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Abstract: This paper discusses the generalized Black-Scholes-Merton model, where the volatility
coefficient, the drift coefficient of stocks, and the interest rate are time-dependent deterministic
functions. Together with it, we make the assumption that the volatility, the drift, and the interest rate
depend on a gamma or inverse-gamma random variable. This model includes the models of skew
Student’s t- and variance-gamma-distributed stock log-returns. The price of the European forward-
start call option is derived from the considered models in closed form. The obtained formulas are
compared with the Black-Scholes formula through examples.
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1. Introduction

The standard Black-Scholes-Merton model (see Black and Scholes 1973; Merton 1973)
assumes that the volatility coefficient is constant over the contract time. However, when
the parameters of the model are calibrated with respect to the market option prices, one
may find out that the volatility is a function of the exercise time and the strike coefficient.
The dependence curve of the implied volatility of stock prices has the form of a convex
function. This effect is called the “volatility smile”. Taking it into account, Merton (1973)
proposed to regard the drift and the volatility coefficients as functions of time. The problem
of detecting the term structure of volatility is widely discussed in the literature.

Derman and Kani (1994) and Dupire (1994) suggested a general diffusion model for
volatility under the hypothesis that it is a function of state and time. This model is called
the local volatility model. Its multidimensional extensions were introduced and considered
in the papers by Brigo and Mercurio (2002) and Brigo et al. (2003). Results in the local
volatility model that are close to the Black-Scholes formula are given in the monograph by
Oksendal (2003).

Diffusion stochastic volatility models infer that the stock price and the volatility
coefficient are driven by correlated Brownian motions. A survey of the early papers in
this direction is given in Section 7.4.2 of the monograph by Musiela and Rutkowski (2005).
Among more recent papers, let us mention those where combined models are considered.
The Heston-Hull-White models are studied by Grzelak and Oosterlee (2011), Levendis and
Maré (2022) and Liu et al. (2023). The Heston-Cox-Ingersoll-Ross model is discussed in
Cao et al. (2016) and Mao et al. (2022).

Modern research uncovers a more complicated term structure for volatility. Non-
parametric methods of volatility assessment are given in Alghalith et al. (2020), Cuchiero et al.
(2020), and Liu et al. (2019) (neural network estimation). The fat-tailedness of the volatility
is detected by Mahieu and Schotman (1998) and Kim et al. (1998). Jumps of finite activity
of the stock and the stock index volatilities are discovered by Bates (1996), Andersen et al.
(2007), Eraker et al. (2003), Taylor et al. (2018). The stochastic volatility modeled by the
inverse-gamma distribution is investigated in Nakajima and Omori (2012), Liu (2021) and
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Men et al. (2021). Nakakita and Nakatsuma (2021) modeled the stochastic volatility by
the both gamma and inverse-gamma distributions. Processes with Lévy jumps of infinite
activity are used for the stochastic volatility modeling as well. Namely, the gamma process
is considered in this direction by Nzokem (2023). The parameters of the distributions are
estimated in these papers for a variety of financial indices using the maximum likelihood
technique and the methods of Bayesian statistics.

Together with the volatility coefficient, the Black-Scholes-Merton model implies that
the drift coefficient of the stock log-return is also constant. However, the financial data
often suggests the presence of jumps in the log-return. Andersen et al. (2001) include in the
model of stock log-returns jumps of the general form. Several sources discuss Lévy’s jumps
of finite activity. Shackleton et al. (2010) and Hong et al. (2023) augment the Heston and
the lognormal Ho-Lee models with compound Poisson jumps. Chib et al. (2002) discuss
stochastic volatility models with jumps whose distribution is generated by the Bernoulli
distribution. Nakajima and Omori (2012) and Nakakita and Nakatsuma (2021) study the
skew Student’s t-distribution as a model for stock prices. Being the normal-inverse mixture
with the inverse-gamma mixing density, the skew Student’s t-distribution has the stochastic
mean, which is modeled by the inverse-gamma distribution.

Moreover, processes with jumps of infinite activity are also discussed for asset drift
modeling. The skew Student’s t-process is investigated as a model for financial index
dynamics in the form of subordinated Brownian motion with drift by Aas and Haff (2006),
Bibby and Sørensen (2003), Finlay and Seneta (2006), and Finlay and Seneta (2008). Aas
and Haff (2006) study the asymptotic properties of the skew Student’s t-distribution and
estimate its parameters in their application to currency exchange rate modeling. Bibby and
Sørensen (2003) compare the properties of various generalized hyperbolic distributions,
including the skew Student one, and propose again that the skew Student’s t-process is
a good fit for the exchange rate simulation. Finlay and Seneta (2006) approve the skew
Student’s t-process for the modeling of the S&P500 data. Finlay and Seneta (2008) develop
different techniques for parameter estimation in the skew Student’s t-model and discuss
the modeling of the S&P500 index and the oil prices. The variance-gamma process (the
variance-gamma distribution is the normal-inverse mixture with the gamma mixing density,
and hence the variance-gamma process has the stochastic drift modeled by the gamma
process) is considered in Madan et al. (1998), Seneta (2004), Daal and Madan (2005), Ivanov
(2018), Ivanov (2022), Linders and Stassen (2016), and Mozumder et al. (2015), among others.
Madan et al. (1998) summarize the basic properties of the variance-gamma distribution
and suggest the method of receiving analytical results in the variance-gamma model. Daal
and Madan (2005) confirm the use of the variance-gamma model for the exchange rate
simulation. Linders and Stassen (2016) model with the variance-gamma process the Dow
Jones index dynamics. Mozumder et al. (2015) study the S&P500 index options in the
variance-gamma model. Ivanov (2022) proceeds from the ideas of Madan et al. (1998) and
obtains closed-form results for an extension of the variance-gamma model.

The model of this paper relates to the generalized Black-Scholes-Merton model of
Section 7.1.10 of Musiela and Rutkowski (2005) and Chapter 12.3 of Oksendal (2003). We
assume that the drift and volatility of the stock depend on the gamma or the inverse-gamma
distribution, which are independent of the Brownian motion. It appears that it is possible
in this model to obtain the price of a forward-start call option in closed form. We exploit
the methodology of integral transformations of special functions in their application to
mathematical finance, which was introduced in Madan et al. (1998) and then developed in
particular in Ano and Ivanov (2016). A comparison of the results with the Black-Scholes
formula is given in the section on numerical examples.

