
Citation: Iqbal, Farhat, Mamoona

Zahid, and Dimitrios Koutmos. 2023.

Cryptocurrency Trading and

Downside Risk. Risks 11: 122.

https://doi.org/10.3390/risks

11070122

Academic Editor: Mogens

Steffensen

Received: 19 May 2023

Revised: 28 June 2023

Accepted: 3 July 2023

Published: 6 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

Cryptocurrency Trading and Downside Risk
Farhat Iqbal 1,2, Mamoona Zahid 3 and Dimitrios Koutmos 4,*

1 Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982,
Dammam 31441, Saudi Arabia; fsmuhammad@iau.edu.sa

2 Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982,
Dammam 31441, Saudi Arabia

3 Department of Statistics, University of Balochistan, Quetta 87300, Pakistan; mamoona_zahid2010@yahoo.com
4 Department of Accounting, Finance, and Business Law, College of Business, Texas A&M University-Corpus

Christi, Corpus Christi, TX 78412, USA
* Correspondence: dimitrios.koutmos@tamucc.edu; Tel.: +1-361-825-5700

Abstract: Since the debut of cryptocurrencies, particularly Bitcoin, in 2009, cryptocurrency trading has
grown in popularity among investors. Relative to other conventional asset classes, cryptocurrencies
exhibit high volatility and, consequently, downside risk. While the prospects of high returns are
alluring for investors and speculators, the downside risks are important to consider and model. As a
result, the profitability of crypto market operations depends on the predictability of price volatility.
Predictive models that can successfully explain volatility help to reduce downside risk. In this
paper, we investigate the value-at-risk (VaR) forecasts using a variety of volatility models, including
conditional autoregressive VaR (CAViaR) and dynamic quantile range (DQR) models, as well as
GARCH-type and generalized autoregressive score (GAS) models. We apply these models to five of
some of the largest market capitalization cryptocurrencies (Bitcoin, Ethereum, Ripple, Litecoin, and
Steller, respectively). The forecasts are evaluated using various backtesting and model confidence set
(MCS) techniques. To create the best VaR forecast model, a weighted aggregative technique is used.
The findings demonstrate that the quantile-based models using a weighted average method have the
best ability to anticipate the negative risks of cryptocurrencies.

Keywords: cryptocurrencies; downside risk; VaR models; weighted aggregative approach

1. Introduction

Cryptocurrencies have emerged as a new asset class in recent years and have become a
significant part of our global financial system (Ji et al. 2019). Numerous financial organiza-
tions have extensively used cryptocurrencies to profit from the technology that underpins
them. Many businesses have started taking them in addition to fiat money. According to
Shrivas and Yeboah (2017), virtual currencies have given governments, businesses, and
individuals new ways to access open, dependable, quick, and secure services that could
potentially assist in sparking economic activity and growth in our global economy.

Broadly speaking, virtual currency exchanges are viewed as a popular and lucra-
tive investment due to the technology underpinning them (Derbentsev et al. 2020). The
market capitalization of cryptocurrencies is expected to be more than triple in the next
15 years, reaching up to $10 trillion (Steve 2018). As of 22 April 2020, there were over
5000 cryptocurrencies in the market, with a total and combined market value of over $200
billion (Peng and Yichao 2020). According to the popular cryptocurrency trading website
CoinMarketCap, the most traded cryptocurrencies are Bitcoin, Ethereum, Ripple, Stellar,
and Litecoin. Together, these five make up more than 75% of the total market capitalization
of all digital assets.

Despite their popularity, regulators, investors, and speculators must be aware of the
downside risks associated with such digital assets due to their high volatility and peculiar
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price dynamics (Krehbiel and Adkins 2005). As a result, empirical research has developed
a strong interest in modeling volatility and the risk characteristics of cryptocurrencies
(Apergis et al. 2021; Bowden et al. 2021; King et al. 2021; Koutmos and Wei 2023).

Studies focusing on market efficiency (e.g., Nadarajah and Chu 2017; Tran and Leirvik
2020), volatility patterns and investment behaviors (El-Chaarani et al. 2023), as well as
the portfolio and hedging implications of cryptocurrencies (e.g., Bouri et al. 2017; Conlon
and McGee 2020) show the importance of being able to accurately estimate and forecast
the volatility behaviors of these unique digital assets. A vine copula approach is used by
Syuhada and Hakim (2020) to build a dependence model and provide value-at-risk (VaR)
projections. Using the prices of Bitcoin and Ethereum, Chi and Hao (2021) demonstrate
that the GARCH model’s volatility forecast is superior to the option-implied volatility.

VaR modeling has become popular for financial market regulators and investors to
measure risk. It measures the loss that buyers can expect to take over a certain amount of
time with a certain level of certainty. This risk measure is also popular among practitioners
because it simplifies the downside risk of each portfolio into a single number and expresses
the associated loss at a fixed probability (Marimoutou et al. 2009).

Using a variety of volatility models, Trucios (2019) analyze the VaR of the price dy-
namics of Bitcoin and show how the presence of outliers can play a fundamental role in the
modeling or forecasting of key Bitcoin risk metrics. Such outliers may, for example, signal
a regime-shift in the price dynamics of the asset. This is something that is explored further
by Ardia et al. (2019). Specifically, according to Ardia et al. (2019), the Markov-switching
GARCH (MSGARCH) model performs better than the single-regime GARCH model when
it comes to forecasting VaR. The stochastic volatility with the co-jumps model was shown
to be the best for predicting VaR and expected shortfall (ES) to assess cryptocurrency risk
by Nekhili and Sultan (2020). Jiménez et al. (2020) argue that the median shortfall and
GARCH and GAS models with semi-parametric specifications offer a more precise and
reliable risk measure for assessing Bitcoin risk than other measures.

To study the tail behavior of cryptocurrencies, Gkillas and Katsiampa (2018) employed
Extreme value theory (EVT) to forecast VaR and ES. According to their findings, Bitcoin
Cash had the most potential for gain and loss, making it the riskiest one overall. Bit-
coin and Litecoin, on the other hand, were determined to be the least dangerous of the
sampled currencies.

To have any probability of success, investment decisions require precise estimations of
downside risk measures, such as those arising from VaR (Zahid et al. 2022). As a result, there
is growing interest in using various backtesting methodologies to assess VaR’s accuracy.
For instance, Troster et al. (2019) used backtesting techniques to compare the accuracy of
VaR models. They found that the most precise GAS model for calculating Bitcoin risk was
confirmed to have a heavy-tailed distribution.

The aforementioned research measures downside risk using various modeling tech-
niques, including GARCH, SV, Markov-switching models, and EVT. Quantile models,
on the other hand, have not received as much consideration regarding VaR modeling in
cryptocurrency markets. However, empirical data shows that quantile models can compete
with other VaR models (Yu et al. 2010; Laporta et al. 2018).

The quantile-based strategy resulted in two quantile models: dynamic quantile regres-
sion (DQR) and CAViaR. The CAViaR models make no assumptions about the distribution
of error terms and instead explicitly model the quantile of return distributions. This autore-
gressive model is more applicable to the returns of cryptocurrencies because their returns
tend to aggregate over time, indicating that they are autocorrelated to some degree. There-
fore, the VaR, which is closely related to the distribution’s standard deviation, must share
the same property. A reasonable way to formalize this property is to use autoregressive
specifications, such as the CAViaR model with different specifications, which are preferred
for VaR estimation (Koenker and Bassett 1978).

In contrast, the DQR model is characterized by a stochastic process of the first order. It
explicitly calculates the conditional quantile and specifies its evaluation by regression; as a
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result, this model can handle rapid price fluctuations, high volatility, and other distinctive
characteristics of cryptocurrency returns. Such an approach is more well-suited to handle
outliers arising from large shifts in price behaviors. The DQR approach can thus examine
scenarios where a miscalculation of risk can result in significant losses, given its ability to
predict VaR models with a high confidence level (Laporta et al. 2018).

