ ki ≤ m. Thus, the terminal stock prices are

S0λn
nδk

n = S0e(−nΛn+k∆n)
√

∆t, (4)
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where 0 ≤ k ≤ n(m− 1). Let Πn,k be the probability of reaching the price S0λn
nδk

n. Then,
the price of a put option with strike K is

Pn = e−rT
n(m−1)

∑
k=0

Πn,k max{K− S0λn
nδk

n, 0} = e−rT
`n

∑
k=0

Πn,k(K− S0λn
nδk

n),

where `n is such that
S0λn

nδ`n
n ≤ K < S0λn

nδ`n+1
n .

Then

Pn = Ke−rT
`n

∑
k=0

Πn,k − S0λn
ne−rT

`n

∑
k=0

Πn,kδk
n.

Now
Πn,k = ∑

k1+···+kn=k+n
pn,k1 · · · pn,kn ,

where 1 ≤ ki ≤ m. Then

λn
ne−rTΠn,kδk

n = ∑
k1+···+kn=k+n

qn,k1 · · · qn,kn ,

where
qn,i = e−r∆tλnδi−1

n pn,i = e−r∆tun,i pn,i, i = 1, . . . , m. (5)

Note that
m

∑
i=1

qn,i = e−r∆t
m

∑
i=1

un,i pn,i = 1 by risk neutrality (see (2)),

and that
m

∑
i=1

qn,i
er∆t

S0un,i
=

m

∑
i=1

pn,i

S0
=

1
S0

so that the qn,i’s can be thought of as the stock measure corresponding to the risk neutral
measure defined by the pni, that is under the probability measure defined by
qn = [qn,1, · · · , qn,m] we have E

(
er∆t/S∆t

)
= 1/S0. Then

Pn = Ke−rT
`n

∑
k=0

Πn,k − S0

`n

∑
k=0

Qn,k, (6)

where
Qn,k = ∑

k1+···+kn=k+n
qn,k1 · · · qn,kn , 1 ≤ ki ≤ m.

Note that ∑`n
k=0 Πn,k is the probability of arriving at a stock price ≤ K under the risk neutral

probabilities pn,i, whereas ∑`n
k=0 Qn,k is the probability of arriving at a stock price≤ K under

the probabilities qn,i. Thus, the problem of pricing a put option is reduced to pricing two
digital put options.

3. The Main Theorem

Now, we state our main theorem. We assume we are in the Black–Scholes world
with an initial stock price S0, volatility σ and interest rate r, and that the options under
consideration have maturity T. Then, we require the following hypotheses on our m-nomial
model S(n)

t with parameters (Λn, ∆n, pn).
(H1): Λn is bounded, ∆n has a positive (>0) limit and

inf
n

pn,i > 0, i = 1, . . . , m.
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(H2): Define Xn as the random variable log
(

S(n)
∆t /S0

)
/
√

∆t which takes the value
xn,i = −Λn + (i− 1)∆n with probability pn,i, i = 1, . . . , m. Note that Xn is bounded. Then,
we assume

E(Xn) = θ
√

∆t + Dn(∆t)3/2 + O((∆t)2),

E(X2
n) = σ2 + Fn∆t + O((∆t)3/2),

E(X3
n) = Gn

√
∆t + O(∆t),

E(X4
n) = Hn + O(

√
∆t),

where θ = r− σ2/2, Dn, Fn, Gn, Hn are bounded functions of n, and where we observe that
E(Xk

n) = ∑m
i=1 pn,ixk

n,i.

Remark 1. Note that in our m-nomial model, we want S(n)
∆t to be an approximation to S∆t, where St

is the stock price under the Black–Scholes model, when the stock price at time 0 is S0, the interest rate
is r and the volatility is σ. Thus, we want Xn to be an approximation to Y = log(S∆t/S0)/

√
∆t,

which is normally distributed with mean θ
√

∆t and variance σ2. Then,

E(Y) = θ
√

∆t,

E(Y2) = σ2 + θ2∆t,

E(Y3) = 3σ2θ
√

∆t + θ3(∆t)3/2,

E(Y4) = 3σ4 + 6θ2σ2∆t + θ4(∆t)2.

Under (H1), it can be demonstrated that (H2) is equivalent to the condition that all moments of
the terminal stock price S(n)

T in the m-nomial model converge at a rate of 1/n to the corresponding
moments of the terminal stock price ST in the Black–Scholes model.

Now, we state the main theorem.

Theorem 1. Suppose S(n)
t is an n-period m-nomial model with parameters (Λn, ∆n, pn), time

steps tn
k = k∆t = kT/n and initial stock price S0 for which (H1) and (H2) hold. We define the

price of an option in this model with payoff f (S(n)
T ) to be e−rTE( f (S(n)

T )), where the expectation is
taken with respect to the measure defined by the probabilities pn,i. Then,

(i) the price Pd(n) of a digital put option with strike K and maturity T in the n-period m-nomial
model satisfies

Pd(n) = PBS + e−rTφ(d2)

[
∆̄n√

n
+

d2∆̄2
n

2n
− Bn

n

]
+ O

(
1

n3/2

)
,

where PBS is the Black–Scholes price, φ(·) is the standard normal density function,

∆̄n =
∆n(1− 2 frac(an))

2σ
, an =

log(K/S0) + nΛn
√

∆t
∆n
√

∆t
,

and

Bn =
d2Tr2

2σ2 +
(1− d1d2)

√
Tr

2σ
+

d2
1d2 − 2d1 − d2

8
+

d2∆2
n

24σ2

+
T3/2Dn

σ
− d2TFn

2σ2 +
(d2

2 − 1)
√

TGn

6σ3 +
(3d2 − d3

2)Hn

24σ4 .

(ii) If, in addition, the model is risk-neutral, the price P(n) of a put option with strike K and
maturity T in the n-period m-nomial model satisfies
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P(n) = PBS + σ
√

TS0φ(d1)

[
− ∆̄2

n
2n

+
Cn

n

]
+ O

(
1

n3/2

)
,

where PBS is the Black–Scholes price and

Cn = − Tr2

2σ2 +
d2
√

Tr
2σ

+
1− d1d2

8
+

∆2
n

24σ2 +
TFn

2σ2

+
(d1 − 2d2)

√
TGn

6σ3 +
(d2

1 − 3d1d2 + 3d2
2 − 1)Hn

24σ4 .

The price of a call option satisfies the same equation.

Remark 2. Note that K = S0e(−nΛn+an∆n)
√

∆t, so that

S0e(−nΛn+kn∆n)
√

∆t ≤ K < S0e(−nΛn+(kn+1)∆n)
√

∆t,

where kn = floor(an). Thus, an describes the position of the strike relative to the terminal stock
prices (see (4)). Since, in general, frac(an) oscillates between 0 and 1, the quantity ∆̄n also oscillates.

Remark 3. The risk neutral condition in (ii) is not needed. Under the hypotheses of the theorem,
we find that

m

∑
i=1

pn,iun,i = er∆t + γn(∆t)2 + O((∆t)5/2),

where γn = Dn + Fn/2 + Gn/6 + Hn/24− r2/2. Then, it turns out that, for the put price,
(ii) still holds if we add −γnT3/2Φ(−d1)/(σφ(d1)) to the Cn, which would be obtained if the
model were risk neutral. For the call price, an additional term γnT3/2/(σφ(d1)) has to be added
to Cn.

4. Verification of the Result

We test our result in two ways. First, we check that in the case of the flexible binomial
model of Chang and Palmer (2007), (which includes the CRR model as a special case), our
results reduce to those in Chang and Palmer. Then, we apply Theorem 1 to four trinomial
models and test our result numerically on these trinomial models.

4.1. Comparison with Chang and Palmer’s Binomial Model

First, we compare our results with the binomial model in Chang and Palmer, where in
their notation,

u = eσ
√

∆t+λnσ2∆t, d = e−σ
√

∆t+λnσ2∆t, p =
er∆t − d

u− d
.

The authors considered digital calls but, by modifying their proof, we can demonstrate that
the binomial price of a digital put satisfies

Pd(n) = e−rTΦ(−d2) + e−rTφ(d2)

[
∆̃n√

n
+

d2∆̃2
n

2n
− An

n

]
+ O(n−3/2),

where

∆̃n = 1− 2 frac(an), an =
log(K/S0)− n log(d)

log(u/d)
(7)

and An is

Td1

2σ2 (r− λnσ2)2 +
(2− d1d2 − d2

1)
√

T
6σ

(r− λnσ2) +
d3

1 + d1d2
2 + 2d2 − 4d1

24
.
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In this risk neutral model, (H1) and (H2) are satisfied with m = 2 and

∆n = 2σ, Λn = σ− λnσ2
√

∆t, pn,1 =
u− er∆t

u− d
, pn,2 = 1− pn,1,

Dn = 2σβn, Fn = λnσ2(2θ − λnσ2), Gn = σ2(θ + 2λnσ2), Hn = σ4,

where

θ = r− σ2/2, βn =
σ4(4λn + 1)− 4σ2r + 12(r− λnσ2)2

48σ
.

