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Abstract: We find the asymptotics of the value function maximizing the expected utility of discounted
dividend payments of an insurance company whose reserves are modeled as a classical Cramér risk
process, with exponentially distributed claims, when the initial reserves tend to infinity. We focus on
the power and logarithmic utility functions. We also perform some numerical analysis.
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1. Introduction

The problem of identifying the optimal dividend strategy of an insurance company
was introduced in the seminal paper of De Finetti (1957) and mathematically formalized
by Gerber ([1979] 2012). Since then, many authors have analyzed various scenarios for
which they proposed optimal dividend strategies.

Gerber ([1979] 2012) assumed that the reserve process R = (Rt)t≥0 of an insurance
company follows a classical Cramér-Lundberg risk process given by

Rt = x + µt −
Nt

∑
i=1

Yi, (1)

where Y1, Y2, . . . are i.i.d positive random variables with an absolutely continuous distribu-
tion function FY, representing the claims; N = (Nt)t≥0 is an independent Poisson process,
with intensity λ > 0, modeling the times at which the claims occur; x > 0 denotes the
initial surplus; and µ is the premium intensity. We further consider the dividend payments,
defined via an adapted and nondecreasing process D = (Dt)t≥0, representing all the ac-
cumulated dividend payments up to time t. Then, the regulated process X = (Xt)t≥0 is
given by

Xt = Rt − Dt. (2)

We observe this regulated process Xt until the time of ruin

τ = inf{t ≥ 0 : Xt < 0}.

The time of ruin of an insurance company depends on the chosen dividend strategy.
We assume that the usual net profit condition, µ > λE(Y1), for the underlying Cramér-
Lundberg risk process, is fulfilled. Another natural assumption is that no dividends are
paid after the ruin.

Jeanblanc and Shiryaev (1995) and Gerber and Shiu (2004) consider the optimal
dividend problem in a Brownian setting. Zhou (2005) study the constant barrier under the
Cramér-Lundberg model and Avram et al. (2007) under the Lévy model. For related works
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considering the dividend problem, we refer to Asmussen and Taksar (1997); Azcue and
Muler (2005); Eisenberg and Palmowski (2021); Gao and Yin (2023); Grandis et al. (2007);
Noba (2021); Paulsen (2007); Loeffen (2008); Schmidli (2008); Albrecher and Thonhauser
(2009); Asmussen and Albrecher (2010); Thonhauser and Albrecher (2011); Eisenberg and
Schmidli (2011); Avram et al. (2015) and references therein.

Inspired by Hubalek and Schachermayer (2004), we consider, instead of the classical
maximization of the expected value of the discounted dividend payments, the maximization
of the expected value of the utility of these payments, for some utility function U. Hubalek
and Schachermayer (2004) consider the asymptotic of the expected discounted utility
of dividend payments for a Brownian risk process with drift under the assumption that
(Dt)t≥0 is absolutely continuous with respect to the Lebesgue measure. Under the same
assumption of (Dt)t≥0, we perform the asymptotic analysis of the expected utility in a
classical compound Poisson risk model, which, due to its jumps, brings an extra level
of complexity. As in Hubalek and Schachermayer (2004), we solve some ’peculiar’ non-
homogenous differential equations.

Assuming that the process Dt admits, almost surely, a density, denoted by (dt)t≥0,
namely for each t ≥ 0,

Dt =
∫ t

0
dsds a.s.,

we define the target value function as

v(x) = sup
(dt)t≥0

Ex

(∫ τ

0
e−βtU(dt) dt

)
, (3)

where β is a discount factor, U is a fixed differentiable utility function, which equals 0 on the
negative half-line, and Ex represents the expectation with respect to Px(·) = P(·|X0 = x).
Here, the density models the intensity of the dividend payments in continuous time, and
thus we will be maximizing the value function v(x) over all admissible dividend strategies
(dt)t≥0. We assume that the dividend density process (dt)t≥0 is admissible, whenever it
is a nonnegative, adapted and cádlág process, and there are no dividends after the ruin,
namely dt = 0, for all t ≥ τ. We denote by C the set of all admissible strategies (dt)t≥0.

Moreover, we restrict ourselves to Markov strategies, meaning that, for every t ≥ 0,
the strategy (dt)t≥0 depends only on the amount of the present reserves. We introduce a
non-decreasing function c, such that

dt = c(Xt), for any t ≥ 0.