2. Materials and Methods

In this section, we present a mathematical model in which we formulate our results.
Together with it, necessary definitions and a theoretical background are given. Used
designations are also included.
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2.1. Model

Throughout the paper, we designate as (St)t≤T and (Rt)t≤T the stock price and the
bank account value dynamics over a period of time [0, T]. Set 0 ≤ T0 < T. A forward-start
option (see Section 6.2 of the monograph by Musiela and Rutkowski (2005)) is a contract in
which the holder receives at time T0 an option with expiry date T and exercise price KST0

with some strike coefficient K > 0. On the other hand, the holder must pay at time 0 an
up-front fee, the price of the option. Thus, a forward-start call option has payoffs.

(ST − KST0)
+

at the maturity T.
Next, we give a mathematical specification of the discussed model. Let

(
Ω,F , (Ft)t≤T , P

)
be the probability space with filtration (Ft)t≤T . We assume that the Brownian motion
(Bt)t≤T , B0 = 0, and the random variable z are defined on this probability space and the
both processes (Bt)t≤T and (zt)t≤T with

zt = I{t<t0} + zI{t≥t0}, t0 ≥ 0, (1)

are adapted to the filtration (Ft)t≤T . It is supposed that the processes are independent with
each other.

If t0 = 0, the additional uncertainty that is generated by the random variable z relates
to the “volatility smile” effect. When t0 > 0, the additional uncertainty appears because
of supplemental factors. There can be the economic annual reporting, the political shifts,
the microeconomic merger decisions among those factors. Then t0 is suggested to be
larger than the expected time of the factor forthcoming. If, for example, we discuss the
annual reporting factor, it is obviously fair to assume that the time t0 is not random but
actually fixed.

The generalized Black-Scholes-Merton model implies that the stock volatility is ran-
dom and even not necessarily adapted to the filtration generated by the underlying Brown-
ian motion (see Section 7.1.10 of Musiela and Rutkowski (2005)). We consider the gener-
alized Black-Scholes-Merton model under the assumption that the logarithm of the stock
price (St)t≤T follows an equation.

log(St/S0) =
∫ t

0
µ̃sds +

∫ t

0
θ̃szsds +

∫ t

0
σ̃s
√

zsdBs, (2)

where (µ̃t)t≤T , (θ̃t)t≤T and (σ̃t)t≤T are time-dependent deterministic processes and σ̃t > 0.
From the economic point of view, the independence between zt and Bt relates to the
situation when the volatility randomness is induced by macroeconomic factors which are
independent with the firm microstructure development.

The logarithm of the bank account value is suggested to evaluate via an equation

log Rt =
∫ t

0
r̃sds +

∫ t

0
ρ̃szsds (3)

with time-dependent deterministic (r̃t)t≤T , r̃t ≥ 0, and (ρ̃t)t≤T , ρ̃t ≥ 0. The new terms
after the time t0 take into account both the ordinary Black-Merton-Scholes uncertainty and
the supplemental uncertainty, which is indicated by the random variable z. The model
concerns a the small or average additional indeterminacy of financial markets.

Let the initial probability measure P be a martingale measure for the discounted stock
price process (St/Rt)t≤T . That is, we assume that

µ̃t + θ̃t = r̃t + ρ̃t −
σ̃2

t
2

, t ≥ 0, (4)
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and additionally

µ̃t = r̃t, θ̃t = ρ̃t −
σ̃2

t
2

, t ≥ t0. (5)

Indeed, then

St/Rt = S0 exp
(∫ t

0
σ̃s
√

zsdBs −
1
2

∫ t

0
σ̃2

s zsds
)

and hence the martingale property is satisfied. The problem of equivalent martingale
change of measure for semimartingales is widely discussed in the literature. We refer, in
particular, to Subsection III.3 of the monograph by Jacod and Shiryaev (1987) and to the
papers by Kallsen and Shiryaev (2002) and Eberlein et al. (2009).

Example 1. If we set t0 = ∞, then the model (2) and (3) becomes the diffusion Black-Scholes-
Merton model (see Chapter 12.3 of Oksendal (2003) and Chapter VIII.1 of Shiryaev (1999)) with

log
(

SBS
t /SBS

0

)
=
∫ t

0

(
µ̃s + θ̃s

)
ds +

∫ t

0
σ̃sdBs (6)

and

log RBS
t =

∫ t

0
(r̃s + ρ̃s)ds. (7)

Example 2. Let t0 = 0. Then

log(S1/S0) =
∫ 1

0
µ̃sds + z

∫ 1

0
θ̃sds +

√
z
∫ 1

0
σ̃sdBs (8)

and therefore the model (2) can be discussed as an extension of the variance-gamma and the skew
Student’s t-models in the sense of the stock log-return behavior. Indeed, if we set µ̃t ≡ µ, θ̃t ≡ θ
and σ̃t ≡ σ in (8), then

log(S1/S0) = µ + θz + σ
√

zN, (9)

where N = N(0, 1) is the standard normal random variable. Hence the log-return (9) is variance-
gamma distributed if z is gamma distributed and skew Student’s t-distributed if z is inverse-gamma
distributed.

Due to the initial probability measure is assumed to be martingale for the discounted
stock price, the risk-neutral forward-start call option price CFS can be computed as

CFS = E
(

R−1
T (ST − KST0)

+
)

.

We use in the subsequent sections the designations SG
t and SIG

t for the stock prices in the
gamma and inverse-gamma models. If T0 = 0, then a forward-start call option becomes a
standard European call one with the price

C = E
(

R−1
T (ST − KS0)

+
)

.

2.2. Special Functions

Let us define a complementary function I = I(a, b, u1, u2, u3) for a > 0, b > 0,
u1, u2, u3 ∈ R by the identity



Risks 2023, 11, 111 5 of 23

I(a, b, u1, u2, u3) =
Γ
(

a + 1
2

)
√

2π(b + u1)a

[
B
(

1
2 , a
)

√
2

+

+
u2√

b + u1
F

(
a +

1
2

,
1
2

,
3
2

;−
u2

2
2(b + u1)

)]
I{u3=0}+

+
|s|a− 1

2 es(1 + q)a
√

2π(b + u1)a

[
B(a, 1)

(
|s|Ka+ 1

2
(|s|) + sKa− 1

2
(|s|)

)
×

×Φ1

(
a, 1− a, a + 1;

1 + q
2

,−s(1 + q)
)
− (1 + q)sB(a + 1, 1)×

×Ka− 1
2
(|s|)Φ1

(
a + 1, 1− a, a + 2;

1 + q
2

,−s(1 + q)
)]

I{u3 6=0} (10)

with

q = q(u1, u2) =
u2√

u2
2 + 2(b + u1)

and

s = s(u1, u2, u3) = u3

√
u2

2 + 2(b + u1).