Several studies employ backtesting to determine the precision of risk metrics used
to analyze cryptocurrencies. However, backtesting processes do not always reveal the
magnitude of the exceedance. Therefore, a researcher cannot just compare models to
determine the optimal model. While studies have made attempts to use the MCS technique
to select an optimal risk model, our study contributes to the literature by merging several
VaR models to select a univariate model for estimating cryptocurrencies’ downside risk.

While the MCS procedure can be used across sample periods and across models in
order to select an optimal model, it is possible, as we argue here, to combine models
in order to improve downside risk estimation. The various theoretical and empirical
benefits of merging VaR forecasts have been recognized in previous studies (Bernardi et al.
2017). Similarly, Stock and Watson (1999) demonstrate that combining forecasts yield better
results than more conventional model selection strategies, such as MCS. This approach
dynamically weights the VaR predictions generated by models that are a component of the
best final set (Laporta et al. 2018). The combination of VaR models is favorable since VaR
is a narrow coverage quantile model sensitive to the few observations below the quantile
estimate. Ammann and Verhofen (2005) discuss the impact of different VaR models on the
computation of performance measures, providing insights into how different models can
influence the combined forecast. Timmermann (2006) provides a comprehensive overview
of forecast combination methods in economic forecasting. Additionally, Pesaran et al. (2009)
point out that integrating many VaR models can actually make individual VaR forecasts
more accurate. Hansen et al. (2011) introduce a method for comparing and selecting among
a set of competing models, forming the basis for combined forecasts from selected models.

Due to the extreme price volatility that virtual currencies display, trading in them
carries a higher level of risk than trading in traditional financial instruments. Given
the escalating demand for cryptocurrencies, choosing precise models to calculate the
investment’s downside risk is essential to minimize losses and maximize returns. Such
downside risk estimation is the focal point of our study.

Our study’s major goal is to identify the best forecasting model that can effectively
predict VaR while capturing the underlying traits (stylized facts) displayed in the most
active cryptocurrency marketplaces. Econometrically, our study contributes to the existing
literature in four different ways.

First, GARCH, EGARCH, GJR, and GAS models with different innovations are used
to estimate and forecast VaR. Second, this study contributes to the literature by estimating
the VaR to forecast cryptocurrency downside risks using quantile-based models (CAViaR
and DQR). The accuracy of these models for estimating VaR in cryptocurrency markets
has not yet undergone thorough testing. Third, different backtesting strategies and the
MCS method are applied to choose the best VaR model. Finally, a weighted aggregative
approach is used to combine various VaR models within a superior collection of models
to create an ideal forecast model, robustifying individual VaR forecasts. Data on Bitcoin
pricing has not yet been systematically applied using the weighted aggregative approach.
The results of our study have significant implications for risk managers, investors, and
regulators who use cryptocurrencies in associated financial techniques such as optimum
hedging (Koutmos et al. 2021).

2. Methodological Framework
2.1. GARCH-Type Models

The standard GARCH (1,1) model is expressed as:

rt = µ + εt, εt = h1/2
t ηt, ηt|Ft−1 ∼ N(0, 1) (1)
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ht = ω + αε2
t−1 + βht−1 (2)

where the daily log return at time t = 1, 2, . . . , T is represented by rt and all past information
up to time t− 1 is contained in Ft−1. ηt is the innovation term following a standard normal
distribution. The time-varying variance, ht, of the conditional log returns is modeled using
Equation (2) with ω > 0, α, β ≥ 0 and α + β < 1 guarantee weak stationarity and the
positiveness of ht.

Financial returns (and trading behaviors) respond asymmetrically to negative in-
novations (news) (Koutmos 2015). This asymmetrical return tendency is not taken into
consideration by the conventional GARCH model. The log-conditional variance in the
EGARCH (1, 1) model is described as

log(ht) = ω + αηt−1 + γ(|ηt−1| − E[|ηt−1|]) + β log(ht−1), (3)

whereby γ is the asymmetry parameter. Equation (3), which is used for the conditional vari-
ance specification, has advantages over the specification in Equation (2) since it responds
asymmetrically to positive and negative news. However, the functional form and assump-
tions of the EGARCH model might not always align with the true data-generating process,
leading to model misspecification. This can result in biased or inconsistent parameter
estimates (Nelson 1991).

The GJR (1, 1) model is another asymmetric model commonly used for modeling
conditional variance and is defined as:

ht = ω + αε2
t−1 + γε2

t−1It−1 + βht−1, (4)

whereby the indicator function I(t−1) is either 1 when εt−1 ≤ 0 and 0 otherwise and γ is
the asymmetry parameter. Thus, the impact of ε2

t−1 is different on ht using Equation (4),
in both cases, given whether εt−1 is negative or positive. The GJR-GARCH model allows
for negative shocks to have a higher impact than positive shocks of the same magnitude
in order to account for asymmetry in volatility. The GJR-GARCH model may produce
inaccurate or inconsistent estimates if the underlying asymmetry in the data does not take
this particular form (Glosten et al. 1993).

2.2. GAS Model

The predicted conditional density of the asset returns score function is a key compo-
nent of the GAS model. In contrast to GARCH-type models, utilizing the entire distribution
of returns is beneficial.

The GAS model can be expressed as follows:

rt|Ft−1 ∼ p(rt; ϑt) (5)

with
ϑt = A + Bst−1 + Cϑt−1 (6)

whereby ϑt ∈ Θ ⊆ Rp is the time-varying parameters of the vector, and A, B and C
represent coefficient matrices. The vector of scaled-score steps st is defined as:

st = St(ϑt)
∂ log p(rt; ϑt)

∂ϑt
(7)

where St(ϑt) = Et−1

[
∂ log p(rt; ϑt)

∂ϑt

∂ log p(rt; ϑt)′
∂ϑt

]−1
(8)

is the positive-definite scaling matrix at time t. The GAS methodology can model various
types of data distributions and better handle tail risks due to its focus on the score of
the likelihood function. However, it is computationally costly and is more difficult to
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estimate and comprehend. Furthermore, model misspecification may result if the selected
distributional form does not accurately reflect the facts (Creal et al. 2013).

2.3. CAViaR Model

The CAViaR model directly models the quantile of the return distribution, which is
defined as follows:

rt = ft(α) + ετ,t, qτ(ετ,t|Ft) = 0 (9)

and
ft(α) = g

(
yt−r , . . . , yt−1, ft−q(α) . . . , ft−1(α)

)
, (10)

where τ-th conditional quantile at time t of the return distribution is represented by
ft(α), whereas the matrix of observable variables at time t is represented by yt. The
unknown parameters vector is α. In addition, qτ(ετ,t|Ft) represents the τ-th quantile of ετ,t,
conditional on Ft, and g(·) describes the link function. This study considers, respectively,
the four CAViaR specifications introduced by Engle and Manganelli (2004) in economic
literature (shown in (a) through (d) below):

(a) Adaptive:

ft(α) = ft−1(α) + α {[1 + exp(K[rt−1 − ft−1(α)])]
−1 − τ}, (11)

where K ∈ R+ is a positive constant, and where K = 10.
(b) Symmetric Absolute Value:

ft(α) = α1 + α2 ft−1(α) + α3|rt−1| (12)

(c) Asymmetric Slope:

ft(α) = α1 + α2 ft−1(α) + α3r+t−1 + α4r−t−1, (13)

where r+t = max(rt, 0) and r−t = −min(rt, 0).

In this specification, negative and positive returns have different effects on the VaR
model forecast.

(d) Indirect GARCH (1, 1)

ft(α) = (α1 + α2 f 2
t−1(α) + α3r2

t−1)
−1/2 (14)

In all of these CAViAR specifications, the quantile regression approach is used to
estimate the vector of any fixed-th quantile. By reducing measurement errors (loss function
of the quantile), this method forecasts VaR with a high degree of accuracy.