Applying Theorem 1, we observe first that ∆̄n =
∆n(1− 2 frac(an))

2σ
= ∆̃n. Some algebra

yields

Bn =
d2

2σ2 Tr2 +
1− d1d2

2σ

√
Tr +

d2
1d2 − 2d1 − d2

8
+

d2

6
+ 2βnT3/2

−d2T
2

λn(2θ − λnσ2) +
3d2 − d3

2
24

+
(d2

2 − 1)
√

T(θ + 2λnσ2)

6σ

=
d1

2σ2 Tr2 +

(
1− d1d2 − d2

1
6σ

− λnd1
√

T

)
√

Tr +
σ2T

2
d1λ2

n

+
σ
√

T
6

(d2
1 + d1d2 − 2)λn +

d3
1 + d1d2

2 + 2d2 − 4d1

24
.

This coincides with An in the Chang–Palmer result. Thus, in the case of digital puts,
Theorem 1 gives a result consistent with that of Chang and Palmer.

For the Chang–Palmer model, applying put–call parity to the Chang–Palmer result for
calls, we find that after some rearrangement, the price of a put option satisfies

P(n) = PBS + S0σ
√

Tφ(d1)

(
− ∆̃2

n
2n

+
An

n

)
+ O(n−3/2),

where ∆̃n is as in (7) and

An = −T(r− λnσ2)2

2σ2 +
d1 + d2

6σ

√
T(r− λnσ2) +

6− d2
1 − d2

2
24

.

Now, from Theorem 1, since, as above, ∆̄n = ∆̃n,

P(n) = PBS + σ
√

TS0φ(d1)

[
− ∆̃2

n
2n

+
Cn

n

]
+ O

(
n−3/2

)
,

where, again after some algebra, we find that

Cn = − Tr2

2σ2 +
d2
√

Tr
2σ

+
1− d1d2

8
+

∆2
n

24σ2 +
TFn

2σ2

+
(d1 − 2d2)

√
TGn

6σ3 +
(d2

1 − 3d1d2 + 3d2
2 − 1)Hn

24σ4

= − Tr2

2σ2 +

(
d1 + d2

6σ
+ λn

√
T
)√

Tr− σ2T
2

λ2
n −

d2
1 − d2

2
6

λn +
2− d2

1 − d2
2

24
.

Again, this coincides with An in the Chang–Palmer result. Thus, also in the case of puts,
Theorem 1 gives a result consistent with that of Chang and Palmer.

4.2. Application of Theorem 1 to Trinomial Models

Next, we calculate Bn and Cn in Theorem 1 for five trinomial (that is, m = 3) models,
the first four of which are risk-neutral. These models satisfy (H1) and (H2). In fact, Dn, Fn,
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Gn, Hn are constants and ∆n = constant + O(
√

∆t), all of which have the consequence that
Bn and Cn are constants. In all these models, we write

un,1 = d, un,2 = m, un,3 = u, pn,1 = pd, pn,2 = pm, pn,3 = pu.

(1) First, we study Tian’s (1993) equal probability tree, where

pu = pm = pd = 1/3, m = M(3−V)/2, u = X +
√

X2 −m2, d = X−
√

X2 −m2,

with M = er∆t, V = eσ2∆t and X = M(V + 3)/4. For this model, we find that

∆n =

√
3σ√
2

+ O(
√

∆t), Dn = −3σ4

8
, Fn = θ2 +

7σ4

8
, Gn = 3σ2θ, Hn =

3σ4

2
,

where θ = r− σ2/2 and hence that

Bn = −
6d3

1 − 11d2
1d2 + 4d1d2

2 + 2d2

16
, Cn =

6d2
1 − 11d1d2 + 4d2

2 + 2
16

.

(2) Next, we study Tian’s (1993) fourth-order moment matching model, where the first four
moments of S(n)

∆t match the moments of S∆t in the Black–Scholes model. In this model,

m = MV2, u = X−
√

X2 + m2, d = X−
√

X2 −m2,

pd =
um−M(u + m) + M2V

(u− d)(m− d)
, pu =

md−M(m + d) + M2V
(u− d)(u−m)

,

where M = er∆t, V = eσ2∆t and X = M(V4 + V3)/2. We find that

∆n =
√

3σ + O(
√

∆t), Dn = 0, Fn = θ2, Gn = 3σ2θ, Hn = 3σ4

and hence that
Bn =

d2

8
, Cn =

1
8

.

(3) Next, we study the adjusted trinomial tree (Chan et al. 2009), where the tree is centered
on the strike in the log space. In this model, the probabilities pu, pm and pd are defined as
in the previous model but now m = (K/S0)

1/n and

X =
V
2
(MV + m) +

m
2M

(m−M).

We find, as in the previous model, that

∆n =
√

3σ + O(
√

∆t), Dn = 0, Fn = θ2, Gn = 3σ2θ, Hn = 3σ4

and hence that
Bn =

d2

8
, Cn =

1
8

.

(4) Next, we study Boyle’s tree (Boyle 1986), with parameter λ, in which

d = e−λσ
√

∆t, m = 1, u = d−1,

pd =
u−M(1 + u) + M2V

(u− d)(1− d)
, pu =

d−M(1 + d) + M2V
(u− d)(u− 1)

,



Risks 2023, 11, 52 10 of 33

where M = er∆t and V = eσ2∆t. Then

∆n = λσ, Dn =
(λ2 − 3)σ2(σ2 + 4r)

12
,

Fn = θ2 − (λ2 − 3)σ2(σ2 + 12r)
12

, Gn = λ2σ2θ, Hn = λ2σ4

and hence

Bn =
d2

8
+ (λ2 − 3)

(
2d2

1 − d1d2 − 1
6σ

√
Tr +

2d3
1 − 5d2

1d2 + 2d1d2
2 + 2d1 + 2d2

24

)

Cn =
1
8
+ (λ2 − 3)

(
d2 − 2d1

6σ

√
Tr−

2d2
1 − 5d1d2 + 2d2

2
24

)
.

(5) Finally, we study the Kamrad–Ritchken model (Kamrad and Ritchken 1991) with
parameter λ, in which

d = e−λσ
√

∆t, m = 1, u = d−1, pd = 1− 1
λ2 −

θ
√

∆t
2λσ

, pu = 1− 1
λ2 +

θ
√

∆t
2λσ

.

This model is not risk neutral, since

puu + pmm + pdd = er∆t + γ(∆t)2 + O((∆t)5/2),

where
γ = − 1

24
(12r2 − 4λ2σ2r + λ2σ4).

All other hypotheses of Theorem 1 are satisfied with

∆n = λσ, Dn = Fn = 0, Gn = λ2σ2θ, Hn = λ2σ4.

For the digital put, we find that Bn is

d2Tr2

2σ2 +
1− d1d2

2σ

√
Tr +

d2
1d2 − 2d1 − d2

8
+ λ2

(
d2

2 − 1
6σ

√
Tr−

2d1d2
2 − d3

2 − 2d1 − 2d2

24

)
.

For the put option, it follows from Remark 3 that Cn is

−γT3/2Φ(−d1)

σφ(d1)
− Tr2

2σ2 +
d2

2σ

√
Tr +

1− d1d2

8
+ λ2

(
d1 − 2d2

6σ

√
Tr−

d2
1 − 3d1d2 + d2

2
24

)
.

Notice that all values coincide for models (2) and (3). When λ2 = 3, the moments in
Boyle’s model match those in these models up to negligible terms, so that Bn and Cn reduce
to those in models (2) and (3).

4.3. Numerical Results for the Trinomial Models

Finally, numerical results for the trinomial models described above are displayed
in Figures 1–4 when S = 100, K = 105, r = 0.05, σ = 0.2 and T = 1. We label Tian’s
equal probability model as ‘EqualProb’, Joshi’s adjusted trinomial model as ‘Adjusted’,
Boyle’s model with parameter λ = 1.1 as ‘Boyle’, Kamrad-Ritchken’s model with parameter
λ =
√

1.5 as ‘KR’, and Tian’s fourth-order moment matching model as ‘Tian4’.
For the put, the Black–Scholes price PBS = 7.900442, and we denote by P(n) the

n-period price calculated in the trinomial models. For the digital put, the Black–Scholes
price PBS = 0.511215, and we denote by Pd(n) the n-period price calculated in the trinomial
models. Letting n = 100, 200, . . . , 2000, Figure 1 illustrates the convergence of P(n) to PBS,
while Figure 2 illustrates the convergence of Pd(n) to PBS.
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Figures 1 and 2 show that the price’s convergence to the Black–Scholes limit for
Joshi’s adjusted model is far less oscillatory than that of the other models. This is because
m = (K/S0)

1/n, so that the strike K is the terminal node of the tree. Consequently,
frac(an) = 0, because d = e−Λn

√
∆t and m = de∆n

√
∆t so that an = n. It follows that

the coefficients of 1/
√

n and 1/n in the expansions of the prices are constant. As a result,
the convergence is smoother than it is for the other models, where oscillations triggered by
frac(an) cause the coefficients of 1/

√
n and 1/n in the price expansion to oscillate.

400 800 1200 1600 2000
7.880

7.884

7.888

7.892

7.896

7.900

7.904

7.908

Number of time steps n

P
(n
)

Put options

BS
EqualProb
Adjusted
Boyle
KR
Tian4

Figure 1. Here, S = 100, K = 105, r = 0.05, σ = 0.2 and T = 1. We plot the prices P(n) of put options
in various trinomial models against the Black–Scholes price PBS = 7.900442.