As it is shown further in the paper, this function determines the forward-start option price
in the both gamma and inverse-gamma volatility models. In (10), we denote as

Γ(u), B(u1, u2), Ku1(u2)

the gamma function, the beta function and the MacDonald function (the modified Bessel
function of the second kind), respectively. Furthermore, we use in (10) the designation

F(u1, u2, u3; u4)

for the hypergeometric Gauss function and the denotation

Φ1(u1, u2, u3; u4, u5)

for the degenerate Appell function (or the Humbert series) which is the double sum

∞

∑
m=0

∞

∑
n=0

(u1)m+n(u2)m

m!n!(u3)m+n
um

4 un
5

for |u4| < 1, where (u)l , l ∈ N∪ {0}, is the Pochhammer’s symbol. For more information
on these special mathematical functions and their integral representations we refer to
the monographs by Bateman and Erdélyi (1953), Srivastava and Karlsson (1985) and the
handbooks by Erdélyi et al. (1954), Gradshteyn and Ryzhik (2007).

Together with it, we set the deterministic functions c1, c2, c3, c4 by the identities

c1 = c1(T0) =

∫ T
T0

(
σ̃2

s
2 + ρ̃s

)
ds√∫ T

T0
σ̃2

s ds
, (11)
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c2 = c2(T0) =

∫ T
T0

r̃sds− log K√∫ T
T0

σ̃2
s ds

, (12)

c3 = c3(T0) =

∫ T
T0

(
ρ̃s − σ̃2

s
2

)
ds√∫ T

T0
σ̃2

s ds
, (13)

c4 = c4(T0) =
∫ T

T0

ρ̃sds, (14)

c5 = c5(T0) =
1
2

√∫ T

T0

σ̃2
s ds. (15)

3. Results

The two subsections below introduce formulas for the prices of forward-start European
call options in the models with gamma and inverse-gamma volatilities. As corollaries, the
prices of standard European calls are derived. The prices of the related put options could
be computed via the call-put parity. For details, see Eberlein et al. (2008) and Herdegen
and Schweizer (2018).

3.1. Gamma Volatility

It is assumed throughout this subsection that the random variable z in (1) is gamma
distributed, that is z = γ = γ(a, b), where the parameters a > 0 and b > 0. The properties
of gamma distribution are considered in the Section 5.3.3 of the monograph by Schoutens
(2003) and in the papers by Madan et al. (1998), Rathgeber et al. (2016), among others. The
gamma distribution has the probability density function

fγ(x) =
baxa−1e−bx

Γ(a)
, x > 0. (16)

The characteristic function of the gamma random variable is

ϕγ(u) = Eeiuγ =

(
b

b− iu

)a
. (17)

It has the mean and the variance

Eγ =
a
b

and Vγ = E(γ− Eγ)2 =
a
b2 , (18)

respectively.
The next theorem gives us the price of the European forward-start call option in the

gamma volatility model.

Theorem 1. Assume that T0 ≥ t0. Then the forward-start call option price in the gamma model

CFS
G = (19)

=
S0ba

Γ(a)

(
I(a, b, 0, c1, c2)− K exp

(
−
∫ T

T0

r̃sds
)
I(a, b, c4, c3, c2)

)
,

where the function I is defined in (10) and c1, c2, c3, c4 are set by (11), (12), (13), (14), respectively.

Remark 1. In the classical Black-Scholes-Merton framework, the forward-start call option price is
computed through the conditional expectation with respect to ST0 , that is
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CFS
BS = R−1

T E
(
ST − KST0

)+
= R−1

T E
(

E
[(

ST − KST0

)+|ST0

])
=

=
RT0

RT
E

(
ST0

RT0

E

[(
ST
ST0

− K
)+∣∣∣ST0

])
= S0RT−T0E

(
ST−T0 − K

)+
since STS−1

T0
and ST0 are independent with each other, where

RT−T0E
(
ST−T0 − K

)+
is again a Black-Scholes price. If T0 > t0, then this direct approach does not work in our model
because of STS−1

T0
and ST0 both depend on z. Hence we pass to the conditional expectations with

respect to z in the proof of Theorem, see (A2) in Appendix A.

As a straightforward corollary of Theorem 1, we get the standard European call price.

Corollary 1. Let r̃t ≡ r, ρ̃t ≡ ρ, σ̃t ≡ σ. Then the standard European call price in the gamma
model

CG =
S0ba

Γ(a)

(
I(a, b, 0, c1, c2)− KerTI(a, b, c4, c3, c2)

)
(20)

with
c1 =

( ρ

σ
+

σ

2

)√
T, c2 =

rT − log K
σ
√

T
,

c3 =
( ρ

σ
− σ

2

)√
T, c4 = ρT.

3.2. Inverse Gamma Volatility

We suggest in this subsection that z in (1) has the inverse-gamma distribution
ς = ς(a, b), a > 0, b > 0. This distribution may be used, in particular, for the modeling of
the skew Student’s t-distribution through a normal mean-variance mixture (see McNeil et
al. (2005)). The probability density function of the inverse-gamma distribution is

fς(x) =
ba

Γ(a)
x−a−1e−

b
x , x > 0. (21)

with a, b > 0. It has the characteristic function (see, for example, Witkovský (2001))

ϕς(u) =
2(−iub)

a
2

Γ(a)
Ka

(
2
√
−iub

)
. (22)

The inverse-gamma distribution has the mean

Eς =
b

a− 1
I{a>1} + ∞I{a≤1} (23)

and the variance

Vς =
b2

(a− 1)2(a− 2)
I{a>2} + ∞I{a≤2}. (24)

The next theorem computes the forward-start call option price in the model with
inverse-gamma volatility.

Theorem 2. Let T0 ≥ t0 and ρ̃t ≡ 0 for t ≥ T0. Then the forward-start call option price in the
inverse-gamma model
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CFS
IG = (25)

=
S0ba

Γ(a)

(
I(a, b, 0, c2, c5)− K exp

(
−
∫ T

T0

r̃sds
)
I(a, b, 0, c2,−c5)

)
,

where I, c2 and c5 are defined in (10), (12) and (15).