The benefits of the CAViaR model include accommodating altering market conditions
over time and extreme “fat-tailed” events typical of financial data, which is essential
for accurately capturing downside risk. In addition, it can easily explain asymmetric
responses to positive and negative stimuli. However, it is more difficult to implement and
interpret and may be computationally intensive. In addition, comparable to other models,
it is susceptible to model misspecification if its assumptions do not align with the actual
data-generating process (Engle and Manganelli 2004).

2.4. DQR Model

The DQR model’s regression coefficients advance dynamically over time by taking
into account a stationary stochastic process of a first-order. The DQR model is defined as:

rt = y′t−1ατ,t + ετ,t (15)

ατ,t = ωα + θ + g(rt−1, γα), (16)
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for t = 2, 3, . . . , T and τ ∈ (0, 1), yt =
(
1, y1,t, . . . , yp,t

)′ is the set of p covariates that,
in addition to past returns, may contain exogenous variables. The τ-th quantile of ετ,t is
assumed to be zero in Equation (15). So qτ

(
rt
∣∣yt−1, ατ,t

)
= y′t−1ατ,t. In Equation (16), the

function g : Rp+2 → Rp+1 acts as a running or forcing variable. It depends on the vector
of parameters, γα, whereas ωα ∈ RP+1 and θ are called square diagonal matrices, which
contain the autoregressive parameters. By assuming eigenvalues that are outside the unit
circle, stationarity is preserved. In financial data, the benefits of DQR are in its ability to
explicitly model and forecast VaR and to capture asymmetric responses to positive and
negative shocks. However, DQR models depend on the correct specification of the quantile
regression model, implying that incorrect model specifications can result in inaccurate
predictions. Moreover, DQR models, such as CAViaR, presume the errors are independent
and identically distributed, which may not always hold true for real-world data (Engle and
Manganelli 2004).

3. Value-at-Risk Estimation & Sample Data

All of the models in this research use a one-day-ahead conditional variance forecast
to generate VaR. The one-day-ahead forecast of the conditional variance ĥ2

t+1 of returns is
represented is

ĥ2
t+1= E (h2

t+1 | Ft) (17)

Using the assumption that each model considered in this study has a different distri-
bution of error terms, a forecast of the conditional variance of returns’ one-day-ahead VaR
at τ % confidence level is made as:

V̂aR
τ
t+1= µ̂t+1 + F−1(τ)ht+1 (18)

where F−1(τ) represents the τ quantile of the cumulative distribution function of the
innovation distribution.

3.1. Backtesting and Model Selection

The effectiveness of the VaR forecast depends on quantifiable tests that follow predeter-
mined criteria and compare actual gains and losses to predicted VaR estimates. Backtesting
VaR can be done using a variety of tests, including the dynamic quantile (DQ) test, the
actual over expected (AE) exceedance ratio, the conditional coverage (CC) test, and the
unconditional coverage (UC) test. These tests assess a model’s performance in terms of
effectiveness and precision in order to examine the backtesting methodology.

The DQ test of Engle and Manganelli (2004) employs a method based on the charac-
teristics of a quantile regression. The DQ test compares the predicted VaR to the actual
manifestation. The fundamental assumption is that realized returns should be below the
VaR forecast with a probability equal to the quantile level if the model is accurate.

VaR models can be evaluated using the AE exceedance ratio. It compares the actual
number of exceedances (when losses exceed the VaR estimate) and the expected number of
exceedances. The actual number of exceedances is simply the count of how many times
the losses actually did exceed the VaR estimate in the sample period. The AE exceedance
ratio is then calculated by dividing the actual number by the expected number. A ratio of
1 indicates that the model performs as expected. A ratio greater than 1 indicates that the
model underestimates risk (there are more exceedances than anticipated), whereas a ratio
less than 1 indicates that the model overestimates risk (there are fewer exceedances than
expected) (see Kupiec 1995; Jorion 2007 for details).

The UC test of Christoffersen (1998) verifies that the number of exceptions (instances
in which the loss exceeds the VaR estimate) corresponds to the expected number based
on the confidence level. The CC test on the other hand, examines whether exceptions
are distributed independently in time. Both tests are based on the likelihood ratio test,
comparing the likelihood of a model where the exceptions follow a certain distribution
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(either independent or Bernoulli for the UC test and a Markov chain for the CC test) to the
likelihood of a model where the exceptions are distributed differently.

Even while backtesting techniques show that the VaR forecast is accurate, no one
model can be said to be superior to the others. In this scenario, market players are unable
to select just one volatility model among the multiple ones that are offered. In light of this,
our study uses the MCS technique to conduct a thorough analysis and choose the model
that fits the data the best out of all the candidates.

3.2. Model Confidence Set

The MCS technique evaluates and analyzes the prediction abilities of various models.
The null hypothesis that all currently chosen models have the same predictive capacity for
user-defined loss function/measurement error is tested by this sequential testing process,
which is based on the hypothesis of equal predictive ability (EPA). Through the use of the
MCS technique, empiricists can create a set of models known as the superior set of models
(SSM), in which the EPA null hypothesis is accepted with a given level of confidence. Using
an “elimination rule” that is consistent with the statistical test, the worst-performing model
is eliminated at each stage until the hypothesis of EPA is not rejected for all the models
included in the SSM.

The MCS procedure considers the quantile as a loss function in our study. The VaR
estimate of the model i at level τ is represented by V̂aR

τ
i,t, whereas the loss function related

to this model is defined as
`i,t = `

(
rt, V̂aR

τ
i,t

)
(19)

The asymmetric loss function deals with several large negative returns that surpass
the VaR estimate that is represented as:

`(rt, V̂aR
τ
i,t) =

{
(τ − 1)(rt − V̂aR

τ
i,t) if rt < V̂aR

τ
i,t,

τ(rt − V̂aR
τ
i,t) if rt ≥ V̂aR

τ
i,t,

(20)

The average loss differences and loss differences were taken into account when devel-
oping the EPA test. The loss differences between models i and j are represented by dij.τ ,
while di.t represents the average (loss) differences between model i and other competing
models that exist in the initial M set of models, with respect to time t:

dij,t = `i,t − `j,t for all i, j ∈ M (21)

di·,t =
1

m− 1 ∑j∈M dij,t, for all i, j ∈ M (22)

Intuitively, i is preferred as an alternative to j when dij.t<0.
The test statistics (EPA) null and alternative hypotheses, respectively, are described as

follows in Equation (23):

H0 : E[di.] = 0, for all i ∈ M and H1 : E[di.] 6= 0, for some i ∈ M. (23)

The t-statistic is given as,

ti,· =
di,·√

v̂ar
(

di,·
) (24)

where
di,· =

1
m− 1 ∑j∈M dij (25)

is a sample loss of model i as compared to the average loss across any other model j, and

dij =
i

n ∑T
t=1 dij.t (26)
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This quantifies the average loss between model i and j. On the other hand, V̂aR (di,·)
represents a bootstrap estimate of VaR(di). Finally, the EPA tests the hypothesis developed
in Equation (23) by applying

Tmax,M= max
i∈M

ti,· (27)

Intuitively, a high value of ti affirms that the model i estimates are far away from
actual values relative to any other competing model belonging to j ∈M. Consequently, the
ith model can be removed from M. The elimination rule with the statistic is presented in
Equation (28) as follows:

εM = arg max
i∈M

di,·√
V̂aR

(
di,·
) = arg max

i∈M
ti,· (28)

The elimination rule in Equation (28) discards the models which have the greatest
statistic ( ti) value. The model i will be confirmed as a poor-performing model in case of the
greatest standardized loss compared to the average loss across all other competing models
existing in M. The null hypothesis will not be accepted at a prescribed confidence level for
each iteration if the elimination rule defined in Equation (28) drops the model. The statistic
(ti) will be again computed for all i, j ∈M ∈ M∗. If the null hypothesis is not rejected, it
stops the iteration and sets aside a superior-performing set of models.