The non-decreasing assumption is justified by the fact that the company should be willing
to pay more dividends whenever it has larger reserves. Finally, we assume that the ruin
cannot be caused by the dividend payment alone and we choose dt such that the value
function given in (3) is well-defined and finite for all x ≥ 0.

The above dividend problem can be used to monitor the financial state of the company.
In particular, it can be considered as a signalling device of future prospects. In this paper,
we assume that the company has large reserves and therefore by taking the initial value
to infinity we can produce a very transparent optimal strategy and hence a very clear and
simple value function, which, we believe, is crucial from a management point of view.

For the above dividend problem, one can formulate the Hamilton-Jacobi-Bellman
(HJB) equation of the optimal value function (see Section 2). Although impossible to solve
this HJB equation explicitly (see, e.g., Asmussen and Taksar (1997)), one can analyze the
asymptotic properties of its solutions for large initial reserves. We focus on the asymptotic
analysis of such value functions when the claim sizes are exponentially distributed, with
utility functions that are either powers or logarithms (see Section 3). We also introduce a
numerical algorithm for identifying such value functions (see Section 4).
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2. Hamilton–Jacobi–Bellman Equation

From now on, we assume that U ∈ C∞(R>0) is increasing and strictly concave, such
that U(0) = 0, lim

x→∞
Ux(x) = 0 and lim

x→∞
U(x) = ∞, where fx(x) denotes the derivative of a

function f with respect to x. We denote by Cd0 the set of all admissible strategies (dt)t≥0
bounded above by d0 and let

v(0)(x) = sup
dt∈Cd0

Ex

(∫ τ

0
e−βtU(dt) dt

)
. (4)

Using the verification theorem, one can prove the following theorem.

Theorem 1. If d0 > µ then the value function v(0)(x) is differentiable and fulfills the Hamilton–
Jacobi–Bellman equation:

sup
0≤d≤d0

{
(µ − d)v(0)x (x)− (β + λ)v(0)(x) + U(d) + λ

∫ x

0
v(0)(x − y)dFY(y)

}
= 0. (5)

The proof of the above theorem follows the same steps as the proof of Theorem 3.3 of
Baran and Palmowski (2017) and therefore we simply refer to them. Since the set of all
possible strategies over which we take the supremum in v(0)(x) is smaller than the one for
v(x), then one has v(0)(x) ≤ v(x). We note also that v(0)(x) depends on d0. The goal of the
next corollary is to prove that limd0→+∞ v(0)(x) = v(x).

Corollary 1. The optimal value function v(x) is differentiable and fulfills the Hamilton–Jacobi–
Bellman equation:

sup
d≥0

{
(µ − d)vx(x)− (β + λ)v(x) + U(d) + λ

∫ x

0
v(x − y)dFY(y)

}
= 0. (6)

Proof. Note that v(0)(x) increases monotonically to v(x), for any fixed x > 0, as d0 → ∞,
unless

v(0)(x) = v̂(0)(x) := Ex

(∫ τ

0
e−βtU(d(0)t ) dt

)
, (7)

where d(0)t = d0 > µ, when Xt > 0, and d(0)t = µ, when Xt = 0 (in this way the ruin is not
caused by the dividend payments). The reason for that is that the supremum on the left
hand side of (5) is a monotone function and thus converges to the supremum given in (6).
To exclude (7), it is sufficient to demonstrate that for sufficiently large d0, for a fixed x > 0,
the function v̂(0)(x) tends to zero. Observe that the regulated risk process equals either
x + µt − d0t, or equals 0 until the nearest jump moment, otherwise, at the time of the first
jump, after t. Further, if the first jump happens before t, then either the company becomes
ruined by this jump/loss or, it continues, but from an initial position/reserve smaller than
x, hence collecting a smaller amount of dividends than v(0)(x). We recall that U(0) = 0.
Thus

v̂(0)(x) ≤ e−λtEx

(∫ τ0

0
e−βsU(d0) ds

)
+ (1 − e−λt)v(0)(x),

where τ0 = x+µt
d0

. Therefore, for any ϵ > 0, we can find a sufficiently small t > 0, such that

v̂(0)(x) ≤ x+µt
d0

U(d0) ≤ x(1+ϵ)
d0

U(d0) which tends to zero as d0 → +∞, since we assumed
that lim

x→∞
U′(x) = 0 and that lim

x→∞
U(x) = ∞. This completes the proof.