A corollary below determines the standard European call price.

Corollary 2. Assume that r̃t ≡ r, σ̃t ≡ σ. Then the standard European call price in the inverse-
gamma model

CIG =
S0ba

Γ(a)

(
I(a, b, 0, c2, c5)− Ke−rTI(a, b, 0, c2,−c5)

)
(26)

with

c2 =
rT − log K

σ
√

T
, c5 =

σ
√

T
2

.

3.3. Discussion

We have established the new analytical expressions that give us the formulas for the
forward-start call option prices in the generalized Black-Scholes-Merton model, additionally
driven by the gamma and the inverse-gamma distributions. These distributions are widely
regarded in the literature for their aim of modeling different financial indices. One may
mention the papers by Luciano and Schoutens (2016), Moosbrucker (2006), Wallmeier and
Diethelm (2012), Göncü et al. (2016) on exploiting the gamma distribution, and the works
by Fung and Seneta (2010), Takahashi et al. (2021), and Nakajima (2020) on using the
inverse-gamma one in the stock market simulation.

The considered models extend the generalized Black-Scholes-Merton, the variance-
gamma and the skew Student’s t-models. The obtained formulas depend on the values of
special mathematical functions but can be computed over 0.5 s on modern software. The
prices of forward-start put options can be calculated by exploiting the duality principle
(Eberlein et al. 2008; Herdegen and Schweizer 2018). Future research may relate to the
computation of the prices of exotic stock options and options on bonds in the discussed
models. Furthermore, developments of these models based on the assumption of the linear
drift jump (see Ivanov 2022) could be considered. Since the Bermudan options can be
viewed as a spread of the forward-start contracts (see Schweizer 2002), the results of the
paper may be used for the American-style options pricing as well.

4. Numerical Examples

In this section, we compare the prices of standard European call options in the models
with the gamma and the inverse-gamma volatilities with the Black-Scholes formula. The
idea is to pick the parameters of the gamma and the inverse-gamma distributions so that
they even out the maximal number of the characteristics of the underlying processes. In
fact, it has become possible to get the identities

ESIG
t = ESG

t = ESBS
t ,

E
(

log SIG
t

)
= E

(
log SG

t

)
= E

(
log SBS

t

)
and

V
(

log SG
t

)
= V

(
log SBS

t

)
.

Furthermore, the parameters of the distributions are suggested, and the option prices are
computed for the three models in separate subsections.
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4.1. Black-Scholes Price

We discuss in this subsection the Black-Scholes-Merton model (6) and (7) under the
condition (4) assuming that SBS

0 = 1, r̃t = ρ̃t ≡ 0 and σ̃t ≡ 1. Then

log SBS
t = Bt −

t
2

(27)

and the variance of the stock price

VSBS
t = E

(
SBS

t

)2
− 1 = et − 1.

The logarithm of the stock price (27) has the mean

E
(

log SBS
t

)
= − t

2
(28)

and the variance

V
(

log SBS
t

)
= t. (29)

Let T0 = 0 and T = 1. Then the standard European call option price is

CBS = E
(

SBS
1 − K

)+
= N

(
1
2
− log K

)
− KN

(
−1

2
− log K

)
, (30)

where N(u) is the normal distribution function.

4.2. Gamma Volatility Price

It is assumed that in the gamma volatility model of Section 3.1 SG
0 = 1, r̃t = ρ̃t ≡ 0

and σ̃t ≡ 1. Then we have that

log SG
t =
√

γBt −
γt
2

in this case and

VSG
t = Eeγt − 1 =

((
b

b− t

)a
− 1
)

I{t<b} + ∞I{t≥b}

from (17). The logarithm of the stock price has the mean

E
(

log SG
t

)
= − tEγ

2
= − at

2b
(31)

and the variance

V
(

log SG
t

)
= E

(√
γBt −

γt
2

)2
− a2t2

4b2 =
at
b
+

t2Eγ2

4
− a2t2

4b2 =
at
b
+

t2a
4b2

in point of (18). We have that
ESG

t = ESBS
t = 1

and if we set a = b = 1, then it follows from (28) and (31) that

E
(

log SG
t

)
= E

(
log SBS

t

)
= − t

2
.

Let t0 = T0 = 0 and T = 1. Then according to (20)

CG = I(a, b, 0, c1, c2)− KI(a, b, 0, c3, c2)
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with c1 = 1
2 , c2 = − log K, c3 = − 1

2 . Since a = b = 1, we get that

CG = I

(
1, 1, 0,

1
2

,−k
)
− KI

(
1, 1, 0,−1

2
,−k

)
, (32)

where k = log K.
It follows immediately from (10) that

I

(
1, 1, 0,

1
2

,−k
)
=

Γ
( 3

2
)

√
2π

B
(

1
2 , 1
)

√
2

+
1
2

F
(

3
2

,
1
2

,
3
2

;−1
8

)I{K=1}+

+
|s| 12 es(1 + q)√

2π

[
B(1, 1)

(
|s|K 3

2
(|s|) + sK 1

2
(|s|)

)
×

×Φ
(

1, 0, 2;
1 + q

2
,−s(1 + q)

)
− (1 + q)sB(2, 1)×

×K 1
2
(|s|)Φ

(
2, 0, 3;

1 + q
2

,−s(1 + q)
)]

I{K 6=1} (33)

with

q =
c1√

c2
1 + 2

=
1
3

and s = c2

√
c2

1 + 2 = −3k
2

and

I

(
1, 1, 0,−1

2
,−k

)
=

Γ
( 3

2
)

√
2π

B
(

1
2 , 1
)

√
2
− 1

2
F
(

3
2

,
1
2

,
3
2

;−1
8

)I{K=1}+

+
|s| 12 es(1 + q)√

2π

[
B(1, 1)

(
|s|K 3

2
(|s|) + sK 1

2
(|s|)

)
×

×Φ
(

1, 0, 2;
1 + q

2
,−s(1 + q)

)
− (1 + q)sB(2, 1)×

×K 1
2
(|s|)Φ

(
2, 0, 3;

1 + q
2

,−s(1 + q)
)]

I{K 6=1} (34)

with

q =
c3√

c2
3 + 2

= −1
3

and s = c2

√
c2

3 + 2 = −3k
2

.