3.3. VaR Aggregation

Instead of picking the single forecast model with the greatest performance, the MCS
process delivers a set of models. This set of models demonstrates equal VaR forecast
capabilities, and in the worst cases, no model is ever deleted, when M̂∗1−α = M∗. However,
choosing the one forecast model that performs the best is of great importance to researchers
and market participants. The issue of how to somehow amalgamate (combine) the data
from each superior set of models has drawn a lot of attention in this situation, and it is the
subject of our work. The necessity of pooling risk models or developing a method that can
best pool these models has already been highlighted in the literature (Pesaran et al. 2009;
Stock and Watson 1999; Bernardi et al. 2017; Laporta et al. 2018; Maciel 2021).

A weighted average approach can be used as a way of aggregation to pool VaR models
and apply this to the best-performing collection of models. As a result, it is possible to
compare the results of pooled VaR models that are part of the model’s superior set with
those of single models. The VaR estimates of model i at time t at level τ in a superior set of
the model is presented by V̂aR

τ,?
i,t and wi is a set of weights. We can simply get the weighted

VaR using Equation (29)

V̂aR
τ
AVG,t = ∑m?

i=1 wiV̂aR
τ,?
i,t (29)

In Equation (29), ∑m?

i=1 wi = 1. The set of weights assigns the same (identical) weight
to each V̂aR

τ,?
i,t , that is wi =

1
m∗ . Consequently, V̂aR

τ
AVG,t is the average of every V̂aR

τ,?
i,t

model. The statistic ti can be used to equate a model i with other models. This exists in a
superior set of models, and, therefore, we also connect wi to ti through the MCS framework
in our study:

wi =
exp{∆i}

∑m?

s=1 exp{∆s}
for all i = 1, 2, . . . , m?. (30)

where ∆s = min
j=1,...,m?

tj.− ts. Hence the first-ranked model in M̂
∗
1−α has exp{∆i} = 1, since

it has the lowest ti., while other models are characterized by 0 < exp{∆i} < 1.
The MCS procedure assigns ranks to different models, which determine the VaR

forecasts’ relevancy in a superior set of models. The lower the value of the statistic ti, the
higher the rank of the model i which belongs to M̃∗1−α, and therefore, the higher the weight
of model i as represented by wi.
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In Equation (30), the value of [∆s ] = minj=1, 2,..., m∗ tj − ts. The exponential of ∆i is
considered to get the value in R+. In this way, the first-rank model in a superior set of the
model gets the exp [∆i] = 1, because it has the smallest ti value. On the other hand, other
models’ range is characterized by O < exp[∆i] < 1. This study considers the uniform and
exponential sets to compare the models.

3.4. Cryptocurrency Price Data

The five major cryptocurrencies used in this study’s empirical examination are Bitcoin,
Ethereum, Ripple, Stellar, and Litecoin. Based on their market capitalization, these cryp-
tocurrencies make up some of the most frequently traded cryptocurrencies worldwide. We
examine these cryptocurrencies and apply the aforementioned methods based on their daily
closing values. The information was taken from websites that focus on cryptocurrencies
(https://coinmarketcap.com/ accessed on 10 January 2022).

The Bitcoin and Litecoin data were collected from 29 April 2013, while the Ethereum,
Ripple and Stellar data started on 8 August 2015, 5 August 2013, and 5 August 2014. The
data of all the cryptocurrencies ended on 31 June 2020. There are a total of 2605, 1791, 2519,
2621, and 2157 observations for Bitcoin, Ethereum, Ripple, Litecoin, and Stellar, respectively.
The programming language R (version 3.5) was used to carry out the statistical analysis.

The model’s parameters were estimated using the in-sample data, and the forecast’s
accuracy was assessed using the out-of-sample data. The prognosis for all cryptocurrencies
was evaluated using data from the previous year (365 days). As additional observations
were available, an expanding window was used to update all of the model’s parameters
until the end of the sample. In this investigation, we used forecast timeframes of 1 day
(k = 1).

4. Major Findings

The descriptive statistics of log returns of five selected cryptocurrencies utilized in
this study are shown in Table 1. Every cryptocurrency has a mean value of nearly zero,
with standard deviations varying from 1.9 to 3.3. All cryptocurrencies follow a long-tail
(leptokurtic) distribution, as high kurtosis values show. Except for Ethereum and Ripple,
which exhibit substantial negative skewness, all cryptocurrencies have positive skewness.
Each cryptocurrency’s daily log reports failed the Jarque-Bera (JB) test for normalcy. This
supports the idea that Bitcoin price changes are out of the ordinary. Further evidence of
heteroscedasticity in their log returns came from the ARCH LM test up to lag 20, which
was also rejected. The Ljung-Box test for the squared returns up to lag 20 showed serial
correlation and was highly significant. Finally, all series pass the Augmented Dickey-Fuller
(ADF) unit root test, proving that all the series are stationary.

Table 1. Descriptive statistics of cryptocurrencies’ daily log returns.

Bitcoin Ethereum Ripple Stellar Litecoin

Mean 0.071 0.107 0.107 0.063 0.039
SD 1.912 3.105 3.106 3.258 2.851
Skewness −0.768 −3.997 −3.996 1.794 1.407
Kurtosis 11.709 81.323 30.862 15.961 24.077
JB 15,072 * 494,682 * 99,612 * 23,920 * 61,972 *
Q2(20) 258.780 * 25.948 * 173.842 * 524.990 * 494.550 *
LM(20) 145.600 * 93.760 * 93.760 * 348.310 * 335.719 *
ADF −9.522 * −7.137 * −7.136 * −8.522 * −10.201 *

JB and ADF denote the Jarque-Bera normality test statistics and the Augmented Dickey-Fuller test for unit root,
respectively. Q2(20) and LM(20) represent the Ljung-Box (Q-statistics) for the squared error terms and ARCH-LM
test statistic up to lag 20, respectively, (*) denotes the significance of the test at the 1% level.

In Figure 1, the daily closing prices of the five cryptocurrencies (left panel) and associ-
ated log returns (right panel) are plotted. The graphs clearly show that all cryptocurrency
values spiked at the beginning of 2018 before falling off after a year. Volatility clustering is

https://coinmarketcap.com/
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also seen in the log return series. This study considers Normal, skew-Normal, Student-t and
skew-Student-t distributions for innovation terms in the GARCH-type and GAS models.
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Figure 1. Cryptocurrencies’ daily closing prices (left panel) and log returns (right panel).

4.1. Backtesting Results

The VaR backtesting findings for our five sampled cryptocurrencies at the 95% and
99% levels, respectively, are shown in Tables 2–6. The critical values for LRuc, LRCC, and
DQ of 3.84, 5.99, and 9.49, respectively, are used in all tables to reject the hypothesis. On the
other hand, an AE ratio close to 1.00 indicates that the VaR models are estimated accurately.
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Table 2. Bitcoin’s Value-at-Risk Backtesting Results.