Note that the supremum in (6) is attained for the function

c∗(x) = (U′)−1(vx(x)). (8)



Risks 2023, 11, 64 4 of 16

We end this section by adding two crucial observations. By considering the fix strategy
c(y) = y and the first jump epoch T we have

v(x) ≥ Ex

(∫ T

0
e−βtU(c(Xt))dt

)
≥ Ex

(∫ 1

0
e−βtU(g(x)(t))dt

)
P(T > 1)

≥ Ex

(∫ 1

0
e−βtU(x)dt

)
P(T > 1) = U(x)P(T > 1)

1 − e−β

β
,

where the function g(x)(t) describes the deterministic trajectory of the risk process (1)
up to the first jump time T, that is, g(x)(t) = x + µt, t ≤ T. From the assumption that
lim

x→∞
U(x) = ∞, it follows that

lim
x→∞

v(x) = ∞. (9)

Moreover, we have the following lemma.

Lemma 1. lim
x→∞

vx(x) = 0.

Proof. Firstly, we demonstrate that lim
x→∞

c∗(x) = ∞. Recall that, from the definition of an

admissible strategy, c∗ is a nondecreasing function and hence it is enough to prove that c∗

is unbounded. Assuming the contrary, that there exists L > 0, such that, for all x ≥ 0, we
have |c∗(x)| ≤ L, it implies that d∗t ≤ L for all t ≥ 0. Hence

v(x) = sup
(dt)t≥0

Ex

(∫ τ

0
e−βtU(dt)dt

)
= Ex

(∫ τ

0
e−βtU(d∗t )dt

)
≤

≤ Ex

(∫ τ

0
e−βtU(L)dt

)
≤ Ex

(∫ ∞

0
e−βtU(L)dt

)
=

U(L)
β

< ∞.

However, this means that v(x) is bounded, which contradicts (9). Thus, indeed c∗(x) → ∞
as x → ∞. Then

lim
x→∞

vx(x) = lim
x→∞

U′(c∗(x)) = 0,

where the last equality in this equation comes from the Inada condition lim
x→∞

U′(x) = 0

required for the utility function.

3. Asymptotic Analysis

From now on, we assume that the claims follow an exponential distribution with

parameter ξ, that is Yi
D
= Exp(ξ) for all i. This section is dedicated to the asymptotic

analysis of the expected utility of dividend payments, for large initial reserves u.

3.1. Classical Risk Process (1) and Power Utility Function

In this subsection, we consider the classical risk process (1) paired with the power
utility function

U(x) =
xα

α
, α ∈ (0, 1). (10)

The supremum in (6) is attained at

c∗ = (U′)−1(vx) = v
− 1

1−α
x (11)

and thus, after an integration by parts, the Equation (6) simplifies to

µvxx + (ξµ − β − λ)vx − ξβv + ξ
1 − α

α
v
− α

1−α
x − v

− 1
1−α

x vxx = 0 (12)
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where vxx(x) = v′′(x) is the second derivative of v. This is a nonlinear second order ODE.
Peano Theorem, see (Coddington and Levinson 1987, chp. 1) guarantees the existence
of a solution. For uniqueness, we need two boundary conditions. Evaluating x = 0 in
Equation (6), we have a first initial condition,

v(0) = − µ

β + λ
vx(0) +

1 − α

α(β + λ)
vx(0)−

α
1−α . (13)

The derivation of the second condition is described later, in Remark 2. In order to asymp-
totically analyze the solutions of Equation (12), we transform it into a nonlinear first order
ODE, via a Riccati type substitution, namely vx(x) =: y(v(x)).

Lemma 2. As v → ∞, y(v) → 0.

Proof. Let vx(x) = y(v(x)), then using Lemma 1 concludes the proof.

From vx = y(v), we have that vxx = yx(v) = yvvx = yvy. Substituting into
Equation (12), it produces the following equation

µyvy + (ξµ − β − λ)y − ξβv + ξ
1 − α

α
y−

α
1−α − y−

α
1−α yv = 0 (14)

which is equivalent with

yv =
(ξµ − β − λ)y − ξβv + ξ 1−α

α y−
α

1−α

µy − y−
α

1−α
. (15)

This is a nonlinear first order ODE without known explicit solutions. We focus on the
asymptotic behaviour of the solutions and derive the asymptotic optimal strategy of paying
dividends d∗t = c∗(Xt), for c∗(x) a function of the initial reserve.