We get from (33) that

I

(
1, 1, 0,

1
2

,−k
)
=

(
1
2
+

1
4
√

2
F
(

3
2

,
1
2

,
3
2

;−1
8

))
I{K=1}+

+
|k| 12
√

3

K
3
2
√

π

[{
|k|K 3

2

(
3|k|

2

)
− kK 1

2

(
3|k|

2

)}
Φ
(

1, 0, 2;
2
3

, 2k
)
+

+
2k
3

K 1
2

(
3|k|

2

)
Φ
(

2, 0, 3;
2
3

, 2k
)]

I{K 6=1}

and from (34) that
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I

(
1, 1, 0,−1

2
,−k

)
=

(
1
2
− 1

4
√

2
F
(

3
2

,
1
2

,
3
2

;−1
8

))
I{K=1}+

+
|k| 12
√

3

2K
3
2
√

π

[{
|k|K 3

2

(
3|k|

2

)
− kK 1

2

(
3|k|

2

)}
Φ
(

1, 0, 2;
1
3

, k
)
+

+
k
3

K 1
2

(
3|k|

2

)
Φ
(

2, 0, 3;
1
3

, k
)]

I{K 6=1}.

Since

Φ(u1, u2, u3; u4, u5) = (35)

=
1

B(u1, u3 − u1)

∫ 1

0
xu1−1(1− x)u3−u1−1(1− u4x)−u2 eu4xdx

for u1 > 0, u3 > u1 and u4 < 1 according to formula 4.3.24 of Erdélyi et al. (1954), we
get that

Φ(1, 0, 2; A, B) = J0(B)

and

Φ(2, 0, 3; A, B) = 2J1(B),

where

J0(B) =
∫ 1

0
eBxdx and J1(B) =

∫ 1

0
xeBxdx.

Hence we obtain that

I

(
1, 1, 0,

1
2

,−k
)
= (36)

=

(
1
2
+

1
4
√

2
F
(

3
2

,
1
2

,
3
2

;−1
8

))
I{K=1} +

|k| 12
√

3

K
3
2
√

π
×

×
[{
|k|K 3

2

(
3|k|

2

)
− kK 1

2

(
3|k|

2

)}
J0(2k) +

4k
3

K 1
2

(
3|k|

2

)
J1(2k)

]
I{K 6=1}

and

I

(
1, 1, 0,−1

2
,−k

)
= (37)

=

(
1
2
− 1

4
√

2
F
(

3
2

,
1
2

,
3
2

;−1
8

))
I{K=1} +

|k| 12
√

3

2K
3
2
√

π
×

×
[{
|k|K 3

2

(
3|k|

2

)
− kK 1

2

(
3|k|

2

)}
J0(k) +

2k
3

K 1
2

(
3|k|

2

)
J1(k)

]
I{K 6=1}.

4.3. Inverse-Gamma Volatility Price

We set in the model of Section 3.2 SIG
0 = 1, r̃t = ρ̃t ≡ 0 and σ̃t ≡ 1. Then

log SIG
t =

√
ςBt −

ςt
2

and it issues from (22) that
VSIG

t = Eeςt − 1 = ∞.

With respect to (23),

E
(

log SIG
t

)
= − tEς

2
= − tb

2(a− 1)
I{a>1} −∞I{a≤1}. (38)
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It follows from (24) that

V
(

log SIG
t

)
= E

(√
ςBt −

ςt
2
+

tEς

2

)2
= E

(√
ςBt −

t
2
(ς− Eς)

)2
=

= tEς +
t2

4
Vς =

tb
a− 1

I{a>1} + ∞I{a≤1}+

+
b2t2

4(a− 1)2(a− 2)
I{a>2} + ∞I{a≤2} =

=
tb

a− 1

(
1 +

bt
4(a− 1)(a− 2)

)
I{a>2} + ∞I{a≤2}.

We have that
ESIG

t = ESG
t = ESBS

t = 1.

If we set a = 3 and b = 2, then it results from (28), (31) and (38) that

E
(

log SIG
t

)
= E

(
log SG

t

)
= E

(
log SBS

t

)
= − t

2
.

Moreover, then

V
(

log SIG
t

)
= V

(
log SG

t

)
= t
(

1 +
t
4

)
.

Set t0 = T0 = 0, T = 1, a = 3, b = 2 and k = log K. Then in accordance with (26)

CIG = 4

(
I

(
3, 2, 0,−k,

1
2

)
− KI

(
3, 2, 0,−k,−1

2

))
. (39)

Furthermore, we have immediately from (10) that

I

(
3, 2, 0,− log K,

1
2

)
=
|s| 52 es(1 + q)3

8
√

2π

[
B(3, 1)

(
|s|K 7

2
(|s|) + sK 5

2
(|s|)

)
×

×Φ
(

3,−2, 4;
1 + q

2
,−s(1 + q)

)
− (1 + q)sB(4, 1)×

×K 5
2
(|s|)Φ

(
4,−2, 5;

1 + q
2

,−s(1 + q)
)]

(40)

with

q =
c2√

c2
2 + 4

= − k√
k2 + 4

and s = c1

√
c2

2 + 4 =

√
k2 + 4

2

and

I

(
3, 2, 0,− log K,−1

2

)
=
|s| 52 es(1 + q)3

8
√

2π

[
B(3, 1)

(
|s|K 7

2
(|s|) + sK 5

2
(|s|)

)
×

×Φ
(

3,−2, 4;
1 + q

2
,−s(1 + q)

)
− (1 + q)sB(4, 1)×

×K 5
2
(|s|)Φ

(
4,−2, 5;

1 + q
2

,−s(1 + q)
)]

(41)

with

q =
u2√

c2
2 + 4

= − k√
k2 + 4

and s = c3

√
c2

2 + 4 = −
√

k2 + 4
2

.
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It results from (40) that

I

(
3, 2, 0,−k,

1
2

)
=

e
√

k2+4
2

(√
k2 + 4− k

)3(
k2 + 4

) 1
4

128
√

π
×

×
[

1
3

{
K 7

2

(
1
2

√
k2 + 4

)
+ K 5

2

(
1
2

√
k2 + 4

)}
×

×Φ

(
3,−2, 4;

√
k2 + 4− k

2
√

k2 + 4
,

k−
√

k2 + 4
2

)
−
√

k2 + 4− k
4
√

k2 + 4
×

×K 5
2

(
1
2

√
k2 + 4

)
Φ

(
4,−2, 5;

√
k2 + 4− k

2
√

k2 + 4
,

k−
√

k2 + 4
2

)]

and from (41) that

I

(
3, 2, 0,−k,−1

2

)
=

e−
√

k2+4
2

(√
k2 + 4− k

)3(
k2 + 4

) 1
4

128
√

π
×

×
[

1
3

{
K 7

2

(
1
2

√
k2 + 4

)
−K 5

2

(
1
2

√
k2 + 4

)}
×

×Φ

(
3,−2, 4;

√
k2 + 4− k

2
√

k2 + 4
,

√
k2 + 4− k

2

)
+

√
k2 + 4− k

4
√

k2 + 4
×

×K 5
2

(
1
2

√
k2 + 4

)
Φ

(
4,−2, 5;

√
k2 + 4− k

2
√

k2 + 4
,

√
k2 + 4− k

2

)]
.