Confidence
Level

95% 99%

Mean SD LRuc LRcc AE DQ Mean SD LRuc LRcc AE DQ

GARCH-N −2.876 1.405 1.129 2.249 0.967 2.891 −4.096 1.987 0.452 0.591 1.070 9.43
GARCH-SN −3.028 1.46 3.513 4.198 0.903 5.437 −4.354 2.103 0.033 0.122 1.046 4.275
GARCH-T −2.485 1.415 2.368 3.292 1.37 14.35 * −4.672 2.64 0.033 0.122 1.046 4.018

GARCH-ST −2.256 1.43 1.206 1.419 1.06 6.622 −4.769 2.683 0.033 0.122 1.046 4.297
EGARCH-N −2.908 1.416 2.55 3.368 0.658 4.162 −4.14 2.002 0.033 0.122 1.096 4.981

EGARCH-SN −3.036 1.397 3.512 4.198 0.603 5.23 −4.359 2.004 0.124 0.174 0.922 7.430
EGARCH-T −2.640 1.363 0.172 0.854 1.096 9.557 * −5.353 2.74 0.124 0.174 0.922 7.831

EGARCH-ST −2.694 1.385 0.032 0.934 1.041 5.772 −5.498 2.787 2.805 0.124 0.927 7.910
GJR-N −2.908 1.607 1.129 2.249 0.976 2.901 −4.137 2.272 1.28 1.481 1.644 17.127 *

GJR-SN −3.042 1.613 2.55 3.368 0.958 4.397 −4.765 2.711 0.035 0.128 1.096 27.942 *
GJR-T −2.481 1.428 1.743 2.935 1.315 10.930 * −4.662 2.665 0.033 0.125 1.098 27.850 *

GJR-ST −2.522 1.444 1.743 2.395 1.315 10.970 * −4.765 2.711 0.033 0.122 1.096 27.942 *
GAS-N −7.044 0.98 2.55 3.368 0.958 4.524 −9.98 63.81 0.452 0.591 1.37 35.218 *

GAS-SN −4.742 20.36 3.513 4.198 0.903 6.127 −6.813 29.243 0.033 0.122 1.396 26.761 *
GAS-T −2.495 0.811 0.092 0.147 0.931 6.509 −4.405 1.449 0.038 0.125 1.496 26.876 *

GAS-ST −2.513 0.818 0.818 0.092 0.957 6.509 −4.459 1.469 0.035 0.125 1.096 3.552
CAViaR-AD −2.572 0.763 0.092 1.758 0.931 5.838 −5.142 0.897 0.033 0.122 1.096 4.371
CAViaR-SAV -2.655 1.001 0.304 0.427 0.977 3.724 −4.878 1.133 0.901 0.923 0.948 1.132
CAViaR-AS −2.681 1.236 0.647 0.866 0.922 5.802 −5.146 1.575 0.901 0.923 0.948 0.817
CAViaR-IG −2.77 1.445 0.092 0.147 0.931 4.528 −5.101 2.035 0.124 0.174 1.822 35.196 *

DQR −4.923 1.628 0.304 1.776 0.977 5.637 −4.923 1.628 0.039 0.588 1.041 3.315

* Represents significance at the 5% and 1% levels.

Table 3. Ethereum’s Value-at-Risk Backtesting Results.

Confidence
Level

95% 99%

Mean SD LRuc LRcc AE DQ Mean SD LRuc LRcc AE DQ

GARCH-N −3.748 1.648 1.129 1.477 0.967 3.147 −5.318 2.330 1.280 1.481 1.643 16.950 *
GARCH-SN −3.753 1.677 1.128 1.477 0.967 3.170 −5.328 2.389 1.280 1.481 1.644 16.980 *
GARCH-T −3.420 1.668 0.647 0.886 0.922 2.109 −6.536 3.239 0.033 0.122 1.096 4.970

GARCH-ST −3.230 1.613 0.004 3.631 0.986 8.623 −6.106 3.080 0.452 0.591 1. 070 9.170
EGARCH-N −3.678 1.460 0.647 2.860 0.928 7.965 −5.229 2.065 1.280 1.481 1.644 16.310 *

EGARCH-SN −3.677 1.457 0.647 2.861 0.922 8.022 −5.227 2.073 1.280 1.481 1.644 16.348 *
EGARCH-T −4.039 1.246 2.368 3.299 1.370 17.63 * −5.352 2.740 0.124 0.174 0.922 5.943

EGARCH-ST −3.682 1.110 7.824 * 7.880 * 1.699 30.22 * −5.498 2.804 0.124 0.174 0.922 6.011
GJR-N −3.729 1.727 1.129 1.477 0.967 3.201 −5.293 2.442 1.280 1.481 1.644 17.020 *

GJR-SN −3.735 1.737 1.129 1.477 0.967 3.222 −5.306 2.471 1.280 1.481 1.644 17.040 *
GJR-T −3.421 1.701 0.304 2.123 0.976 6.126 −6.533 3.301 0.033 0.122 1.096 24.842 *

GJR-ST −3.232 1.645 0.004 3.631 0.986 8.604 −6.104 3.137 0.452 0.591 1.370 19.515 *
GAS-N −5.027 12.20 1.129 1.477 0.967 2.832 −7.118 17.23 1.280 1.481 1.644 16.303 *

GAS-SN −4.925 10.77 1.129 1.477 0.967 2.860 −6.983 15.18 1.280 1.481 1.644 16.397 *
GAS-T −3.254 0.863 1.129 3.790 0.898 7.661 −5.724 1.516 0.452 0.591 1. 070 4.353

GAS-ST −3.097 0.922 0.417 2.623 1.259 13.45 * −6.397 1.730 0.452 0.591 1. 070 3.559
CAViaR-AD −3.463 0.327 0.647 1.937 0.922 9.48 −6.397 1.732 0.167 0.594 0.921 3.461
CAViaR-SAV −3.440 0.971 0.647 2.860 0.982 7.574 −6.798 1.437 0.033 0.122 1.096 4.356
CAViaR-AS −3.347 1.223 1.129 1.477 0.967 5.973 −6.675 1.746 0.033 0.122 1.096 4.608
CAViaR-IG −3.503 1.308 0.304 2.123 0.877 5.733 −6.491 2.742 0.033 0.122 1.095 6.038

DQR −3.356 1.676 1.795 2.723 0. 912 3.455 −6.435 1.590 0.352 0.986 1.121 3.241

* Represents significance at the 5% and 1% levels.

The quantile models, such as CAViaR and DQR, outperform the GARCH, EGARCH,
GJR, and GAS type models when analyzing the AE ratio, with values that are closer to
1.00. Comparatively to other models, where the range of the AE ratio values was 0.603
to 1.986, quantile models’ values ranged from 0.877 to 1.150. This demonstrates that the
quantile models permit a more precise risk measurement and may even be thought of as a
better choice than the VaR models. These models directly model the quantiles of the return
distribution without making any distributional assumptions on the residuals, avoiding the
risk of model misspecification. As a result, the procedure is more robust in detecting tail
behaviors and outliers in the data.



Risks 2023, 11, 122 12 of 18

Table 4. Litecoin’s Value-at-Risk Backtesting Results.

Confidence
Level

95% 99%

Mean SD LRuc LRcc AE DQ Mean SD LRuc LRcc AE DQ

GARCH-N −3.896 1.152 0.004 1.173 1.096 6.238 −5.491 1.630 0.452 0.591 1.370 20.120 *
GARCH-SN −3.658 1.165 0.172 0.854 0.932 8.614 −5.112 1.632 2.448 2.772 1.918 15.760 *
GARCH-T −2.896 1.329 3.079 3.784 1.425 16.230 * −5.773 2.582 1.280 1.481 1.644 17.760 *

GARCH-ST −2.914 1.309 3.079 3.785 1.425 16.230 * −5.591 2.518 3.908 5.918 2.192 30.510 *
EGARCH-N −3.901 0.834 0.304 2.123 0.877 9.000 −5.515 1.178 0.033 0.122 1.996 24.440 *

EGARCH-SN −3.695 0.911 0.004 1.173 0.986 6.866 −5.168 1.224 3.908 4.268 2.192 24.420 *
EGARCH-T −3.260 1.277 2.368 3.299 1.370 16.730 * −6.996 2.749 0.124 0.174 1.822 34.200 *

EGARCH-ST −3.150 1.257 2.368 3.299 1.370 17.760 * −6.708 2.686 0.033 0.122 1.596 26.070 *
GJR-N −3.817 1.131 0.004 1.173 0.986 6.650 −5.387 1.599 2.448 2.722 1.918 25.879 *

GJR-SN −3.616 1.166 0.172 0.854 1.099 8.809 −5.061 1.633 3.908 4.268 2.192 23.920 *
GJR-T −2.962 1.292 2.368 3.299 1.0 70 6.880 −5.734 2.513 1.280 1.481 1.644 17.900 *