400 800 1200 1600 2000
0.485

0.495

0.505

0.515

0.525

0.535

0.545

Number of time steps n

P d
(n
)

Digital put options

BS
EqualProb
Adjusted
Boyle
KR
Tian4

Figure 2. Here, S = 100, K = 105, r = 0.05, σ = 0.2 and T = 1. We plot the prices Pd(n) of digital put
options in various trinomial models against the Black–Scholes price PBS = 0.511215.

For the put option, we define ‘error’ as

error = P(n)− PBS − σ
√

TS0φ(d1)

[
− ∆̄2

n
2n

+
Cn

n

]
.

For the digital put option, we set
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error = Pd(n)− PBS − e−rTφ(d2)

[
∆̄n√

n
+

d2∆̄2
n

2n
− Bn

n

]
.

We expect n1.5× error to be bounded and this seems to be the case, as illustrated in Figure 3
for the put option and in Figure 4 for the digital put option.

Figures 3 and 4 show that the values of n1.5× error for Joshi’s adjusted model are far
less oscillatory than those for the other models. This suggests that the coefficient of 1/n1.5

in the price expansion is constant. In the case of the digital put, the coefficient appears to
be 0. This could be verified using Edgeworth expansions with more coefficients. We leave
this to the interested reader.

400 800 1200 1600 2000
−0.06

−0.03

0.00

0.03

Number of time steps n

n1.
5 ×

er
ro

r

Put options

EqualProb
Adjusted
Boyle
KR
Tian4

Figure 3. Here, S = 100, K = 105, r = 0.05, σ = 0.2 and T = 1. For the put, the Black–Scholes price
PBS = 7.900442. P(n) is the n-period price calculated by various models, and error = P(n)− PBS −
σ
√

TS0φ(d1)
[
− ∆̄2

n
2n + Cn

n

]
. We expect n1.5× error to be bounded and this appears to be the case.

400 800 1200 1600 2000
−0.06

−0.03

0.00

0.03

0.06

Number of time steps n

n1.
5 ×

er
ro

r

Digital put options

EqualProb
Adjusted
Boyle
KR
Tian4

Figure 4. Here, S = 100, K = 105, r = 0.05, σ = 0.2 and T = 1. For the digital put, the
Black–Scholes price PBS = 0.511215. Pd(n) is the n-period price calculated by various models,

and error = Pd(n)− PBS − e−rTφ(d2)
[

∆̄n√
n + d2∆̄2

n
2n −

Bn
n

]
. We expect n1.5× error to be bounded and

this again appears to be the case.
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5. Proof of Theorem 1

The main tool in the proof is the following theorem, which gives an Edgeworth
expansion for the cdf of the terminal stock price in an m-nomial model. We defer the proof
to later. First, we define an Edgeworth expansion.

Let γn = (γn,2, γn,3, . . .), n = 1, 2, . . ., be any sequence of sequences of real numbers
such that γn,2 > 0 for all n. Set σn :=

√
γn,2. This notation is used because γn,2 usually

corresponds to a variance. Then, for each integer i0 ≥ 3, the Edgeworth expansion Ei0(x, γn)
is defined as

Ei0(x, γn) =
3i0−6

∑
j=0

(−1)jνn,j
dj

dxj Φ
(

x
σn

)
, (8)

where Φ is the standard normal cdf and νn = (νn,0, νn,1, ...), n = 1, 2, . . ., is defined by
the relation

∞

∑
j=0

νn,jsj = exp

(
i0

∑
j=3

γn,j

j!
sj

)
. (9)

Clearly, νn,0 = 1, νn,1 = νn,2 = 0. Note, we can also write

Ei0(x, γn) = Φ
(

xσ−1
n

)
− φ(xσ−1

n )
3i0−6

∑
j=3

hj−1(xσ−1
n )

νn,j

σ
j
n

, (10)

where φ is the standard normal pdf and hj is the jth Hermite polynomial. This is a
consequence of the fact that

dj

dxj Φ
(

xσ−1
n

)
=

dj−1

dxj−1 σ−1
n φ

(
xσ−1

n

)
= (−1)j−1σ

−j
n hj−1(xσ−1

n )φ
(

xσ−1
n

)
. (11)

Theorem 2. Suppose S(n)
t is an n-period m-nomial model with parameters (Λn, ∆n, pn), time

steps tn
k = k∆t = kT/n and initial stock price S0 for which (H1) holds and Var(Xn) → V > 0.

Let bj be the jth Bernoulli number. Denote by κn,j the jth cumulant of Xn, and set

γn,j =
κn,j

√
κn,2

j√nj−2 −
bj

j

(
∆n√

n√κn,2

)j

, j > 1,

−dn =
ln(K/S0)−

√
Tnκn,1

√
κn,2
√

T
+

∆n(1− 2 frac(an))

2
√

n√κn,2
,

where

an =
ln(K/S0) + nΛn

√
∆t

∆n
√

∆t
.

Then, for every integer i0 ≥ 3, and every K > 0,

P
(

S(n)
T ≤ K

)
= Ei0(−dn, γn) + O

(
n−

i0−1
2

)
.

Remark 4. dn is not to be confused with d1 and d2 in (3) when n = 1, 2, though it does turn out
that dn is related to d1 and d2. an is as in Theorem 1.

Remark 5. Xn takes the values −Λn + (i− 1)∆n. Its standardization Yn = (Xn − κn,1)/
√

κn,2
takes values αn + (i− 1)∆n/

√
κn,2, where αn = −(Λn + κn,1)/

√
κn,2. In the proof of Theorem 2,

we consider Sn = ∑n
k=1 Yn,k/

√
n, where Yn,1,...,Yn,n are independent copies of Yn. Note that the jth

cumulant of Sn is κn,j/(
√

κn,2
j√nj−2

). Then, γn,j is the jth Sheppard-corrected cumulant of Sn.
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First, we prove the part of Theorem 1 for the digital put. We apply Theorem 2 with
i0 = 4. Thus,

P
(

S(n)
T ≤ K

)
= E4(−dn, γn) + O

(
n−3/2

)
(12)

First, we observe what consequences (H2) has for the cumulants κn,j. According to Smith

(1995), these are related to the moments µn,j = E(X j
n) according to

κn,j = µn,j −
j−1

∑
`=1

(
j− 1
`− 1

)
κn,`µn,j−`, j ≥ 1.

Then, it follows from (H2) that

κn,1 = µn,1 = θ
√

∆t + Dn(∆t)3/2 + O((∆t)2), (13)

κn,2 = µn,2 − µn,1κn,1 = σ2 + (Fn − θ2)∆t + O((∆t)3/2),

κn,3 = µn,3 − κn,1µn,2 − 2κn,2µn,1 = (Gn − 3θσ2)
√

∆t + O(∆t),

κn,4 = µn,4 − κn,1µn,3 − 3κn,2µn,2 − 3κn,3µn,1 = Hn − 3σ4 + O(
√

∆t).

Now, E4(−dn, γn) is equal to

Φ
(
−dn√

γn,2

)
−

6

∑
j=3

φ

(
−dn√

γn,2

)
hj−1

(
−dn√

γn,2

)
νn,j

(γn,2)
j/2 + O(n−2), (14)

where νn,j is as in (9) with i0 = 4. We analyze the terms νn,j for j = 3, . . . , 6. From (9), we
observe that νn,1 = νn,2 = 0. From Lemma A1 in the Appendix A, we observe that for j ≥ 3

νn,j =
γn,j

j!
+

j−1

∑
`=3

`

j
γn,`

`!
νn,j−`,

where, when using Lemma A1, we understand that γn,j = 0 if j = 1, 2 or j > i0 = 4. So

νn,3 = γn,3/6, νn,4 = γn,4/24, νn,5 = 0, νn,6 = (γn,3)
2/72.

Recalling that bj = 0 for odd j > 1 and using (13), we obtain

γn,3 =
κn,3√
nκ3/2

n,2

=

√
T(Gn − 3θσ2)

σ3n
+ O(n−3/2),

γn,4 =
κn,4

nκ2
n,2
− b2

2
∆2

n

n2κ2
n,2

=
Hn − 3σ4

nσ4 + O
(

n−3/2
)

.

We deduce that

νn,3 =

√
T(Gn − 3θσ2)

6σ3n
+ O(n−3/2), (15)

νn,4 =
Hn − 3σ4

24nσ4 + O
(

n−3/2
)

, νn,5 = 0, νn,6 = O(n−2).

Next, we note, using (13), that

γn,2 = 1− b2∆2
n

2nκn,2
= 1− b2∆2

n
2nσ2 + O

(
n−3/2

)
. (16)
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It follows from (16) and (15) that

νn,3

γ3/2
n,2

=

√
T(Gn − 3θσ2)

6σ3n
+ O(n−3/2),

νn,4

γ2
n,2

=
Hn − 3σ4

24nσ4 + O
(

n−3/2
)

,

νn,5

γ5/2
n,2

= 0,
νn,6

γ3
n,2

= O(n−2).