Let

J2(A, B) =
∫ 1

0
x2(1− Ax)2eBxdx

and

J3(A, B) =
∫ 1

0
x3(1− Ax)2eBxdx.

Then we have with respect to (35) that

Φ(3,−2, 4; A, B) = 3J2(A, B)

and

Φ(4,−2, 5; A, B) = 4J3(A, B).

Therefore,

I

(
3, 2, 0,−k,

1
2

)
=

e
√

k2+4
2

(√
k2 + 4− k

)3(
k2 + 4

) 1
4

128
√

π
×

×
[{

K 7
2

(
1
2

√
k2 + 4

)
+ K 5

2

(
1
2

√
k2 + 4

)}
×

×J2

(√
k2 + 4− k

2
√

k2 + 4
,

k−
√

k2 + 4
2

)
−
√

k2 + 4− k√
k2 + 4

×

×K 5
2

(
1
2

√
k2 + 4

)
J3

(√
k2 + 4− k

2
√

k2 + 4
,

k−
√

k2 + 4
2

)]
(42)
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and

I

(
3, 2, 0,−k,−1

2

)
=

e−
√

k2+4
2

(√
k2 + 4− k

)3(
k2 + 4

) 1
4

128
√

π
×

×
[{

K 7
2

(
1
2

√
k2 + 4

)
−K 5

2

(
1
2

√
k2 + 4

)}
×

×J2

(√
k2 + 4− k

2
√

k2 + 4
,

√
k2 + 4− k

2

)
+

√
k2 + 4− k√

k2 + 4
×

×K 5
2

(
1
2

√
k2 + 4

)
J3

(√
k2 + 4− k

2
√

k2 + 4
,

√
k2 + 4− k

2

)]
. (43)

4.4. Comparison of the Prices

The Black-Scholes price is calculated according to (30). The gamma volatility price is
computed by (32) taking into account (36) and (37). The inverse-gamma volatility price is
determined with respect to (39) using (42) and (43).

Table 1 shows the dynamics of the standard call option prices in dependence on the
increase in the strike coefficient K from 0.05 to 10. The numbers around K = 1 in Table 1
relate to the skewness of the probability densities in the gamma and the inverse-gamma
models. Since the drift coefficients are negative, the probability density of the logarithm of
stock price in the gamma model has a larger weight of extremal events than the probability
density of the logarithm of stock price in the inverse-gamma one. This fact explains the
inequality CG > CIG for large strike coefficients.

Table 1. The comparison of the standard European call option prices.

C�K 0.05 0.1 0.5 0.75 1 1.25 1.5 2 10

CBS 0.950 0.901 0.595 0.473 0.383 0.316 0.264 0.191 0.010

CG 0.951 0.903 0.583 0.438 0.334 0.267 0.222 0.167 0.033

CIG 0.951 0.902 0.586 0.452 0.356 0.288 0.237 0.171 0.025

One may notice that the simplest call-put parity identity

S1 − K = (S1 − K)I{S1>K} − (K− S1)I{S1≤K} (44)

allows us to obtain the standard European put option prices in our examples directly from
Table 1. Indeed, the put option price

P = E(K− S1)
+ = C+ K− 1

from (44).

5. Conclusions

We have discussed the generalized Black-Scholes-Merton model, in which the stock
volatility is modeled using the gamma and the inverse-gamma distributions. The idea for
this research is produced by the papers on the statistical analysis of stock market data by
many authors. We refer, in particular, to Seneta (2004), Daal and Madan (2005), Nakakita
and Nakatsuma (2021), Mozumder et al. (2015), Luciano and Schoutens (2016) on the
gamma distribution, and to Nakajima and Omori (2012), Aas and Haff (2006), Finlay and
Seneta (2008), and Takahashi et al. (2021) on the inverse-gamma one in the stochastic
volatility modeling.
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We have selected for the numerical examples the parameters of the models so that
the characteristics of the underlying processes are as close to each other as possible. It is
clear from the examples that it can be expected that for large strike coefficients the call
option prices should be vastly different for the all three models. At the same time, the
difference between the put option prices does not exceed 20%. It should be also noticed
that the calculation time of our formulas for the gamma and the inverse-gamma models is
comparable with the time of the Black-Scholes formula computation.

The obtained results extend the results of Madan et al. (1998) and Ano and Ivanov
(2016), which are derived for the variance-gamma model. Furthermore, the price of the
forward-start call option is computed in a model of the skew Student’s t-type. The idea of
research is confirmed by the variety of works that have approved the use of the gamma
and the inverse-gamma distributions for financial modeling. Numerical examples have
shown that the results for the standard call option price may differ substantially from the
Black-Scholes formula.

Future studies can relate to the modeling and computation of more complicated
derivatives, including American-style ones. Moreover, the theoretical developments of the
studied models can also be processed for the potential of obtaining closed-form results in
option pricing.
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Appendix A

Proof of Theorem 1. Set

g(zT) = E
[

R−1
T (ST − KST0)

+|zT

]
.

Then

g(zT) =g(γ) = E
[

R−1
T (ST − KST0)

+|γ
]
=

=E

[
ST0

RT0

RT0

RT

(
ST
ST0

− K
)+∣∣∣γ]. (A1)

Since the random variable ST0 R−1
T0

= ST0(γ)R−1
T0

(γ) is independent with the random vari-

ables RT0 R−1
T = RT0(γ)R−1

T (γ) and STS−1
T0

= ST(γ)S−1
T0

(γ) for any particular realization of
γ, we get from (A1) that

g(zT) =E
[

ST0

RT0

∣∣∣γ]E

[
RT0

RT

(
ST
ST0

− K
)+∣∣∣γ] =

=S0(g1(γ)− g2(γ)) (A2)

with

g1(γ) = E

RT0 ST

RTST0

I{ ST
ST0

>K
}∣∣∣γ
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and

g2(γ) = KE

RT0

RT
I{ ST

ST0
>K
}∣∣∣γ

.