GJR-ST −2.885 1.270 3.079 3.785 1.425 16.420 * −5.542 2.443 3.908 5.918 2.192 30.560 *
GAS-N −4.030 1.464 0.092 1.564 0.931 5.893 −5.860 2.067 0.452 0.591 1.370 20.780 *

GAS-SN −3.912 1.777 0.004 1.173 0.986 9.100 −5.475 2.489 1.280 1.481 1.644 17.390 *
GAS-T −3.164 0.931 2.368 2.419 1.370 13.460 * −5.544 1.636 0.452 0.591 1.370 20.960 *

GAS-ST −3.097 0.922 2.368 2.419 1.370 13.260 * −5.385 1.604 1.280 1.481 1.644 19.500 *
CAViaR-AD −3.707 0.810 0.004 0.018 0.986 18.610 * −5.972 1.520 0.033 0.122 1.096 4.580
CAViaR-SAV −3.150 0.799 0.763 2.590 1.005 9.070 −6.507 1.278 0.124 0.174 0.822 4.670
CAViaR-AS −3.200 1.077 0.171 0.854 1.096 9.260 −6.772 1.979 0.124 0.174 0.822 3.260
CAViaR-IG −3.166 0.882 0.417 2.623 1.101 9.150 −6.329 1.749 0.033 0.122 1.096 4.750

DQR −3.244 1.026 1.206 1.419 1.061 7.529 −6.531 1.486 24.410 * 24.43 * 0.110 15.360 *

* Represents significance at the 5% and 1% levels.

Table 5. Ripple’s Value-at-Risk Backtesting Results.

Confidence
Level

95% 99%

Mean SD LRuc LRcc AE DQ Mean SD LRuc LRcc AE DQ

GARCH-N −3.463 1.463 6.020 6.476 0.993 6.799 −4.836 2.069 0.452 0.598 1.470 19.540 *
GARCH-SN −3.292 1.486 4.663 5.228 0.948 5.943 −4.583 2.079 0.452 0.591 1.370 19.186 *
GARCH-T −2.599 1.235 0.419 2.684 1.451 9.650 * −4.984 2.430 0.452 0.596 1.345 19.513 *

GARCH-ST −2.570 1.223 0.417 2.624 1.051 6.651 −4.912 2.390 0.452 0.591 1.370 19.533 *
EGARCH-N −3.651 1.174 6.020 6.476 0.993 7.335 −5.079 1.658 0.452 0.591 1.370 20.381 *

EGARCH-SN −4.933 3.210 0.304 0.427 0.977 2.429 −6.889 4.500 3.908 4.268 1.092 8.825
EGARCH-T −4.598 2.637 0.417 0.461 1.101 2.751 −9.912 5.798 0.033 0.122 1.096 0.382

EGARCH-ST −4.472 2.573 0.763 0.864 1.005 4.416 −9.526 5.632 0.452 0.591 1.070 1.692
GJR-N −3.408 1.320 6.020 6.476 0.993 7.121 −4.770 1.866 0.452 0.591 1.370 20.073 *

GJR-SN −3.325 1.325 6.020 6.476 0.993 7.100 −4.642 1.867 0.452 0.591 1.370 19.818 *
GJR-T −2.593 1.197 0.417 2.624 1.125 6.698 −4.979 2.358 0.452 0.591 1.370 19.613 *

GJR-ST −2.653 1.184 0.417 2.624 1.105 6.701 −4.904 2.317 0.452 0.591 1.370 19.603 *
GAS-N −5.027 12.20 11.580 * 14.700 * 0.329 11.650 * −7.118 17.23 7.397 * 7.397 * 0.000 13.746 *

GAS-SN −4.925 10.77 11.580 * 14.700 * 0.329 11.650 * −6.983 15.18 7.337 * 7.337 * 0.000 13.646 *
GAS-T −3.254 0.863 6.020 * 12.030 * 0.493 19.330 * −5.724 1.516 2.730 2.735 0. 974 5.042

GAS-ST −3.098 0.848 6.020 * 12.030 * 0.943 19.710 * −5.388 1.463 2.730 2.735 0.974 5.192
CAViaR-AD −2.858 0.956 0.647 2.861 0.922 9.877 * −6.262 1.806 0.452 0.591 1.370 23.05 *
CAViaR-SAV −2.695 0.840 0.647 2.860 0.922 5.633 −4.838 1.201 0.458 3.591 1.076 5.360
CAViaR-AS −2.743 0.848 0.004 1.173 0.986 4.620 −4.862 1.559 0.468 0.691 1. 072 5.100
CAViaR-IG −2.667 0.949 0.004 3.630 0.986 8.625 −7.672 3.381 0.033 0.122 1.096 0.402

DQR −2.720 0.687 0.647 2.860 0.922 5.919 −5.124 1.177 2.999 3.101 1.010 6.436

* Represents significance at the 5% and 1% levels.

GARCH, EGACRH, and GJR specifications deliver accurate results for the five cryp-
tocurrencies, passing both the the LRuc and LRcc tests at a 99% VaR confidence level.
The DQ test yielded diverse results, with CAViaR passing with SAV, AS, and IG criteria,
whereas other models failed in at least one instance. These models’ AE ratio values are
likewise discovered to be closer to 1.00, indicating their accuracy in simulating the VaR
of cryptocurrencies.
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Table 6. Stellar’s Value-at-Risk Backtesting Results.

Confidence
Level

95% 99%

Mean SD LRuc LRcc AE DQ Mean SD LRuc LRcc AE DQ

GARCH-N −4.203 1.598 4.663 5.228 0.948 6.471 −5.914 2.260 0.124 0.174 0.822 35.160 *
GARCH-SN −3.731 1.454 0.092 0.147 0.931 4.312 −5.126 1.998 0.452 0.591 1.370 18.500 *
GARCH-T −3.685 1.487 0.032 0.032 1.041 3.728 −6.821 2.817 0.124 0.174 1.822 35.060 *

GARCH-ST −3.445 1.415 1.206 2.697 1.260 9.391 −6.227 2.587 0.124 0.174 1.822 35.100 *
EGARCH-N −4.228 1.346 3.513 4.467 0.603 7.728 −5.955 1.904 0.124 0.174 0.822 34.310 *

EGARCH-SN −3.757 1.228 0.304 0.427 0.877 6.226 −5.164 1.686 1.280 1.481 1.644 15.620 *
EGARCH-T −3.753 1.326 0.004 0.018 1.986 10.830 * −7.102 2.584 0.124 0.175 0.792 34.340 *

EGARCH-ST −3.470 1.197 0.763 1.101 1.205 9.980 * −6.343 2.226 0.124 0.179 0.799 34.320 *
GJR-N −4.145 1.488 2.550 3.261 0.958 6.290 −5.847 2.105 0.124 0.174 1.992 35.110 *

GJR-SN −3.720 1.430 0.032 0.939 1.041 5.765 −5.123 1.966 0.033 0.122 1.396 25.750 *
GJR-T −3.682 1.462 0.172 0.854 1.096 5.548 −6.841 2.777 0.124 0.174 1.892 34.980 *

GJR-ST −3.433 1.381 1.206 2.697 1.260 9.600 * −6.238 2.536 0.124 0.174 1.322 35.020 *
GAS-N −4.521 2.330 9.446 * 9.720 * 1.384 10.950 * −6.380 3.294 0.901 0.923 0.548 36.400 *

GAS-SN −4.233 4.054 1.129 1.477 0.967 3.469 −5.818 5.531 0.452 0.591 1.370 19.020 *
GAS-T −3.567 1.807 0.004 0.018 0.986 9.090 −6.298 1.911 0.033 0.122 1.096 25.670 *

GAS-ST −3.537 1.047 0.032 0.032 1.041 9.427 −6.022 1.813 0.033 0.122 1.096 25.650 *
CAViaR-AD −3.371 0.558 0.032 6.266 * 1.541 30.960 * −6.841 2.042 0.452 0.591 1.370 9.515 *
CAViaR-SAV −3.373 0.954 0.417 0.461 1.150 4.202 −5.636 1.111 0.033 0.122 1.096 4.670
CAViaR-AS −3.381 0.793 0.172 0.854 1.096 6.561 −5.999 1.485 0.033 0.122 1.096 4.020
CAViaR-IG −3.410 1.100 0.763 1.101 1.105 5.014 −5.777 1.347 0.124 0.174 0.911 9.070

DQR −3.429 0.852 0.763 4.977 1.105 9.872 * −8.319 3.665 24.410 * 24.430 * 0.110 15.160 *

* Represents significance at the 5% and 1% levels.