Note that throughout the paper, f (x) ∼ g(x) ⇐⇒ limx→∞
f (x)
g(x) = 1.

Theorem 2. Let α =
p
q
∈ (0, 1), where p, q ∈ N, p < q. Then, as x → ∞,

v(x) ∼
(

1 − α

β

)1−α xα

α
, (16)

vx(x) ∼
(

1 − α

β

)1−α

xα−1, (17)

c∗(x) ∼ β

1 − α
x. (18)

Remark 1. The assumption that α is rational is not restrictive, because the set of all rational
numbers is sufficiently large to model various shapes of the power utility function.

The proof of Theorem 2 is given in Appendix A.

3.2. Classical Risk Process (1) and Logarithmic Utility Function

We consider the classical risk process (1) and the logarithmic utility function

U(x) = ln(x + 1). (19)

The supremum in the Equation (6) is attained for

c∗ = (U′)−1(vx) =
1
vx

− 1 (20)
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and this equation simplifies to

(µ + 1)vxx + (ξµ + ξ − β − λ)vx − ξβv − ξ ln vx −
1
vx

vxx − ξ = 0. (21)

This is a nonlinear second order ODE with the initial condition

v(0) =
µ + 1
β + λ

vx(0)−
ln vx(0) + 1

β + λ
. (22)

For the existence of solutions, see (Coddington and Levinson 1987, chp. 1). Apart from the
initial condition above, one more initial condition is required to ensure the uniqueness of
solutions. Similarly to the case of the power utility function, the choice of this condition is
postponed to Section 4. By a Riccati substitution, vx(x) = y(v), we transform Equation (21)
into the following nonlinear first order ODE

(ξµ + ξ − β − λ)y − ξ ln y − ξβv − ξ + (µ + 1)yyv − yv = 0. (23)

Theorem 3. As x → ∞, we have,

v(x) ∼ 1
β
(ln(β(x + 1))− 1); (24)

vx(x) ∼ 1
β(x + 1)

; (25)

c∗(x) ∼ βx + β − 1. (26)

The proof of Theorem 3 is given in Appendix B.

4. Numerical Analysis

In this section, we provide a numerical algorithm for calculating the value function
for the classical risk process (1) with exponentially distributed claims and power utility
function (10). To do this, we first find vx(0). Then, based on the boundary condition (13),
we determine v(0) and numerically solve Equation (12). Obviously, we could propose a
similar algorithm for the logarithmic utility function. The considerations regarding the
second boundary condition which we formulate in Remark 2 remain true when considering
the logarithmic utility functions.

Note that a similar analysis is presented in Baran and Palmowski (2013), from which
we retrieve some numerical considerations in the case of the power utility, see Table 1 and
Figures 1 and 2. Note that Baran and Palmowski (2013) does not present the derivation of
the HJB equation nor the analysis of the logarithmic utility function.

Table 1. Functions v(x) and vx(x) for α = 0.5, β = 0.05, µ = 0.26, ξ = 0.4, λ = 0.1 and vx(0) = 1.9,
v(0) = 6.8021.

x v(x) vx(x) c(x)

0 6.8021 1.9000 0.2770

1 8.5790 1.6929 0.3489

2 10.2022 1.5575 0.4122

3 11.7010 1.4431 0.4802

4 13.0940 1.3454 0.5525

5 14.3963 1.2613 0.6286

6 15.6203 1.1884 0.7081

7 16.7762 1.1247 0.7905
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Table 1. Cont.

x v(x) vx(x) c(x)

8 17.8723 1.0687 0.8755

9 18.9158 1.0192 0.9626

10 19.9126 0.9752 1.0515

Remark 2. The choice of vx(0) is crucial in the context of the optimality of the solution of the HJB
equation. Indeed, if we choose vx(0) and it is too big, then v(x) and vx(x) go to infinity as x → ∞.
In fact, by (11) the discounted cumulative dividends go to 0 (see Table 2). This situation corresponds
to a bubble, meaning that the value of the company is not increased by the dividend payments and
we cannot derive an optimal solution.