Because of

CG = E(g(zT)),

we get from (A2) that

CG = S0[E(g1(γ))− E(g2(γ))]. (A3)

Next, one may observe that

g1(γ) = E
[

exp
(√

γ
∫ T

T0

σ̃sdBs −
γ

2

∫ T

T0

σ̃2
s ds
)

I{√
γ
∫ T

T0
σ̃sdBs>ξ1(γ)

}∣∣∣γ].

with

ξ1(γ) = log K−
∫ T

T0

r̃sds + γ
∫ T

T0

(
σ̃2

s
2
− ρ̃s

)
ds.

Let

σ(γ) =

√
γ
∫ T

T0

σ̃2
s ds.

Since

Law
(√

γ
∫ T

T0

σ̃sdBs

∣∣∣γ) = Law
(
N
(

0, σ2(γ)
)∣∣∣γ),

where N is the normally distributed random variable, we get that

g1(γ) = exp

(
−σ2(γ)

2

)
E
[
exp

(
N
(

0, σ2(γ)
))

I{N (0,σ2(γ))>ξ1(γ)}
∣∣∣γ] =

= exp

(
−σ2(γ)

2

) ∫ ∞

ξ1(γ)

1
σ(γ)

√
2π

exp
(

x− x2

2σ2(γ)

)
dx =

=
∫ ∞

ξ1(γ)

1
σ(γ)

√
2π

exp

−
(

x− σ2(γ)
)2

2σ2(γ)

dx =

= N
(

σ(γ)− ξ1(γ)

σ(γ)

)
.

Furthermore,

g2(γ) =

=K exp
(
−
∫ T

T0

(r̃s + γρ̃s)ds
) ∫ ∞

ξ1(γ)

1
σ(γ)

√
2π

exp
(
− x2

2σ(γ)2

)
dx =

=K exp
(
−
∫ T

T0

(r̃s + γρ̃s)ds
)

N
(
− ξ1(γ)

σ(γ)

)
.

One may notice that
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σ(γ)− ξ1(γ)

σ(γ)
=

√
γ
∫ T

T0

σ̃2
s ds−

log K−
∫ T

T0
r̃sds + γ

∫ T
T0

(
σ̃2

s
2 − ρ̃s

)
ds√

γ
∫ T

T0
σ̃2

s ds
=

= c1
√

γ +
c2√

γ

with

c1 =

∫ T
T0

(
σ̃2

s
2 + ρ̃s

)
ds√∫ T

T0
σ̃2

s ds
, c2 =

∫ T
T0

r̃sds− log K√∫ T
T0

σ̃2
s ds

and

− ξ1(γ)

σ(γ)
= c3
√

γ +
c2√

γ
,

where

c3 =

∫ T
T0

(
ρ̃s − σ̃2

s
2

)
ds√∫ T

T0
σ̃2

s ds
.

Hence

g1(γ) = N
(

c1
√

γ +
c2√

γ

)
(A4)

and

g2(γ) = K exp
(
−
∫ T

T0

(r̃s + γρ̃s)ds
)

N
(

c3
√

γ +
c2√

γ

)
. (A5)

Set

c4 =
∫ T

T0

ρ̃sds.

Then we get from (A3)–(A5) that

CG = S0

(
E
[

N
(

c1
√

γ +
c2√

γ

)]
− (A6)

−K exp
(
−
∫ T

T0

r̃sds
)

E
[

e−c4γN
(

c3
√

γ +
c2√

γ

)])
.

One may see from (A6) that we need to calculate the integral

IG = IG(v1, v2, v3) =
Γ(a)

ba

∫ ∞

0
e−v1xN

(
v2
√

x +
v3√

x

)
fγ(x)dx

for v1 ≥ 0 and v2, v3 ∈ R. Then

CG =
S0ba

Γ(a)

(
IG(0, c1, c2)− K exp

(
−
∫ T

T0

r̃sds
)

IG(c4, c3, c2)

)
. (A7)

We have that
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IG =
∫ ∞

0
xa−1e−(b+v1)xN

(
v2
√

x +
v3√

x

)
dx.

This integral is computed in point of the cases below.
Case 1. v3 = 0. Then we have with respect to Case 2.2 at p. 208 of Ano and Ivanov

(2016) that

IG(v1, v2, v3) = (A8)

=
Γ
(

a + 1
2

)
√

2π(b + v1)a

B
(

1
2 , a
)

√
2

+
v2√

b + v1
F

(
a +

1
2

,
1
2

,
3
2

;−
v2

2
2(b + v1)

).

Case 2. v3 6= 0. We get in accordance with (21) of Ano and Ivanov (2016) that

IG(v1, v2, v3) =
|s|a− 1

2 es(1 + q)a
√

2π(b + v1)a

[
B(a, 1)

(
|s|Ka+ 1

2
(|s|)+ (A9)

+ sKa− 1
2
(|s|)

)
Φ
(

a, 1− a, a + 1;
1 + q

2
,−s(1 + q)

)
−

(1 + q)sB(a + 1, 1)Ka− 1
2
(|s|)Φ

(
a + 1, 1− a, a + 2;

1 + q
2

,−s(1 + q)
)]

,

where

q =
v2√

v2
2 + 2(b + v1)

and s = v3

√
v2

2 + 2(b + v1).

Combining together (A7)–(A9) and using the auxiliary function (10), we establish that

CG =
S0ba

Γ(a)

(
I(a, b, 0, c1, c2)− K exp

(
−
∫ T

T0

r̃sds
)
I(a, b, c4, c3, c2)

)
.

Proof of Theorem 2. Similarly to (A6), we get that in this case

CIG = S0

(
E
[

N
(

c5
√

ς +
c2√

ς

)]
− (A10)

−K exp
(
−
∫ T

T0

r̃sds
)

E
[

N
(
−c5
√

ς +
c2√

ς

)])

with

c5 =
1
2

√∫ T

T0

σ̃2
s ds and c2 =

∫ T
T0

r̃sds− log K√∫ T
T0

σ̃2
s ds

.