4.2. MCS Procedure Results

Table 7 provides a rating of the models for each individual coin in addition to the
results of the MCS process for all cryptocurrencies at 95% and 99% confidence levels. In
addition, several competing SSM models that estimate VaR are listed in the table. Each
value in this table represents the rank of a model inside SSM. Based on the t-statistic, the
ranks summarize the likelihood of discarding a model. The five cryptocurrencies’ SSM
dimensions varied from 8 to 21, which shows that different models have comparable
capacities for predicting VaR.

Table 7. Superior Set of Models Ranking for Each Cryptocurrency.

Confidence
Level

95% 99%

Bitcoin Ethereum Ripple Stellar Litecoin Bitcoin Ethereum Ripple Stellar Litecoin

GARCH-N 9 3 9 12 9 6 11 16 14 11
GARCH-SN 8 15 7 1 7 13 12 17 4 12
GARCH-T 17 16 16 2 20 10 10 9 13 -

GARCH-ST 6 14 6 8 19 7 5 10 7 -
EGARCH-N 12 8 10 10 8 8 13 - 6 -

EGARCH-SN 10 9 15 9 12 12 14 9 12 -
EGARCH-T 20 - 13 - 16 18 - 8 9 -

EGARCH-ST 7 - - - 17 19 - 10 16 -
GJR-N 11 12 14 13 13 11 9 20 18 9

GJR-SN 21 13 12 7 14 9 15 16 - 10
GJR-T 19 11 8 15 21 15 16 18 17 -

GJR-ST 18 17 11 17 18 17 17 14 - -
GAS-N 13 18 18 - 10 21 19 2 15 8

GAS-SN 16 7 17 16 5 20 18 1 11 7
GAS-T 14 10 - 14 11 14 3 4 8 6

GAS-ST 15 - - 11 15 16 8 3 10 5
CAViaR-AD 5 4 1 - 12 5 7 18 - -
CAViaR-SAV 4 5 4 6 3 3 4 12 1 2
CAViaR-AS 1 2 3 4 1 1 2 6 3 3
CAViaR-IG 3 6 5 5 4 4 6 8 2 4

DQR 2 1 2 3 2 2 1 5 5 -
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Except for Stellar, which reached the top rank, all GARCH-T specifications used the
MCS process to achieve higher ranks at the 95% confidence level, which is positive news
for this coin. The EGARCH-T and ST requirements were rejected many times by the MCS
method for Stellar and Ethereum. The GJR criteria were not completely ignored by the
MCS method, although the majority of them received lower rankings. Similar findings
were made for the GAS-ST specs for Ethereum and Ripple.

The CAViaR-AD model, which was rejected for Stellar and placed 12th for Litecoin,
was the only quantile-based model to perform poorly with strong ranks (1st to 6th). How-
ever, it was discovered that the DQR model performed well and consistently for each of
the cryptocurrencies.

Similarly, at the 99% confidence level, the MCS procedure discarded GARCH-T and
GARCH-ST specifications for Litecoin, while EGARCH-T and EGARCH-ST specifications
for Ethereum and Litecoin were discarded multiple times. The GJR-T and GJR-ST spec-
ifications for Stellar and Litecoin were eliminated from the MCS procedure. The MCS
procedure did not reject the GAS model specification, despite not all of them achieving
relatively high ranks.

Similarly, all quantile models performed well with strong ranks (1st to 7th) at a 99%
confidence level, except for the CAViaR-AD model, which was rejected for Stellar and
Litecoin (and placed 18th for Ripple). Furthermore, the CAViaR-SAV ranked 12th for
Ripple. The EGARCH specifications were the worst of all GARCH-type models (especially
in the case of Litecoin).

4.3. Aggregate VaR Backtesting Results

This approach pools the different VaR forecasts and assesses the advantage of indi-
vidual models being pooled within M̂∗1−α. All the models are aggregated and distributed
into two subgroups in M̂∗1−α. The first group includes economic models such as GARCH,
EGARCH, GJR-GARCH, and GAS, while the second group contains quantile models. After
subgrouping, the aggregation procedure is constructed using uniform and exponential sets,
respectively, as weighting sets. Each VaR model is weighted equally in the uniform set,
whereas the exponential set is used for the combination procedure described in Equation
(30). Tables 8 and 9 report the backtesting results of the proposed VaR combinations.

The results of the backtesting of the two subgroups represented by a combination of
VaR models at the 95% and 99% confidence levels are depicted in Table 8. DIST-UNI and
DIST-EXP labeled the aggregation of GARCH, its different variants and GAS models, while
the aggregation of quantile models with uniform and exponential weights is denoted by
Q-UNI and Q-EXP, respectively.

At a confidence level of 95%, the volatility models (such as GARCH, EGARCH, and
GJR) and the GAS models achieved superior results during the aggregation for Bitcoin,
Ethereum, and Stellar, with all specifications passing both tests (including the DQ test).
Except for Litecoin, the aggregation approach of quantile models yields favorable results
for all other cryptocurrencies.

Using the aggregation method, the GARCH-based volatility models and the GAS
models produced superior results for Bitcoin, Ethereum, and Stellar with a 99% confidence
level. Similarly, the aggregation strategy for quantile models yielded positive outcomes
for the same cryptocurrencies. It reveals that the pooled VaR method enhances the perfor-
mance of adverse risk when compared to estimating VaR with a singular model. It also
demonstrates that, in the presence of uncertainty regarding the dynamics of an asset’s
returns, it is advantageous to use a combination of models, as this increases the probability
that the empiricist captures the properties of the asset’s time series and more accurately
describes the nature of its downside risks.

While Table 8 presents the results of the backtesting of the two subgroups represented
by a combination of VaR models, Table 9 displays the results of the VaR aggregation
procedure for all SSM models, regardless of group membership. This table contrasts the
95% and 99% confidence levels for the uniform weights (UNI) for a singular model and
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the exponential weights (EXP) for the VaR aggregation model. We can compare UNI and
EXP using the standard deviation and the AE ratio. In terms of standard deviation and AE
ratio evaluations, the EXP group provides more accurate results for Bitcoin, Ethereum, and
Stellar than UNI at a confidence level of 95%.

Table 8. Backtesting Results for VaR Aggregation Estimates of Models in M̂∗1−α.