When vx(0) is sufficiently large like Figure 2 shows, the function v(x) is concave and vx(x)
tends to 0 as x → ∞, allowing the cumulative discounted dividend payments to increase (see Table 1).

(a) Function v(x) (b) Function vx(x)

Figure 1. Functions v(x) and vx(x) for α = 0.5, β = 0.05, µ = 0.26, ξ = 0.4, λ = 0.1 and vx(0) = 2,
v(0) = 6.8.

Table 2. Functions v(x) and vx(x) for α = 0.5, β = 0.05, µ = 0.26, ξ = 0.4, λ = 0.1 and vx(0) = 2,
v(0) = 6.8.

x v(x) vx(x) c(x)

0 6.8000 2.0000 0.2500

1 9.4022 3.1941 0.0980

2 13.3275 4.7502 0.0443

3 19.1343 7.0039 0.0204

4 27.6771 10.2878 0.0094

5 40.2103 15.0801 0.0044

6 58.5692 22.0787 0.0021

7 85.4378 32.3029 0.0010

8 124.7394 47.2425 0.0004

9 182.2094 69.0750 0.0002

10 266.2320 100.9833 0.0001
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(a) Function v(x) (b) Function vx(x)

Figure 2. Functions v(x) and vx(x) for α = 0.5, β = 0.05, µ = 0.26, ξ = 0.4, λ = 0.1 and vx(0) = 1.9,
v(0) = 6.8021.

To find vx(0) we propose the following algorithm.

• Set initial value vx(0) =: b,
• From the equality (13) derive initial value v(0) = a;
• Solve numerically the differential Equation (12) with the initial condition v(0) = a;

• Calculate c(x) using c(x) = vx(x)−
1

1−α ;
• Using the least squares method, approximate c(x) be the linear function

ĉ(x) = a1x + b1. Because of our results from Theorem 2, we assume that ĉ(x) is
a linear function;

• Let x(t) be a trajectory of the regulated process starting from 0 until the first time
claim arrival T. Hence

µ − ĉ(x(t)) = x′(t), x(0) = 0, (27)

i.e.,

x(t) =
µ − b1

a1
− µ − b1

a1
e−a1t;

• Using the least squares method, approximate v(x) by a function of the form
v̂(x) = a2xα + b2. Because of our results from Theorem 2, we assume that v̂(x)
is a power function;

• Calculate

A = E
[
e−βT v̂(X(T)− S)

]
+E

[∫ T

0
e−βtU(ĉ(X(t))dt

]
, (28)

where T D
= Exp(λ), S D

= Exp(ξ).
• Calculate the value a − A;
• Repeat until |a − A| < ϵ for fixed ϵ > 0.

If we choose vx(0) =: b hence also v(0) = a correctly, then observing the regulated
process right after the first jump occurs, the left hand side A of (28) gives the true estimator
of v(0). Hence, A will approximate a. In practice, we should look for the correct a changing
vx(0) by some small fixed value d > 0 until |a − A| < ϵ for a prescribed precision ϵ.

We apply the above procedure in a ten points least square algorithm to the data
given in Figure 2. The results are described in the Figures 3 and 4 and the Table 3. At
the beginning, we chose d := 0.01. We notice that for b ≥ 1.97, we have a bubble. As
per Remark 2, we cannot derive an optimal solution. Thus, the values of b are not greater
than 1.97.

We start from the value 1.96 for b and observe the difference a − A . Then, we reduce
b by d. We noticed that the difference a − A is getting smaller as we are decreasing b. We
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stop the above procedure when b = 1.88 because then x(t) < 0 for t > 0. Similarly, we can
check that all the values of b less that 1.88 are too small. Then, successively, we decrease
d to 0.001 and then to d := 0.0001. By repeating the above procedure, we can find the
“correct” a. For example, if we choose ϵ = 0.01 then a = 6.800222221. Table 3 explains how
the algorithm works. It contains the results of each step of the loop of this algorithm until
ϵ = 0.005793808. Thus, the “correct” value of a is 6.804486491.

(a) Functions c(x) and ĉ(x) (b) Trajectory x(t)

Figure 3. Functions c(x), ĉ(x) and trajectory x(t) for α = 0.5, β = 0.05, µ = 0.26, ξ = 0.4, λ = 0.1 and
vx(0) = 1.9, v(0) = 6.8021.