Set

IIG = IIG(v1, v2) =
Γ(a)

ba

∫ ∞

0
N
(

v1
√

x +
v2√

x

)
fς(x)dx

for v1 6= 0 and v2 ∈ R. Then we have from (A10) that

CIG =
S0ba

Γ(a)

(
IIG(c5, c2)− K exp

(
−
∫ T

T0

r̃sds
)

IIG(−c5, c2)

)
. (A11)
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One may observe that

IIG =
∫ ∞

0
x−a−1e−

b
x N
(

v1
√

x +
v2√

x

)
dx.

Let us define for t ≤ v2 functions ṽ2(t), ṽ1(t) and u(t) as

ṽ2(t) = t, ṽ1(t) =
v1

√
v2

2 + 2b
√

t2 + 2b

and

u(t) = ṽ1(t)
√

x +
ṽ2(t)√

x
.

Then

N
(

v1
√

x +
v2√

x

)
=
∫ v1

√
x+ v2√

x

−∞
N′u(u)du =

∫ v2

−∞
N′u(u)u

′
tdt

and we have that

IIG =
1√
2π

∫ ∞

0
x−a−1e−

b
x

(∫ v2

−∞
e−

(ṽ1(t)x+ṽ2(t))
2

2x

(
x−

1
2−

−x
1
2 v1

√
v2

2 + 2b(t2 + 2b)−
3
2 t
)

dt

)
dx =

1√
2π

(IIG1 − IIG2), (A12)

where

IIG1 =
∫ v2

−∞
e−ṽ1(t)ṽ2(t)

(∫ ∞

0
x−a− 3

2 e−
ṽ2

1(t)x
2 − ṽ2

2(t)+2b
2x dx

)
dt

and

IIG2 = s
∫ v2

−∞
e−ṽ1(t)ṽ2(t)t(t2 + 2b)−

3
2

(∫ ∞

0
x−a− 1

2 e−
ṽ2

1(t)x
2 − ṽ2

2(t)+2b
2x dx

)
dt

with
s = v1

√
v2

2 + 2b.

Formula 3.471.9 of Gradshteyn and Ryzhik (2007) comprises the identity

∫ ∞

0
xu1−1e−

u2
x −u3xdx = 2

(
u2

u3

) u1
2

Ku1(2
√

u2u3), (A13)

where u1 ∈ R, u2 > 0 and u3 > 0. It results immediately from (A13) that

∫ ∞

0
x−a− 1

2−je−
ṽ2

1(t)x
2 − ṽ2

2(t)+2b
2x dx = 2

(
ṽ2

2(t) + 2b
ṽ2

1(t)

) 1
4−

a+j
2

×

×K 1
2−a−j

(
|ṽ1(t)|

√
ṽ2

2(t) + 2b
)
= 2

(
t2 + 2b
|s|

) 1
2−a−j

K 1
2−a−j(|s|)

for j = 0, 1. Hence we get that
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IIG1 = 2|s|a+
1
2 Ka+ 1

2
(|s|)

∫ v2

−∞
(t2 + 2b)−a− 1

2 e
− st√

t2+2b dt

and

IIG2 = 2s|s|a−
1
2 Ka− 1

2
(|s|)

∫ v2

−∞
t(t2 + 2b)−a−1e

− st√
t2+2b dt.

Set
w =

t√
t2 + 2b

.

Then

t =
w
√

2b√
1− w2

, t2 + 2b =
2b

1− w2 , t′w =

√
2b

(1− w2)
3
2

and one may observe that

IIG1 =
|s|a+ 1

2 Ka+ 1
2
(|s|)

2a−1ba

∫ v2√
v2

2+2b

−1

(
1− w2

)a−1
e−swdw

and

IIG2 =
s|s|a− 1

2 Ka− 1
2
(|s|)

2a−1ba

∫ v2√
v2

2+2b

−1
w
(

1− w2
)a−1

e−swdw.

Let
q =

v2√
v2

2 + 2b

and
y =

1 + w
1 + q

.

Then
w = (1 + q)y− 1, w′y = 1 + q

and hence

IIG1 =
(1 + q)|s|a+ 1

2 esKa+ 1
2
(|s|)

2a−1bκ

∫ 1

0

(
1− ((1 + q)y− 1)2

)a−1
e−s(1+q)ydy =

=
(1 + q)a|s|aa+ 1

2 esKa+ 1
2
(|s|)

bκ

∫ 1

0
ya−1

(
1− 1 + q

2
y
)a−1

e−s(1+q)ydy (A14)

and

IIG2 =
(1 + q)s|s|a− 1

2 esKa− 1
2
(|s|)

2a−1ba ×

×
∫ 1

0
((1 + q)y− 1)

(
1− ((1 + q)y− 1)2

)a−1
e−s(1+q)ydy =

=
(1 + q)as|s|a− 1

2 ecKa− 1
2
(|s|)

ba

(
(1 + q)

∫ 1

0
ya
(

1− 1 + q
2

y
)a−1

×

× e−s(1+q)ydy−
∫ 1

0
ya−1

(
1− 1 + q

2
y
)a−1

e−s(1+q)ydy

)
. (A15)

Furthermore, we apply (35) to (A14) and (A15) and infer that
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IIG1 = (A16)

=
(1 + q)a|s|a+ 1

2 esKa+ 1
2
(|s|)

ba B(a, 1)Φ
(

a, 1− a, a + 1;
1 + q

2
,−s(1 + q)

)
and

IIG2 =
(1 + q)as|s|a− 1

2 esKa− 1
2
(|s|)

ba

(
(1 + q)B(a + 1, 1)×

×Φ
(

a + 1, 1− a, a + 2;
1 + q

2
,−s(1 + q)

)
− B(a, 1)×

×Φ
(

a, 1− a, a + 1;
1 + q

2
,−s(1 + q)

))
. (A17)

It follows from (A12), (A16) and (A17) that

IIG =
(1 + q)a|s|a− 1

2 es

ba
√

2π

[
B(a, 1)

(
|s|Ka+ 1

2
(|s|) + sKa− 1

2
(|s|)

)
×

×Φ
(

a, 1− a, a + 1;
1 + q

2
,−s(1 + q)

)
− s(1 + q)B(a + 1, 1)×

×Ka− 1
2
(|s|)Φ

(
a + 1, 1− a, a + 2;

1 + q
2

,−s(1 + q)
)]

. (A18)

Finally, it results from (A11), (A18) and (10) that

CIG =
S0ba

Γ(a)

(
I(a, b, 0, c2, c5)− K exp

(
−
∫ T

T0

r̃sds
)
I(a, b, 0, c2,−c5)

)
.
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