Confidence
Level

95% 99%

Mean SD LRuc LRcc AE DQ Mean SD LRuc LRcc AE DQ

Bitcoin
DIST-UNI −3.121 4.850 0.304 0.427 0.977 1.393 −5.052 7.096 0.033 0.122 1.096 5.880

Q-UNI −2.670 1.025 0.647 0.867 0.922 5.477 −5.038 1.184 0.901 0.923 1.048 5.004
DIST-EXP −4.576 19.27 1.760 2.723 0.912 3.871 −5.510 20.43 0.125 0.174 0.992 8.990

Q-EXP −2.866 1.076 0.304 0.427 0.977 4.373 −5.039 1.160 0.901 0.923 0.948 0.913
Ethereum

DIST-UNI −3.943 1.154 3.873 4.387 1.029 9.258 −6.241 1.831 1.280 1.481 1.644 4.716
Q-UNI −3.733 0.839 2.368 2.766 1.070 6.084 −6.433 1.375 0.031 0.123 1.086 3.310

DIST-EXP −3.878 1.174 3.873 4.387 1.079 9.430 −6.195 1.830 1.280 1.481 1.644 4.704
Q-EXP −3.727 0.884 2.368 2.786 1.070 6.181 −6.499 1.412 0.033 0.122 1.096 4.310
Ripple

DIST-UNI −4.833 3.054 0.172 0.182 1.096 1.915 −7.915 5.030 1.281 5.481 1.644 13.610 *
Q-UNI −4.241 1.654 0.032 0.032 1.041 1.597 −8.044 2.734 0.033 0.122 1.096 2.770

DIST-EXP −4.901 3.406 0.417 0.911 1.031 5.460 −7.848 5.196 1.282 5.484 1.644 13.670 *
Q-EXP −4.408 1.162 0.004 0.018 0.986 1.333 −8.735 2.280 0.033 0.122 1.096 2.872
Stellar

DIST-UNI −3.825 1.505 0.092 0.147 1.041 6.239 −6.076 2.382 4.124 * 0.374 1.022 5.041
Q-UNI −3.393 0.760 0.172 0.854 1.096 6.088 −5.858 2.942 0.128 0.174 0. 922 2.520

DIST-EXP −4.089 1.718 1.759 2.270 0.912 4.913 −8.051 4.023 3.908 4.268 1.102 5.120
Q-EXP −3.385 0.652 0.004 1.173 0.986 8.725 −8.770 2.952 0.452 0.591 1.070 3.030
Litecoin

DIST-UNI −3.434 1.163 0.172 0.854 1.296 10.932 * −6.632 2.456 4.033 * 5.122 * 2.096 11.515 *
Q-UNI −3.293 0.786 0.417 0.911 1.051 7.122 −7.952 2.117 2.730 2.735 1.024 12.338 *

DIST-EXP −3.179 1.253 1.743 2.935 1.315 16.700 * −6.863 2.847 4.008 * 5.132 * 1.096 10.580 *
Q-EXP −3.440 0.684 0.417 0.461 1.101 7.980 −7.884 1.992 2.730 2.737 1.274 12.269 *

The aggregation of GARCH and GAS models via uniform and exponential weights are represented by DIST-UNI
and DIST-EXP, respectively. The aggregation of quantile models with uniform and exponential weights are
denoted by Q-UNI and Q-EXP, respectively * Represents significance at the 5% and 1% levels.

Table 9. Backtesting Results for VaR Aggregation Estimates of Models in M̂∗1−α.

Confidence
Level

95% 99%

Mean SD LRuc LRcc AE DQ Mean SD LRuc LRcc AE DQ

Bitcoin
UNI −3.031 4.000 0.304 0.427 0.947 3.934 −5.384 1.781 0.033 0.122 1.096 2.721
EXP −4.415 3.671 1.759 2.722 0.990 3.873 −5.549 1.686 0.033 0.122 1.046 3.219

Ethereum
UNI −3.888 1.050 1.129 1.477 0.867 4.053 −6.287 1.692 1.280 1.481 1.056 4.477
EXP −3.869 1.030 0.304 2.122 0.977 4.049 −6.203 1.582 1.290 1.581 1.016 4.683

Ripple
UNI −4.692 2.702 0.172 0.182 1.056 5.807 −7.946 4.351 0.033 0.122 1.396 12.279 *
EXP −4.877 2.286 0.032 0.032 1.011 9.569 −7.914 4.213 1.280 6.481 * 1.131 13.527 *

Stellar
UNI −3.722 1.351 0.092 0.147 0.931 4.646 −8.254 2.900 0.124 0.174 0.822 9.040
EXP −4.021 1.341 1.129 1.477 1.010 6.931 −7.700 3.070 3.908 4.268 0.992 8.435

Litecoin
UNI −3.401 1.065 0.172 0.854 1.096 8.695 −6.925 2.543 0.033 0.122 1.822 9.564 *
EXP −3.183 1.040 1.743 2.935 1.015 16.700 * −7.145 2.350 0.124 0.174 1.096 2.958

UNI and EXP represent uniform and exponential weights, respectively. * Represents significance at the 5% and
1% levels.

Similarly, the EXP group provides more precise results for Bitcoin, Ethereum, and
Stellar in terms of the SD and AE ratios than the UNI group. Compared to the individual
model, the VaR combination has a lower SD and AE ratio that appears closer to 1.00. It
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indicates that the recommended weighted aggregated method mitigates the impact of
extreme values and reduces forecasting errors. The final conclusion that can be drawn from
these results is that the recommended aggregation method minimizes the overly optimistic
or too conservative forecasts to generate accurate VaR model forecasts.

Nekhili and Sultan (2020) and Jiménez et al. (2020) validate risk measures through
backtesting procedures. In contrast to these studies, we conduct a comprehensive analysis
utilizing an MCS procedure to select the optimal adverse risk model from various mod-
els. Caporale and Zekokh (2019) estimate risk measures using backtesting and the MCS
procedure, similar to our research. Nevertheless, the MCS procedure typically constructs
a superior set of models from competing models with identical forecasting abilities and
cannot reject models with equivalent quality. In contrast, this study incorporates various
VaR forecasts using the weighted average method to produce a single optimal model from
the best set of models. When applied to our sampled cryptocurrencies, the results indicate
that this method strengthens individual VaR projections.

Maciel (2021) forecasts the VaR and ES of cryptocurrencies using jump-robust and
regime-switching models, whereas our study uses a variety of models in addition to
quantile regression models to estimate VaR, especially since quantile regression models
have received relatively less attention for analyzing the downside risks of cryptocurrencies.
Our findings support the notion that forecast combination strategies can produce more
accurate risk management estimates, which can be beneficial for regulators, investors, and
other market participants.

5. Conclusions

Price fluctuations of cryptocurrencies have significant effects on economic activity
and financial markets. Price declines pose significant risks for cryptocurrency miners,
regulatory authorities, businesses, and merchants. Prices of cryptocurrencies can be ex-
tremely volatile and incomparable to that of traditional asset classes, such as bonds and
equities. Consequently, market participants can incur substantial losses at any given time.
In this context, risk measurement is a crucial aspect of risk management, whereby it is
critical to adopt an approach that appropriately models and quantifies the price risk expo-
sure of cryptocurrencies. In this study, we measure the risk exposure via VaR estimation
and examine the performance of various univariate VaR models for five widely traded
cryptocurrencies. We incorporate popular models from the financial literature, including
GARCH, GJR, EGARCH, CAViaR, and the GAS model. We also use the DQR that directly
estimates the conditional quantile and describes its evolution over time using a regression
approach where the coefficients follow a stationary autoregressive stochastic process. We
conduct a backtesting analysis for each model, and its predictive ability of VaR forecasting
is subsequently tested using the MCS procedure.

This empirical analysis suggests that quantile-based models such as CAViaR and DQR
outperform other competitive models for estimating the adverse risk of most cryptocurren-
cies. In addition, integrating multiple VaR models strengthens individual VaR forecasts,
highlighting the significance of the weighted average approach. This study’s findings
have significant ramifications for investors and risk managers utilizing cryptocurrencies
for optimal hedging or investment strategies. First, in the framework of quantile models,
distributional assumptions on the error term are unnecessary, reducing the danger of model
misspecification. Second, we can directly estimate VaR, which is the primary purpose of
this analysis. Moreover, combining GARCH, EGARCH, GJR-GARCH, and GAS models
may improve their performance in situations where they perform inadequately individually.
This contribution is not exhaustive but demonstrates the usefulness of quantile models for
VaR forecasting for the most extensively traded cryptocurrencies. Future research should
further focus on how risk models can be combined to produce optimal risk forecasts and
the methods and criteria for combining such models. Further, the study could extend the
univariate modeling framework to a multivariate context, considering potential correlations
and interconnections between cryptocurrency markets. Cryptocurrency risk management
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will undoubtedly be an important field in the years to come, given its growing popularity
and given the growing demographic that seems to be involved in active trading.
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