Then using the boundedness of the functions φ(x)hj(x), we deduce from these relations
and (14) that

E4(−dn, γn) = Φ
(
−dn√

γn,2

)
− φ

(
−dn√

γn,2

)
h2

(
−dn√

γn,2

)√
T
(
Gn − 3θσ2)
6σ3n

(17)

− φ

(
−dn√

γn,2

)
h3

(
−dn√

γn,2

)
Hn − 3σ4

24nσ4 + O(n−3/2).

Next, using (13) and (16), we obtain

−dn√
γn,2

= −d2 +
∆̄n√

n
+

Qn

n
+ O(n−3/2), (18)

where

d2 =
log(S0/K) + θT

σ
√

T
, Qn =

d2
(
2
(

Fn − θ2)T − ∆2
nb2
)

4σ2 − DnT3/2

σ
.

Since the derivative of φ(x)hj(x) is bounded for each j and in view of (18), it follows for
each j that

φ

(
−dn√

γn,2

)
hj

(
−dn√

γn,2

)
= φ(−d2)hj(−d2) + O(n−1/2).

Using this, we conclude from (17) that

E4(−dn, γn) = Φ
(
−dn√

γn,2

)
− φ(−d2)h2(−d2)

√
T
(
Gn − 3θσ2)
6σ3n

(19)

− φ(−d2)h3(−d2)
Hn − 3σ4

24nσ4 + O(n−3/2).

Next, we consider the term Φ
(
−dn√

γn,2

)
. Using Taylor expansion about −d2, we obtain that

Φ
(
−dn√

γn,2

)
= Φ(−d2) + φ(−d2)

(
−dn√

γn,2
+ d2

)
+

1
2

d2φ(−d2)

(
−dn√

γn,2
+ d2

)2

+O

((
−dn√

γn,2
+ d2

)3
)

and, using (18), we continue with

= Φ(−d2) + φ(−d2)

(
∆̄n√

n
+

Qn

n

)
+

1
2

d2φ(−d2)
∆̄2

n
n

+ O(n−3/2)

= Φ(−d2) + φ(−d2)
∆̄n√

n
+ φ(−d2)

(
1
2

d2∆̄2
n + Qn

)
1
n
+ O(n−3/2).
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Then, combining this with (19), we obtain

E4(−dn, γn) = Φ(−d2) + φ(−d2)

[
∆̄n√

n
+

(
1
2

d2∆̄2
n − Bn

)
1
n

]
+ O(n−3/2),

where

Bn = −Qn +
h2(−d2)

(
Gn − 3θσ2)√T
6σ3 +

h3(−d2)
(

Hn − 3σ4)
24σ4 .

Then, using (12),

P(S(n)
T ≤ K) = Φ(−d2) + φ(−d2)

[
∆̄n√

n
+

(
1
2

d2∆̄2
n − Bn

)
1
n

]
+ O(n−3/2) (20)

and since Pd(n) = e−rT P(S(n)
T ≤ K) and PBS = e−rTΦ(−d2),

Pd(n) = PBS + e−rTφ(−d2)

[
∆̄n√

n
+

(
1
2

d2∆̄2
n − Bn

)
1
n

]
+ O(n−3/2).

All that remains is to show that Bn is as stated in the theorem. Using h2(x) = x2 − 1 and
h3(x) = x3 − 3x,

Bn = I1 + I2, (21)

where, using b2 = 1/6,

I1 =
d2θ2T

2σ2 −
3d2 − d3

2
8

−
θ
√

T(d2
2 − 1)

2σ
,

I2 =
d2∆2

n
24σ2 +

DnT3/2

σ
− d2FnT

2σ2 +
(d2

2 − 1)Gn
√

T
6σ3 +

(3d2 − d3
2)Hn

24σ4 .

Using σ
√

T = d1 − d2 and θ = r− σ2/2, we obtain

I1 =
d2

2σ2 Tr2 +
1− d1d2

2σ

√
Tr +

d2
1d2 − 2d1 − d2

8
.

Thus, Bn is as stated in the theorem and the proof of (i) is finished.
As shown in (6), in a risk-neutral m-nomial model, the price of a put with strike K and

maturity T is given by

P(n) = Ke−rT P(S(n)
T ≤ K)− S0Q(S(n)

T ≤ K)

= KPd(n)− S0Q(S(n)
T ≤ K).

We can determine Q(S(n)
T ≤ K) in a way similar to that with which we determined

P(S(n)
T ≤ K). The difference is that the probabilities pn,i are now replaced by (see (5))

qn,i = e−r∆t+
√

∆txn,i pn,i,

where xn,i = −Λn + (i− 1)∆n is the ith value of Xn. We observe that

qn,i =

(
1 + xn,i

√
∆t +

(
1
2

x2
n,i − r

)
∆t +

(
1
6

x3
n,i − rxn,i

)
(∆t)3/2

)
pn,i

+ O
(
(∆t)2

)
.



Risks 2023, 11, 52 17 of 33

Hence, the moments µ̃n,k = E(Xk
n) of Xn corresponding to qn,i satisfy

µ̃n,k =
m

∑
i=1

qn,ixk
n,i

= µn,k + µn,k+1
√

∆t +
(

1
2

µn,k+2 − rµn,k

)
∆t

+

(
1
6

µn,k+3 − rµn,k+1

)
(∆t)3/2 + O

(
(∆t)2

)
,

where µn,k are the moments of Xn corresponding to pn,i. Then, using (H2),

µ̃n,1 = (θ + σ2)
√

∆t + D̃n(∆t)3/2 + O((∆t)2),
µ̃n,2 = σ2 + F̃n∆t + O((∆t)3/2)

µn,3 = (Gn + Hn)
√

∆t + O(∆t),
µ̃n,4 = Hn + O(∆t),

(22)

where

D̃n = Dn + Fn +
Gn

2
+

Hn

6
− r(θ + σ2), F̃n = Fn + Gn +

Hn

2
− rσ2. (23)

From these relations, we observe that (H1) and (H2) hold with pn,i replaced by qn,i,
E(Xk

n) by µ̃n,k, θ replaced by θ̃ = r + σ2/2 and Dn, Fn, Gn replaced by D̃n, F̃n, Gn + Hn.
Then, it follows from (20), (21) and

d1 =
log(S0/K) + θ̃T

σ
√

T
,

that

Q(S(n)
T ≤ K) = Φ(−d1) + φ(−d1)

[
∆̄n√

n
+

(
1
2

d1∆̄2
n − B̃n

)
1
n

]
+ O(n−3/2),

where
B̃n = Ĩ1 + Ĩ2,

with

Ĩ1 =
d1θ̃2T

2σ2 −
3d1 − d3

1
8

−
θ̃
√

T(d2
1 − 1)

2σ
,

Ĩ2 =
d1∆2

n
24σ2 +

D̃nT3/2

σ
− d1TF̃n

2σ2 +
(d2

1 − 1)G̃n
√

T
6σ3 +

(3d1 − d3
1)H̃n

24σ4 .

After some algebra, we find that

B̃n − Bn = Ĩ1 − I1 + Ĩ2 − I2 = σ
√

TCn,

where

Cn = − Tr2

2σ2 +
d2

2σ

√
Tr +

1− d1d2

8
+

∆2
n

24σ2 +
T

2σ2 Fn

+
(d1 − 2d2)

√
T

6σ3 Gn +
d2

1 − 3d1d2 + 3d2
2 − 1

24σ4 Hn.



Risks 2023, 11, 52 18 of 33

Then, using S0φ(−d1) = Ke−rTφ(−d2), the price of the put is

P(n)

= KPd(n)− S0Q(Sn ≤ K)

= K
[

e−rTΦ(−d2) + e−rTφ(−d2)

(
∆̄n√

n
+

1
2

d2∆̄2
n − Bn

)
1
n

]
− S0

[
Φ(−d1) + φ(−d1)

(
∆̄n√

n
+

1
2

d1∆̄2
n − B̃n

)
1
n

]
+ O(n−3/2)

= PBS + S0φ(−d1)

(
−1

2
(d1 − d2)∆̄2

n + B̃n − Bn

)
1
n
+ O(n−3/2)

= PBS + S0σ
√

Tφ(−d1)

(
−1

2
∆̄2

n + Cn

)
1
n
+ O(n−3/2).

The result for a call follows by using put–call parity.

6. Proof of Theorem 2

To prove Theorem 2, we use the following theorem, the proof of which we defer
to later.

Theorem 3 (Edgeworth expansion for triangular arrays). Let Yn,k, k = 1, 2, . . . , n be indepen-
dent and identically distributed versions of some random variable Yn. Assume that Yn is supported
by some lattice αn + ∆nZ, where αn is bounded and ∆n > 0 has a positive limit, and there exists a
positive integer m, such that the set

{x ∈ αn + ∆nZ : P(Yn = x) > 0}

consists of m distinct points αn + ∆nxi, i = 1, . . . , m, where xi ∈ Z. Moreover, for each i,
infn pn,i > 0 where pn,i = P(Yn = αn + ∆nxi), and Var(Yn)→ V > 0. Let

Sn =
n

∑
k=1

Yn,k − E(Yn,k)√
n

.