Figure 4. Functions v(x) and v̂(x) for α = 0.5, β = 0.05, µ = 0.26, ξ = 0.4, λ = 0.1 and vx(0) = 1.9,
v(0) = 6.8021.

Let us recall that our main goal was to derive the asymptotic behavious of the value
function for large initial reserves x and to identify its corresponding optimal strategy. The
methodology was based on comparing the asymptotic behaviours of components of the
HJB equation. This approach produces a very simple solution that can be used instead of
numerically solving the HJB equation.
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Table 3. The values of initial conditions obtained from procedure of finding vx(0) (c. = correct, t.b. =
too big, t.s. = too small).

b

Correctness Value a A a − A

t.b. ≥1.97 - - -

c. 1.96 6.798693877 6.783185889 0.015507988

c. 1.95 6.798803418 6.784849201 0.013954217

c. 1.94 6.799092783 6.786580941 0.012511842

c. 1.93 6.799564767 6.788388955 0.011175812

c. 1.92 6.800222221 6.790283409 0.009938812

c. 1.91 6.801068062 6.792277924 0.008790138

c. 1.90 6.802105263 6.794392618 0.007712645

c. 1.89 6.803336861 6.796662198 0.006674663

t.s. 1.88 - - -

t.s. 1.881 - - -

c. 1.882 6.804464186 6.798652236 0.005811950

c. 1.8819 6.804479085 6.798679195 0.005799890

t.s. 1.8818 - - -

t.s. ... - - -

t.s. 1.88185 - - -

c. 1.88186 6.804485051 6.798690050 0.005795001

c. 1.881859 6.804485199 6.798690322 0.005794877

c. 1.881858 6.804485348 6.798690594 0.005794754

c. 1.881857 6.804485498 6.798690867 0.005794631

c. 1.881856 6.804485647 6.798691139 0.005794508

c. 1.881855 6.804485795 6.798691412 0.005794383

c. 1.881854 6.804485945 6.798691685 0.005794260

c. 1.881853 6.804486095 6.798691958 0.005794137

c. 1.881852 6.804486243 6.798692231 0.005794012

c. 1.881851 6.804486392 6.798692504 0.005793888

t.s. 1.881850 - - -

t.s. ... - - -

t.s. 1.8818503 - - -

c. 1.8818504 6.804486482 6.798692667 0.005793815

c. 1.88185039 6.804486484 6.798692671 0.005793813

c. 1.88185038 6.804486485 6.798692673 0.005793812

c. 1.88185037 6.804486486 6.798692675 0.005793811

c. 1.88185036 6.804486488 6.798692679 0.005793809

c. 1.88185035 6.804486489 6.798692681 0.005793808

t.s. 1.88185034 - - -

t.s. 1.881850341 - - -

c. 1.881850342 6.804486491 6.798692684 0.005793807
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Still, to compare the asymptotics with the exact values of the value function, we
propose a numerical algorithm for solving HJB equations. Using it, we can observe that
the asymptotic values are very close to the true ones. In particular, Figure 3 shows that the
optimal strategy of paying dividends with intensity dt = c(Xt) in the case of the power-
type utility function is asymptotically linear as (18) suggests. What is interesting, it that
this is true even for small values of reserves (starting from x = 4). We have observed that
this is true for other sets of parameters, which is very promising.
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Appendix A. Proof of Theorem 2

Proof. When α =
p
q

, the Equation (14) has the following form:

µyvy + (ξµ − β − λ)y − ξβv + ξ
q − p

p
y

p
p−q − y

p
p−q yv = 0.

If we make the substitution z = y
1

p−q , then zv = 1
p−q yvzzq−p, and furthermore

(ξµ − β − λ)z − ξβvzq−p+1 + ξ
q − p

p
zq+1 − zv(q − p)

(
µzp−q − zp) = 0.