Then, for all i0 ≥ 3,

sup
x∈R

∣∣P(Sn ≤ x)− Ei0(x+, γn)
∣∣ = O

(
n

1−i0
2

)
, (24)

where γn = (γn,2, γn,3, ...), γn,j being the Sheppard-corrected cumulant of Sn of order j, that is

γn,j =
ρn,j
√

nj−2 −
bj

j
∆j

n

nj/2 , j > 1,

ρn,j is the jth cumulant of Yn, bj is the jth Bernoulli number, and x+ is the continuity corrected
point in the lattice space Ln =

√
n(αn − ρn,1) +

(
∆n/
√

n
)
Z, that is,

x+ = sup{y ∈ Ln : y ≤ x}+ ∆n

2
√

n
.

Remark 6. In particular, γn,2 is called the Sheppard-corrected variance of Sn.

Proof of Theorem 2. By definition, we have

S(n)
T = S0 exp

(
√

∆t
n

∑
k=1

Xn,k

)
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where Xn,k are independent versions of the random variable Xn, which takes the value
−Λn + (i− 1)∆n with probability pn,i, such that Λn is bounded, ∆n has a positive limit,
infn pn,i > 0 and Var(Xn)→ V > 0.

Now, simple algebraic manipulations give

P(S(n)
T ≤ K) = P

(
S0 exp

(
√

∆t
n

∑
k=1

Xn,k

)
≤ K

)
= P

(
Sn ≤ −d̂n

)
,

where

Sn :=
n

∑
k=1

Yn,k√
n

, Yn,k :=
Xn,k − κn,1√

κn,2
, −d̂n :=

ln(K/S0)−
√

Tnκn,1√
T√κn,2

,

where κn,j denotes the jth cumulant of Xn. For simplicity, we set Yn := Yn,1. Note that Yn
takes the value

−Λn − κn,1√
κn,2

+
∆n√
κn,2

(i− 1) ∈ −Λn − κn,1√
κn,2

+
∆n√
κn,2

Z

with probability pn,i, for i = 1, . . . , m. Note that −Λn−κn,1√
κn,2

is bounded because Λn, κn,1 = E(Xn)

are bounded and κn,2 = Var(Xn)→ V > 0. Next, ∆n√
κn,2

has a positive limit because both ∆n

and κn,2 have one. Finally, Var(Yn) = 1. Hence, Yn satisfies the conditions of Theorem 3 and
E(Yn) = 0. We denote now by ρn,j the jth cumulant of Yn. Clearly, ρn,1 = 0, ρn,2 = 1, since

ρn,1 = E(Yn) and ρn,2 = Var(Yn). For j ≥ 2, ρn,j = κn,j/κ
j/2
n,2 . Then, applying Theorem 3 to

Yn, for i0 ≥ 3,

sup
x∈R

∣∣P(Sn ≤ x)− Ei0(x+, γn)
∣∣ = O

(
n

1−i0
2

)
, (25)

where γn = (γn,2, γn,3, ...) is given by

γn,j =
ρn,j
√

nj−2 −
bj

j

(
∆n√
κn,2

)j 1
nj/2 =

κn,j

κ
j/2
n,2
√

nj−2 −
bj

j
∆j

n

κ
j/2
n,2 nj/2

, (26)

and x+ is the continuity corrected point in the lattice space

Ln =
√

n
(
−Λn − κn,1√

κn,2

)
+

∆n√
n√κn,2

Z,

that is,

x+ = sup{y ∈ Ln : y ≤ x}+ ∆n

2
√

n√κn,2
.

Now if

√
n
(
−Λn − κn,1√

κn,2

)
+

∆n(k)√
n√κn,2

≤ −d̂n <
√

n
(
−Λn − κn,1√

κn,2

)
+

∆n(k + 1)√
n√κn,2

,

then

(−d̂n)+ =
√

n
(
−Λn − κn,1√

κn,2

)
+

∆n√
n√κn,2

(
k +

1
2

)
.
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We observe that k = floor(an) = an − frac(an), so that

(−d̂n)+ =
√

n
(
−Λn − κn,1√

κn,2

)
+

∆n√
n√κn,2

(
an − frac(an) +

1
2

)
=
√

n
(
−Λn − κn,1√

κn,2

)
+

∆n√
n√κn,2

an +
∆n(1− 2 frac(an))

2
√

n√κn,2

= −d̂n +
∆n(1− 2 frac(an))

2
√

n√κn,2

= −dn.

This completes the proof of Theorem 2.

7. Proof of Theorem 3

First, assume that αn = 0 and ∆n = 1, so that Yn takes the value xi in Z with probability
pn,i = P(Yn = xi). Then, for each j ≥ 0

E(|Y j
n|) =

m

∑
i=1

pn,i|x
j
i |

is bounded. It is clear that the moment generating function Mn(t) = E(etYn) and the
cumulant generating function Kn(t) = log Mn(t) exist and can be written as a power series.
This guarantees (Smith 1995) that for j ≥ 1, the cumulants ρn,j of Yn are related to the

moments µn,j = E(Y j
n), according to

ρn,j = µn,j −
j−1

∑
`=1

(
j− 1
`− 1

)
ρn,`µn,j−`.

Hence, for each j, ρn,j is also bounded.
Then, we want to apply the case d = 1 of Theorem A1 in Bock and Korn (2016). Clearly,

the first three of the conditions (A1) are satisfied. The fourth follows from the fact that
E(|Y j

n|) is bounded for each j. Moreover, we have Vn = Var(Yn)→ V > 0. Next, note that
it follows from Lemma A2 in Bock and Korn (2016) that condition (A2) of Theorem A1 is
also satisfied. Thus, we conclude that

sup
x∈R
|P(Sn ≤ x)− Fn(x)| = O

(
n

1−i0
2

)
, (27)

where Fn(x) is defined as

i0−2

∑
r=0

n−r/2
i0−r−2

∑
j=0

n−j/2(−1)jSj(nµn +
√

nx)
dj

dxj Pr(−Φ0,Vn , {ρn,ν})(x)

with

Sj(x) =
Bj(x− bxc)

j!
,

where bxc = floor(x), Bj is the jth order Bernoulli polynomial (note Sj(x) is not to be
confused with Sn), µn = µn,1 = E(Yn), and according to Bock (2014),

Pr(−Φ0,Vn , {ρn,ν})(x) = P̃n,r

(
− d

dx

)
Φ0,Vn(x), (28)
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with P̃n,0 = 1 (note that Φ0,Vn(x) = Φ(x/
√

Vn)) and for r ≥ 1, the polynomial P̃n,r(z) is
defined by the relation

1 +
∞

∑
r=1

P̃n,r(z)ur = exp

(
∞

∑
r=1

ρn,r+2zr+2

(r + 2)!
ur

)
. (29)

Interchanging the order of summation and using (28), we find that Fn(x) is

i0−2

∑
j=0

n−j/2(−1)jSj(nµn +
√

nx)
dj

dxj

(
i0−j−2

∑
r=0

n−r/2P̃n,r

(
− d

dx

)
Φ0,Vn(x)

)
. (30)

In Lemma A2 in the Appendix A, we show that for r ≥ 0 and s ≥ 0,

sup
x∈R

∣∣∣∣ ds

dxs P̃n,r

(
− d

dx

)
Φ0,Vn(x)

∣∣∣∣ ≤ Mr(s), (31)

for some real-valued number 0 < Mr(s) < ∞. For 0 ≤ j ≤ i0− 2 and i0− j− 1 ≤ r ≤ i0− 2,
we have n−r/2−j/2 ≤ n(1−i0)/2. Since Sj(x) is bounded, this means we can replace Fn(x)
in (30) by

i0−2

∑
j=0

n−j/2(−1)jSj(nµn +
√

nx)
dj

dxj

(
i0−2

∑
r=0

n−r/2P̃n,r

(
− d

dx

)
Φ0,Vn(x)

)

and (27) still holds. Using Proposition A1 in the Appendix A, we obtain that for
j = 0, . . . , i0 − 2,

sup
x∈R

∣∣∣∣∣ dj

dxj

i0−2

∑
r=0

n−r/2P̃n,r

(
− d

dx

)
Φ0,Vn(x)− dj

dxj Ei0(x, ρ̄n)

∣∣∣∣∣ = O(n
1−i0

2 ), (32)

where ρ̄n = (ρ̄n,2, ρ̄n,3, . . .) and

ρ̄n,j =
ρn,j

n(j−2)/2

is the jth cumulant of Sn. Hence, in (27), we may replace Fn(x) by

Fn(x) =
i0−2

∑
j=0

n−j/2(−1)jSj(nµn +
√

nx)
dj

dxj Ei0(x, ρ̄n) (33)

and the inequality still holds.
Now Sn takes values in the lattice Ln = −µn

√
n + 1√

nZ. Let k ∈ Z be such that

−µn
√

n +
1√
n

k ≤ x < −µn
√

n +
1√
n
(k + 1).

Then
x+ = −µn

√
n +

1√
n
(k + 1/2)

so that
nµn +

√
nx+ = k + 1/2

and hence

Sj(nµn +
√

nx+) = Sj(1/2) =
Bj(1/2)

j!
.
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Then, it follows from (33) that

Fn(x+) =
i0−2

∑
j=0

(−1)jBj(1/2)

nj/2 j!
dj

dxj Ei0(x+, ρ̄n). (34)

Note that
|P(Sn ≤ x)− Fn(x+)| = |P(Sn ≤ x+)− Fn(x+)|

so that, by (27),

sup
x∈R
|P(Sn ≤ x)− Fn(x+)| = O

(
n

1−i0
2

)
, (35)

where Fn(x+) is as in (34).
From this point onwards, we are essentially following Kolassa and McCullagh (1990).

However, we are using a somewhat different definition of the Edgeworth expansion and,
in order to be complete, the proof requires a number of additional steps.

First, we introduce a definition suggested by a definition of Kolassa and McCullagh.
Let i0 ≥ 3, let a = (a0, a1, . . .) be a sequence of real numbers and let λ be a positive number.
Then, we define

ψi0,x,λ(a) =
3i0−6

∑
j=0

(−1)jaj
dj

dxj Φ
(

x√
λ

)
. (36)

Now, from the definition,
Ei0(x+, ρ̄n) = ψi0,x+ ,σ2

n
(αn),

where
σn =

√
ρ̄n,2 =

√
ρn,2 =

√
Vn (37)

and
∞

∑
j=0

αn,jsj = exp

(
i0

∑
j=3

ρ̄n,j

j!
sj

)
. (38)

It follows from Lemma A3 in the Appendix A, using ρ̄n,j = O(n(2−j)/2), that for each j

αn,j = O(n−j/6). (39)

Then, since also σn →
√

V, it follows from Lemma A4(ii) in the Appendix A that

dj

dxj Ei0(x+, ρ̄n) =
dj

dxj ψi0,x+ ,σ2
n
(αn) = (−1)jψi0,x+ ,σ2

n
(T jαn) + O(n

j+1−i0
2 ),

where

T jαn = (

j times︷ ︸︸ ︷
0, . . . , 0, αn,0, αn,1, . . .) for j ≥ 0,

so that

sup
x∈R

∣∣∣∣ (−1)j

nj/2
dj

dxj Ei0(x+, ρ̄n)−
1

nj/2 ψi0,x+ ,σ2
n
(T jαn)

∣∣∣∣ = O(n
1−i0

2 ).

Hence, we may replace the expression in (34) by

Fn(x+) =
i0−2

∑
j=0

Bj(1/2)

nj/2 j!
ψi0,x+ ,σ2

n
(T jαn)

and (35) still holds. Moreover, because

ψi0,x+ ,σ2
n
(T jαn) =

3i0−6

∑
k=j

(−1)kαn,k−j
dk

dxk Φ
(

x+
σn

)
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is uniformly bounded in x and n by (A2) in Lemma A2 in the Appendix A and by (39), we
may even take

Fn(x+) =
3i0−6

∑
j=0

Bj(1/2)

nj/2 j!
ψi0,x+ ,σ2

n
(T jαn),

and (35) still holds. Then, using Lemma A4(i) in the Appendix A, we have

Fn(x+) = ψi0,x+ ,σ2
n
(βn), (40)

where

βn =
3i0−6

∑
j=0

Bj(1/2)

nj/2 j!
T jαn.

Here, βn = (βn,0, βn,1, ...) with

βn,k =
3i0−6

∑
j=0

Bj(1/2)

nj/2 j!
(T jαn)k.

so that
∞

∑
k=0

βn,ksk =
∞

∑
k=0

3i0−6

∑
j=0

Bj(1/2)

nj/2 j!
(T jαn)ksk.

Now,
∞

∑
k=0

(T jαn)ksk =
∞

∑
k=j

αn,k−jsk = sj
∞

∑
k=j

αn,k−jsk−j = sj
∞

∑
k=0

αn,ksk

so that, using (38),
∞

∑
k=0

(T jαn)ksk = sj exp

(
i0

∑
k=3

ρ̄n,k

k!
sk

)
.

Hence, βn is determined by

∞

∑
k=0

βn,ksk =
3i0−6

∑
j=0

Bj(1/2)

nj/2 j!
sj exp

(
i0

∑
k=3

ρ̄n,k

k!
sk

)
.

If now β̃n =
(

β̃n,0, β̃n,1, ...
)

is determined by

∞

∑
k=0

β̃n,ksk =
∞

∑
j=0

Bj(1/2)

nj/2 j!
sj exp

(
i0

∑
k=3

ρ̄n,k

k!
sk

)
,

then β̃n,j = βn,j for j = 0, ..., 3i0 − 6 and thus, from the definition (36) of ψ,

Fn(x+) = ψi0,x+ ,σ2
n
(βn) = ψi0,x+ ,σ2

n
(β̃n). (41)

Now, by an equation in Kolassa and McCullagh (1990, p. 984),

∞

∑
j=0

Bj(1/2)

nj/2 j!
sj = exp

(
∞

∑
k=2

−bk

nk/2k k!
sk

)
.

Hence,
∞

∑
k=0

β̃n,ksk = exp

(
∞

∑
k=2

−bk

nk/2k k!
sk +

i0

∑
k=3

ρ̄n,k

k!
sk

)
.
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Next, if Γn = (Γn,0, Γn,1, . . .) is determined by

∞

∑
k=0

Γn,ksk = exp

(
i0

∑
k=2

−bk

nk/2k k!
sk +

i0

∑
k=3

ρ̄n,k

k!
sk

)
,

then, from Lemma A4(iv) in Appendix A,

sup
x∈R

∣∣∣ψi0,x+ ,σ2
n
(β̃n)− ψi0,x+ ,σ2

n
(Γn)

∣∣∣ = O(n(1−i0)/2)

so that we may replace Fn(x+) in (41) by

Fn(x+) = ψi0,x+ ,σ2
n
(Γn) (42)

and (35) still holds. Finally note that

∞

∑
k=0

Γn,ksk = exp

(
−b2

4n
s2 +

i0

∑
k=3

γn,k
sk

k!

)

where, from the statement of the theorem,

γn,k = ρ̄n,k −
bk

nk/2k
, k > 1,

is O(n(2−k)/2) since ρ̄n,k = O(n(2−k)/2). Let νn be defined by

∞

∑
k=0

νn,ksk = exp

(
i0

∑
k=3

γn,k
sk

k!

)
.

Lemma A3 in Appendix A guarantees that νn,j = O(n−j/6) for each j. Then, according to
Proposition A2 in the Appendix A applied to an = νn, ān = Γn, and c = −b2/4, we may
replace σ2

n as in (37) by the Sheppard-corrected variance γn,2 = σ2
n − b2

2n in the sense that

sup
x∈R

∣∣∣ψi0,x,σ2
n
(Γn)− ψi0,x,γn,2(νn)

∣∣∣ = O(n(1−i0)/2). (43)

Thus, we may replace Fn(x+) in (42) by ψi0,x+ ,γn,2(νn) and (35) still holds. However, from
the definitions (8) and (36), ψi0,x+ ,γn,2(νn) = E(x+, γn), and so we conclude that

sup
x∈R
|P(Sn ≤ x)− E(x+, γn)| = O

(
n

1−i0
2

)
.

This proves the case αn = 0, ∆n = 1.
We remain to consider the case when Yn takes values in the lattice αn + ∆nZ. We define

the random variables Ȳn = 1
∆n

(Yn − αn), which take values in Z. Since Ȳn takes the value xi

with probability pn,i, where infn pn,i > 0, and Var(Ȳn) = Var(Yn)/∆2
n has a positive limit,

we may apply the first part of this proof to Ȳn in order to complete the proof.
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Appendix A

In this Appendix, we prove lemmas and propositions needed for the proof of Theorem 3.
We make extensive use of the following fact, which we state as a lemma (essentially the
same as Equation (6) in Smith (1995)).

Lemma A1. If f (x) = ∑∞
j=0 ajxj and g(x) = ∑∞

j=1 cjxj are power series related by
f (x) = exp(g(x)), then a0 = 1 and for j ≥ 1,

aj = cj +
j−1

∑
m=1

m
j

cmaj−m.

Appendix A.1. Properties of P̃n,r(z)

Recall from (29) that the polynomials P̃n,r(z) are defined by the relation

∞

∑
r=0

P̃n,r(z)ur = exp

(
∞

∑
r=1

ρn,r+2ur zr+2

(r + 2)!

)
. (A1)

We verify (31) in the following lemma.

Lemma A2. Assume that Vn ≥ V > 0 for n ≥ 1. Then for each non-negative integer s, there exist
a real number N(s) such that

sup
x∈R

∣∣∣∣ ds

dxs Φ0,Vn(x)
∣∣∣∣ ≤ N(s). (A2)

If, additionally, ρn,j is bounded as a function of n for j ≥ 3, then for each pair of non-negative
integers r, s there exists a real number Mr(s), such that

sup
x∈R

∣∣∣∣ ds

dxs P̃n,r

(
− d

dx

)
Φ0,Vn(x)

∣∣∣∣ ≤ Mr(s).

Proof. First, we take

N(s) = sup
x

∣∣∣∣ ds

dxs Φ(x)
∣∣∣∣V−s.