If we multiply both sides of the equation by zq−p, we obtain

(ξµ− β−λ)zq−p+1 − ξβvz2q−2p+1 + ξ
q − p

p
z2q−p+1 − (q − p)µzv − (p − q)zqzv = 0, (A1)

specifically, an equation of the form

P(v, z)− zvQ(v, z) = 0, (A2)

where P, Q are polynomials in v and z. Recall that, from (9), v → ∞. Any term on the
left-hand side of (A2) is of the form zmam(v) or zvznan(v). Marić (1972) proved that if two
functions am, an ∈ H (where H denote the class of Hardy functions) then the set of all terms
on the left-hand side of Equation (A2) is totally ordered with respect to the relation ⪰,
where a ⪰ b, for v → ∞ means that either a

b → ∞ or a
b → l( ̸= 0) as v → ∞. In other words,

heuristically, we can order all terms (which are functions of v) according to the speed that
they tends to infinity as v → ∞. (Marić 1972, p. 195) shows that in this set exist two terms
of the same order; namely, their quotient tends to a finite limit l ̸= 0 for v → ∞. Using this
result, we can derive the asymptotic behaviour of the solutions of Equation (A2).

Firstly, note that z → ∞. Because of that, we note that in the Equation (A1), the term
(q − p)µzv is of a smaller order than the other terms, which contain zv. Similarly, the term
(ξµ − β − λ)zq−p+1 has a smaller order than the other terms of Equation (A1), which do
not contain zv. Since we know that there exists two terms of the Equation (A1) of the same
order, we have three possibilities to produce the asymptotic behaviour of a solution v of
the Equation (A1):

(a) ξβvz2q−2p+1 and ξ
q−p

p z2q−p+1;
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(b) ξ
q−p

p z2q−p+1 and (p − q)zqzv;

(c) ξβvz2q−2p+1 and (q − p)zqzv.

Lemma A1. Only the case (a) above produces a feasible asymptotic behaviour.

Proof. Note that in case (a), both terms have the same order. Indeed, let

lim
v→∞

ξβvz2q−2p+1

ξ
q−p

p z2q−p+1
= l( ̸= 0).

Denote
ξβvz2q−2p+1

ξ
q−p

p z2q−p+1
= g(v),

where limv→∞ g(v) = l, which reduces to

z−p(v) =
q − p

βp
v−1g(v).

Since g(v) ∼ l, this becomes

z(v) ∼
(

βp
l(q − p)

) 1
p
v

1
p , v → ∞.

Placing the above asymptotics into Equation (A1) and dividing by v
2q−p+1

p gives l = 1.
Finally, we obtain the following asymptotics of z(v):

z(v) ∼
(

βp
q − p

) 1
p
v

1
p , v → ∞. (A3)

Obviously, in this case z → ∞ for v → ∞, as required.
Similarly, in case (b), we have

lim
v→∞

(p − q)zqzv

ξ
q−p

p z2q−p+1
= l( ̸= 0).

Following the same steps as in case (a), let

(p − q)zqzv

ξ
q−p

p z2q−p+1
= g(v),

where limv→∞ g(v) = l( ̸= 0). This reduces to

z−q+p−1zv = − ξ

p
g(v),

which after integration becomes

z−q+p(v) =
ξ(q − p)

p

∫ v

0
g(s)ds.

From Karamata Theorem (see (Goldie et al. 1989, Prop. 1.5.8))
∫ v

0 g(s)ds ∼ lv, leading to

z(v) ∼
(

lξ(q − p)
p

) 1
p−q

v
1

p−q ,
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for v → ∞. However, for p − q < 0, we have z → 0 as v → ∞, which contradicts the
assumption that z → ∞ for v → ∞. Thus, this is not acceptable.

In case (c), we have

lim
v→∞

(q − p)zqzv

ξβvz2q−2p+1 = l( ̸= 0).

Introducing

g(v) =
(q − p)zqzv

ξβvz2q−2p+1 ∼ l( ̸= 0),

as v → ∞, this simplifies into

z2p−q−1zv =
g(v)ξβ

q − p
v. (A4)

We will distinguish two cases. Using the same arguments as before, with respect to
Karamata arguments given in Goldie et al. (1989), for v → ∞, we encounter two possible
asymptotics:

I. If q ̸= 2p, then, via the separation of variables, we have

z(v) ∼
(

lξβ(2p − q)
q − p

) 1
2p−q

(
v2

2
+ c

) 1
2p−q

.

II. If q = 2p, then a simple integration leads to

z(v) ∼ e
lξβ
p

(
v2
2 +c

)
.