Then, for each s, we define Mr(s) recursively, according to

M1(s) = k(3)N(s + 3)/6

and for r > 1:

Mr(s) =
k(r + 2)N(r + s + 2)

(r + 2)!
+

r−1

∑
m=1

k(m + 2)
(m + 2)!

m
r

Mr−m(m + s + 2),

where k(j) is a bound on
∣∣ρn,j

∣∣. The proof uses the recurrence relation

P̃n,r(z) =
ρn,r+2zr+2

(r + 2)!
+

r−1

∑
m=1

ρn,m+2zm+2

(m + 2)!
m
r

P̃n,r−m(z).

which follows from (A1), using Lemma A1. We leave the details to the reader.

Next, we verify (32) in the following proposition.
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Proposition A1. Let ρ̄n = (ρ̄n,2, ρ̄n,3, . . .), ρ̄n,j = ρn,j/n(j−2)/2, and Vn = ρn,2, where ρn,j is
bounded as a function of n for j ≥ 2, and Vn ≥ V > 0 for n ≥ 1. Then, for every integer j ≥ 0,

supx∈R

∣∣∣∣∣ dj

dxj Ei0(x, ρ̄n)− dj

dxj

i0−2
∑

r=0
n−r/2P̃n,r

(
− d

dx

)
Φ0,Vn(x)

∣∣∣∣∣ = O(n
1−i0

2 ).

Proof. We define

fn(u, z) = exp

(
i0−2

∑
r=1

ρn,r+2ur zr+2

(r + 2)!

)
=

∞

∑
`=0

Qn,`(u)
z`

`!
,

where

Qn,`(u) =
∂` fn

∂z`
(u, 0) =

∞

∑
r=0

Anr`
r!

ur, (A3)

where

Anr` =
drQn,`

dur (0) =
∂r+` fn

∂ur∂z`
(0, 0).

Note that
∂r fn

∂ur (0, z) =
∞

∑
`=0

Anr`
`!

z`. (A4)

fn(u, z) is related to both P̃n,r(z) and Ei0(x, ρ̄n) in a way explained below. However,
first we establish the following claims:

(i) Qn,0(u) = 1, Qn,1(u) = Qn,2(u) = 0, and for ` ≥ 3, Qn,`(u) is a polynomial of degree at most
`− 2; in fact, Anr` = 0 for 0 ≤ r < `/3 and r > `− 2;
(ii) the Anr` are bounded as functions of n.

To prove claim (i), we write

fn(u, z) = 1 +
∞

∑
`=1

Qn,`(u)
z`

`!
,

where Qn,0(u) = 1 since fn(u, 0) = 1. Now,

fn(u, z) = exp

(
i0

∑
r=3

ρn,rur−2 zr

r!

)
,

and it follows from Lemma A1 that

Qn,1(u) = 0, Qn,2(u) = 0, Qn,3(u) = ρn,3u, (A5)

and for ` ≥ 3, Qn,`(u) satisfies the relation

Qn,`(u) = ρn,`u`−2 +
`−1

∑
m=3

(
`− 1
m− 1

)
ρn,mum−2Qn,`−m(u). (A6)

To finish the proof of claim (i), we must show that for ` ≥ 3, Qn,`(u) is a polynomial
of a degree at most ` − 2 and the coefficients of ui, where 0 ≤ i < `/3 are zero (note
that `/3 ≤ ` − 2, since ` ≥ 3). The claim we just made is true for ` = 3. Suppose it
is true for Qn,r(u), where 3 ≤ r < `. Then, from (A6), Qn,`(u) is a polynomial and the
possible powers of u occurring in Qn,`(u) are ` − 2 and m − 2 + i, where ui is a power
occurring in Qn,`−m(u) for some m, such that 3 ≤ m ≤ `− 3 (m = `− 1 and `− 2 can be
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excluded because Qn,1(u) = 0 and Qn,2(u) = 0). Now, by the induction hypothesis and
since `−m ≥ 3, (`−m)/3 ≤ i ≤ `−m− 2. Then,

m− 2 + i ≤ m− 2 + `−m− 2 = `− 4 < `− 2,

and since m ≥ 3 ,

m− 2 + i ≥ m− 2 + (`−m)/3 = 2(m/3− 1) + `/3 ≥ `/3.

Thus, claim (i) is proved.
We prove claim (ii) by induction on `. Note that An00 = 1 and Anr0 = 0 for r ≥ 1 since

Qn,0(u) = 1. Then, Anr` = 0 for r ≥ 0 and ` = 1, 2 since Qn,1(u) = Qn,2(u) = 0 and by
(A5), Anr3 = 0 unless r = 1 when it is ρn,3. Thus, Anr` is bounded as a function of n when
` ≤ 3 and r ≥ 0. Suppose now that ` ≥ 4 and Anrs is bounded as a function of n when
0 ≤ s < `, r ≥ 0. Recall that Anr` = 0 if r > `− 2. We obtain from (A6) that when r = `− 2,

Anr`
r!

= ρn,` +
`−1

∑
m=3

(
`− 1
m− 1

)
ρn,m

An,`−m,`−m

(`−m)!

and when r < `− 2,
Anr`

r!
=

r+2

∑
m=3

(
`− 1
m− 1

)
ρn,m

An,r−m+2,`−m

(r−m + 2)!
.

It follows then that Anr` is also bounded and the induction proof is complete. This finishes
the proof of claim (ii).

Now, we explain the relationship between fn(u, z) and P̃n,r(z) and Ei0(x, ρ̄n).
From (A1),

P̃n,r(z) =
1
r!

∂r

∂ur exp

(
∞

∑
r=1

ρn,r+2ur zr+2

(r + 2)!

)∣∣∣∣
u=0

and so, for r = 0, . . . , i0 − 2,

P̃n,r(z) =
1
r!

∂r fn

∂ur (0, z). (A7)

Next note from (8) and (9) that

Ei0(x, ρ̄n) = Φ0,Vn(x) +
3i0−6

∑
r=3

αn,r

(
− d

dx

)r
Φ0,Vn(x), (A8)

where ρ̄n,j = ρn,j/n(j−2)/2, Vn = ρn,2 = ρ̄n,2, αn,r is defined by

∞

∑
r=0

αn,rzr = exp

(
i0−2

∑
r=1

ρ̄n,r+2
zr+2

(r + 2)!

)
= fn(1/

√
n, z)

and, as observed previously, Φ0,Vn(x) = Φ(x/
√

Vn). Thus, for r ≥ 0,

αn,r =
1
r!

∂r fn

∂zr (1/
√

n, 0). (A9)

Now, we proceed with the rest of the proof. Suppose that 3 ≤ ` ≤ 3i0 − 6. From claim
(i) above, Anr` = 0 if r < `/3 or r > `− 2 and so certainly if r = 0 or r > 3i0 − 6. Hence,
using (A3),

∂` fn

∂z`
(u, 0) =

∞

∑
r=0

Anr`
ur

r!
=

3i0−6

∑
r=1

Anr`
ur

r!
. (A10)
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Suppose, next, that 1 ≤ r ≤ i0− 2. Then, Anr` = 0 if ` > 3r or ` < r + 2 and hence certainly
if ` > 3i0 − 6 or ` < 3. Thus, if 1 ≤ r ≤ i0 − 2, using (A4) and (A7),

P̃n,r(z) =
1
r!

∂r fn

∂ur (0, z) =
1
r!

∞

∑
`=0

Anr`
z`

`!
=

1
r!

3i0−6

∑
`=3

Anr`
z`

`!
.

Then, using P̃n,0(z) = 1,
i0−2

∑
r=0

P̃n,r(z)ur = 1 +
i0−2

∑
r=1

1
r!

3i0−6

∑
`=3

Anr`
z`

`!
ur

= 1 +
3i0−6

∑
`=3

(
i0−2

∑
r=1

Anr`
ur

r!

)
z`

`!
.

Using (A10), we can continue with

= 1 +
3i0−6

∑
`=3

(
∂` fn

∂z`
(u, 0)−

3i0−6

∑
r=i0−1

Anr`
ur

r!

)
z`

`!

= 1 +
3i0−6

∑
`=3

∂` fn

∂z`
(u, 0)

z`

`!
−

3i0−6

∑
`=3

3i0−6

∑
r=i0−1

Anr`
ur

r!
z`

`!

so that, taking u = 1/
√

n and using (A9),

i0−2

∑
r=0

P̃n,r(z)n−r/2 = 1 +
3i0−6

∑
`=3

αn,`z` −
3i0−6

∑
`=3

3i0−6

∑
r=i0−1

Anr`
1
r!

z`

`!
n−r/2.

It follows that for any integer j ≥ 0

dj

dxj

i0−2

∑
r=0

n−r/2P̃n,r

(
− d

dx

)
Φ0,Vn(x)

=
dj

dxj

(
Φ0,Vn(x) +

3i0−6

∑
`=3

αn,`

(
− d

dx

)`

Φ0,Vn(x)

)
+ In(x),

where

In(x) = −
3i0−6

∑
`=3

3i0−6

∑
r=i0−1

n−r/2 Anr`
r!`!

(
− d

dx

)`+j
Φ0,Vn(x) = O(n

1−i0
2 )

uniformly in x, because from claim (ii) above the Anr` are bounded as functions of n,(
d`+j/dx`+j

)
Φ0,Vn(x) is bounded as a function of x and n in view of (A2), and

n−r/2 ≤ n(1−i0)/2 when r ≥ i0 − 1. The statement of the proposition follows from (A8).