In both of the above cases, c is a constant and its appearance is a consequence of the lack
of uniqueness of the solutions of Equation (A4) due to the lack of sufficient boundary
conditions for z.

Note that in the first case, the asymptotics of z makes sense only if q < 2p because
otherwise z → 0 for v → ∞, leading to a contradiction. In both cases, after substituting
the above asymptotics into Equation (A1), the term including ξ

q−p
p z2q−p+1 dominates any

other term. Dividing both sides of Equation (A1) by this asymptotically dominant element
leads to the false identity 1 ∼ 0.

We continue the proof of Theorem 2. From Lemma A1, the asymptotic solution of z is
given by (A3). When substituting y = zp−q, the asymptotic behavior of y(v) is given by

y(v) ∼
(

βp
q − p

) p−q
p

v
p−q

p ,

which, for α = p
q , is equivalent to

y(v) ∼
(

1 − α

αβ

) 1−α
α

v
−(1−α)

α .

Recall that y(v(x)) = vx(x). Hence

vx(x) ∼
(

1 − α

αβ

) 1−α
α

v(x)
−(1−α)

α ,

We can now solve (via a separation of variables) the equation

fx(x) =
(

1 − α

αβ

) 1−α
α

f (x)
−(1−α)

α
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deriving f (x) =
(

1−α
β

)1−α (x+c)α

α for any constant c. Applying classical Karamata’s ar-
guments leads to f (x) ∼ v(x), as x → ∞. This produces (16). Using (11) completes the
proof.

Appendix B. Proof of Theorem 3

Proof. We use similar arguments as in the proof of Theorem 2. In fact, one can derive (A2),
with the main difference that terms of the form vm ln v and vn will appear in the expressions
of P and Q. To satisfy the eliminating procedure given by (Marić 1972, Eq. (3.3)), we mimic
all the arguments from Marić (1972) . Thus, one can conclude that also in the case of the
logarithmic utility function there exists two of the terms of the Equation (23) of the same
order. Now, note that in the Equation (23), the term (µ + 1)yyv is of a smaller order than yv.
Similarly, the term (ξµ + ξ − β − λ)y is of a smaller order than the other elements, which
do not contain yv. We then have three possibilities:

(a) yv and ξβv + ξ;
(b) yv and ξ ln y;
(c) ξβv + ξ and ξ ln y.

In case (a)
lim

v→∞

yv

ξβv + ξ
= l( ̸= 0),

gives

y(v) ∼ lξβ
v2

2
+ lξv + c.

When v → ∞, y → ±∞, thus contradicting Lemma 1 (y → 0 when v → ∞).
In case (b) we have

lim
v→∞

yv

ξ ln y
= l( ̸= 0).

Let
g(v) =

yv

ξ ln y
,

with limv→∞ g(v) = l( ̸= 0). This is equivalent to

ξg(v) =
yv

ln y
,

which after integration from 0 to v, leads to

ξ
∫ v

0
g(s)ds =

∫ v

0

ys

ln y
ds,

namely

ξ
∫ v

0
g(s)ds =

v
ln v

+
v

(ln v)2 + 2
∫ v

0

1
(ln y)3 ds.

Using the direct half of Karamata Theorem (see (Goldie et al. 1989, Prop. 1.5.8)), we have
that as v → ∞,

ξvl ∼ v
ln v

+
v

(ln v)2 + 2
∫ v

0

1
(ln y)3 ds,

equivalent to

ξl ∼ 1
ln v

+
1

(ln v)2 +
2
v

∫ v

0

1
(ln y)3 ds. (A5)

Thus, we obtain a contradiction, since the right hand side converges to zero as v → ∞,
whereas the left hand side converges to ξl ̸= 0..

In case (c), we have

lim
v→∞

ξβv + ξ

ξ ln y
= l( ̸= 0),
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leading to

y(v) ∼ e
β
l v+ 1

l , v → ∞. (A6)

The above asymptotic behaviour makes sense only for l < 0, because otherwise y → ∞
when v → ∞. Substituting (A6) into (23) gives l = −1. Hence

y(v) ∼ e−βv−1, v → ∞.

Recall that y(v) = vx(x). Thus, v ∼ a with a solving the equation

ax(x) = e−βa(x)−1.

This gives

v(x) ∼ 1
β
(ln(β(x + C))− 1).

Deriving (25) and (26) is thus straightforward.
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