Appendix A.2. On the Power Series of the Exponential of a Power Series

To prove (39), we use the following lemma.

Lemma A3. Suppose that for n ≥ 1, j ≥ 3, |bn,j| ≤ k jn(2−j)/2 for some real number k j. If

∞

∑
j=0

an,jsj = exp

(
∞

∑
j=3

bn,jsj

)
,

then an,0 = 1, an,j = 0 for 1 ≤ j ≤ 2, and for every integer j ≥ 0, there exists a constant Kj such
that |an,j| ≤ Kjn−j/6.
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Proof. The fact that an,0 = 1, an,j = 0 for 1 ≤ j ≤ 2 is clear. Suppose now that
|an,m| ≤ Kmn−m/6 for 0 ≤ m ≤ j, where j ≥ 2. Then, by Lemma A1, for j ≥ 2,

an,j+1 = bn,j+1 +
j−2

∑
m=3

m
j + 1

bn,man,j+1−m.

Thus,

|an,j+1| ≤ k j+1n(1−j)/2 +
j−2

∑
m=3

m
j + 1

kmn(2−m)/2Kj+1−mn−(j+1−m)/6

≤
[

k j+1 +
j−2

∑
m=3

mkmKj+1−m

j + 1

]
n−(j+1)/6

= Kj+1n−(j+1)/6.

The lemma follows by induction on j.

Appendix A.3. Properties of ψ

Recall that given an integer i0 ≥ 3, a sequence of real numbers a = (a0, a1, . . .) and a
positive real number λ, ψ is defined by

ψi0,x,λ(a) =
3i0−6

∑
j=0

(−1)jaj
dj

dxj Φ
(

x√
λ

)
.

In the following lemma, we prove some properties of ψ, which we need.
First, there is some notation. For a = (a0, a1, . . .), we define Tsa by (Tsa)j = aj−s if

j ≥ s, (Tsa)j = 0 if 0 ≤ j < s.

Lemma A4. The following properties of ψ hold:

(i) If bj = αaj + βāj for j = 0, . . . , 3i0 − 6,

ψi0,x,λ(b) = αψi0,x,λ(a) + βψi0,x,λ(ā).

(ii) If σ−1
n > 0 is bounded and an,j = O(n−j/6) for 0 ≤ j ≤ 3i0 − 6, then for s ≥ 0,

sup
x∈R

∣∣∣∣ ds

dxs ψi0,x,σ2
n
(an)− (−1)sψi0,x,σ2

n
(Tsan)

∣∣∣∣ = O
(

n
s+1−i0

2

)
.

(iii) If σ−1
n > 0 is bounded and an,j − ān,j = O(nα) for 0 ≤ j ≤ 3i0 − 6, where α is real, then

sup
x∈R

∣∣∣ψi0,x,σ2
n
(an)− ψi0,x,σ2

n
(ān)

∣∣∣ = O(nα).

(iv) Suppose that

∞

∑
j=0

an,jsj = exp

(
∞

∑
j=2

bn,jsj

)
,

∞

∑
j=0

ān,jsj = exp

(
∞

∑
j=2

b̄n,jsj

)

where for each j ≥ 2 ∣∣bn,j
∣∣+ ∣∣b̄n,j

∣∣ = O(1), bn,j − b̄n,j = O(n−(1+i0)/2).
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Then, for each j ≥ 2, an,j − ān,j = O(n−(1+i0)/2) and if, in addition, σ−1
n > 0 is bounded, then

sup
x∈R

∣∣∣ψi0,x,σ2
n
(an)− ψi0,x,σ2

n
(ān)

∣∣∣ = O(n−(1+i0)/2).

Proof. The proof is left as an exercise for the reader.

Appendix A.4. Replacing the Variance by the Sheppard-Corrected Variance in ψ

We use the proposition below to verify (43). To prove the proposition, we need
a lemma.

Lemma A5. For every integer k ≥ 0 and any λ > 0,

∂2k

∂x2k Φ
(

x√
λ

)
= 2k ∂k

∂λk Φ
(

x√
λ

)
(A11)

and hence for any sequence a

∂2k

∂x2k ψi0,x,λ(a) = 2k ∂k

∂λk ψi0,x,λ(a). (A12)

Proof. The proof of (A11) is a calculus exercise. (A12) follows from

ψi0,x,λ(a) =
3i0−6

∑
j=0

(−1)jaj
∂j

dxj Φ
(

x√
λ

)

since then

∂2k

∂x2k ψi0,x,λ(a) =
3i0−6

∑
j=0

(−1)jaj
∂j+2k

∂xj+2k Φ
(

x√
λ

)

=
3i0−6

∑
j=0

(−1)jaj
∂j

∂xj 2k ∂k

∂λk Φ
(

x√
λ

)

= 2k ∂k

∂λk

(
3i0−6

∑
j=0

(−1)jaj
∂j

∂xj Φ
(

x√
λ

))

= 2k ∂k

∂λk ψi0,x,λ(a).

Proposition A2. Suppose that an = (an,0, an,1, . . .) is such that for each j, an,j = O(n−j/6) and
σn is a sequence of positive numbers such that σ2

n → V > 0. Suppose also that ān is a sequence
determined by

∞

∑
j=0

ān,jsj = ecs2/n
∞

∑
j=0

an,jsj,

where c is a constant. Then, for i0 ≥ 3 and n being sufficiently large, such that bn,2 := σ2
n + 2c/n >

0,
sup
x∈R

∣∣∣ψi0,x,σ2
n
(ān)− ψi0,x,bn,2(an)

∣∣∣ = O(n(1−i0)/2).
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Proof. Clearly

∞

∑
j=0

ān,jsj =

(
∞

∑
k=0

ck

nkk!
s2k

)
∞

∑
j=0

an,jsj =
∞

∑
k=0

ck

nkk!

∞

∑
j=0

an,jsj+2k

=
∞

∑
k=0

ck

nkk!

∞

∑
`=2k

an,`−2ks` =
∞

∑
k=0

ck

nkk!

∞

∑
`=0

(T2kan)`s`

=
∞

∑
`=0

[
∞

∑
k=0

ck

nkk!
(T2kan)`

]
s`,

where T2kan is defined as in Appendix A.3. Hence

ān =
∞

∑
k=0

ck

nkk!
T2kan.

However, when 0 ≤ j ≤ 3i0 − 6,

ān,j =
N

∑
k=0

ck

nkk!
(T2kan)j

where N = floor((3i0 − 6)/2), since (T2kan)j = an,j−2k = 0 if k > j/2. Recall that
an,j = O(n−j/6). Hence, by (i) and (ii) in Lemma A4,

ψi0,x,σ2
n
(ān) =

N

∑
k=0

ck

nkk!
ψi0,x,σ2

n
(T2kan)

=
N

∑
k=0

ck

nkk!

[
∂2k

∂x2k ψi0,x,σ2
n
(an) + O(n(2k+1−i0)/2)

]

so that

ψi0,x,σ2
n
(ān) =

N

∑
k=0

ck

nkk!
∂2k

∂x2k ψi0,x,σ2
n
(an) + O(n(1−i0)/2). (A13)

Next, by Taylor expansion, since bn,2 = σ2
n + 2c/n,

ψi0,x,bn,2(an) =
N

∑
k=0

2kck

nkk!
∂k

∂λk
n

ψi0,x,λn(an)
∣∣
λn=σ2

n
+ RN+1,

where, with θn between σ2
n and bn,2,

RN+1 =
2N+1cN+1

nN+1(N + 1)!
∂N+1

∂λN+1
n

ψi0,x,λn(an)
∣∣
λn=θn

and, using Lemma A5,

RN+1 =
cN+1

(N + 1)!
∂2(N+1)

∂x2(N+1)
ψi0,x,θn(an)n−(N+1) = O(n−(N+1))

uniformly with respect to x, since

∂2(N+1)

∂x2(N+1)
ψi0,x,θn(an) =

3i0−6

∑
j=0

(−1)jan,j
∂2(N+1)+j

∂x2(N+1)+j
Φ(x/

√
θn)
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is bounded as a function of n and x: this follows from Lemma A2 using (A2) with Vn
replaced by θn which → V > 0 as n → ∞, and the fact that an,j is bounded for each j.
Hence,

ψi0,x,bn,2(an) =
N

∑
k=0

2kck

nkk!
∂k

∂λk
n

ψi0,x,λn(an)
∣∣
λn=σ2

n
+ O(n−(N+1)). (A14)

Now, using Lemma A5 again and also (A13),

N

∑
k=0

2kck

nkk!
∂k

∂λk
n

ψi0,x,λn(an)
∣∣
λn=σ2

n
=

N

∑
k=0

ck

nkk!
∂2k

∂x2k ψi0,x,σ2
n
(an)

= ψi0,x,σ2
n
(ān) + O(n(1−i0)/2),

Combining this with (A14), we obtain

ψi0,x,σ2
n
(ān) = ψi0,x,bn,2(an) + O(n(1−i0)/2) + O(n−(N+1))

= ψi0,x,bn,2(an) + O(n(1−i0)/2)

since N + 1 > 3i0−6
2 > i0−1

2 . All the O-terms are uniform in x, and therefore the result follows.
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