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Abstract: In univariate data, there exist standard procedures for identifying dominating features that
produce the largest number of observations. However, in the multivariate setting, the situation is
quite different. This paper aims to provide tools and methods for detecting dominating directional
components in multivariate data. We study general heavy-tailed multivariate random vectors in
dimension d ≥ 2 and present procedures that can be used to explain why the data are heavy-tailed.
This is achieved by identifying the set of the riskiest directional components. The results are of
particular interest in insurance when setting reinsurance policies, and in finance when hedging a
portfolio of multiple assets.

Keywords: multivariate data; heavy-tail distribution; dominating tail behaviour

MSC: 60E05; 91B30; 91B28; 62P05

1. Introduction

It is not uncommon to find heavy-tailed features in multivariate data sets in insurance
and finance (Embrechts et al. 1997; Peters and Shevchenko 2015). Since financial entities
seek ways to reduce the total risks of their portfolios, it is necessary to understand what the
main sources of risks are. Once this is known, one can seek optimal ways of reducing risk.
In insurance, where the multivariate observations could consist of losses of different lines
of business, the companies are typically interested in finding the best-suited reinsurance
policy. In finance, where the data could consist of returns of multiple assets, the aim could
be to find an optimal hedging strategy against large losses. Even though multivariate
heavy-tailed distributions are encountered frequently in various applications, there does
not exist a general framework for analysis.

In earlier research, several models for what a heavy-tailed random vector should mean
have been introduced (Cline and Resnick 1992; Omey 2006; Resnick 2004; Samorodnitsky
and Sun 2016). One of the simplest ways to model the situation is to present a d-dimensional
random vector X in polar coordinates using the length R of the vector and the directional
vector U on the unit sphere Sd−1 so that X = RU. Here, perhaps the simplest assumption
would be that all directions are equally likely, i.e., the random vector U has a uniform
distribution on the unit sphere. In realistic models, some directions are more likely than
others, specifically, when R is large. Efforts have been made to capture the heterogeneity
in the distribution of U by studying, for example, the set of elliptic distributions (Hult
and Lindskog 2002; Klüppelberg et al. 2007; Li and Sun 2009). In addition, alternative
approaches have been suggested by Feng et al. (2017, 2020). However, there are typical data
sets that do not fit well to these assumptions because the support of U is concentrated into
a cone and does not cover the entire set Sd−1. There appears to be a need for models that
allow the heaviness of the tail to vary in different directions, as in Weng and Zhang (2012),
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but which are not restricted by a parametric class of distributions. Ideally, the model should
admit the tail of R to have a more general form than, say, only the form of a power function.

To answer the question of what causes the heavy-tailedness of multivariate data, one
usually selects a suitable norm ‖ · ‖ and analyses the resulting one-dimensional distribution
of ‖X‖ with standard procedures, such as the mean excess plot (Das and Ghosh 2016;
Ghosh and Resnick 2010, 2011), or alternative methods, such as the ones in Asmussen and
Lehtomaa (2017). In practice, given the heaviness identified from the distribution of ‖X‖,
the aim is to analyse the distribution of U and the dependence structure between R and U.
If the conditional distribution exists, we can write

P(R > k | U = x) = e−h(k,x), k ≥ 0, (1)

where h(·, x) is an increasing function for a fixed x ∈ Sd−1. In this setting, the problem is
to identify which set of vectors x ∈ Sd−1 produces the heaviest or dominating conditional
tails of the form (1). The dominating directions are the vectors x ∈ Sd−1, for which the
function h(k, x) grows at the slowest rate, as k→ ∞. Presentation (1) admits the study of a
wide class of distributions.

We derive a presentation for the set of directional components that produce the
heaviest tails, and present a procedure to be used in practical analysis. The analysis is
preliminary in the sense that some of the assumptions could be undoubtedly weakened.
However, the simple assumptions admit a clear presentation of the main ideas without
many technical difficulties. The method applied to the generated data returns a subset of
the space, which gives more information about the distribution than a single number or
vector, but demands less data than a full empirical measure. Furthermore, the original
data do not have to be pre-processed or transformed, and the method is also applicable to
data where, in some directions, the observations are sparse or do not occur at all. This is
different from the grid-based approaches, such as those in Lehtomaa and Resnick (2020),
where the entire space is first divided into cells, and each cell is studied separately. In such
approaches, there can exist empty or sparsely populated cells, which might be problematic
for analysis. The presented methods can be applied, in particular, to analyse financial
data, where extreme observations typically appear in two opposite directions, which might
be unknown.

Notation

Notation 1. For set A, we denote its closure by A or cl(A), its interior by int(A), and its
complement by Ac, and ∅ denotes an empty set. The symbol A\D means set A ∩ Dc. The term
A ⊂ D means A is a subset of D, whereas A ( D implies that A is a proper subset of D. The
notation a(n) = o(b(n)) refers to the little-o notation, and means a(n)/b(n)→ 0, as n→ ∞. We
use the convention log(0) = −∞.

2. Assumptions and Definitions

We write a d-dimensional random vector X, where d ≥ 2, in the form

X = RU, (2)

where R = ‖X‖ and U = X
‖X‖ . Here, we assume that the norm is an lp norm with 1 ≤ p < ∞.

The unit sphere is set Sd−1 = {x ∈ Rd : ||x|| = 1}. Then, we have a geodesic metric on
Sd−1, defined, in detail, in terms of the geodesic distance in Section 2.2. In particular,
the space Sd−1 equipped with the geodesic metric is a complete metric space. Open sets,
balls, and other topological concepts on Sd−1 are defined using this metric. For example,
B(x, ε) ⊂ Sd−1 is an open ball with centre x and radius ε > 0. The Borel sigma-algebra,
the sigma-algebra generated by open sets, is denoted by B, e.g., B(Sd−1). In the case of
spherical or elliptical distributions, we restrict the norm to be the l2-norm denoted by ‖ · ‖2.
This restriction ensures that ellipsoids have their natural interpretation.
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2.1. Assumptions

We need the following conditions in the formulation of the results. The required
conditions are indicated in the assumptions of each result.

Assumption 1. R is a positive random variable with right-unbounded support. For any k ∈ R, it
holds that P(R > k) > 0 and R is heavy-tailed in the sense that limk→∞− log(P(R > k))/k = 0.

Assumption 2. U is a random vector on the unit sphere Sd−1 such that the quantity

P(U ∈ A|R > k)

remains constant for all k > k0 where k0 > 0 is a fixed number that does not depend on the Borel
set A ⊂ Sd−1. In particular, the limiting probability distribution of U | R > k exists, as k→ ∞. In
fact, the limiting distribution on Sd−1 is reached once k > k0.

Assumption 3. The limit limk→∞ g(k, A) exists in [0, ∞] for all Borel sets A ⊂ Sd−1, where
g : (kR, ∞)×B(Sd−1)→ R is defined as

g(k, A) =
log(P(R > k, U ∈ A))

log(P(R > k))
(3)

and kR = sup{k : P(R > k) = 1}.

Remark 1. The condition on heavy-tailedness in Assumption 1 is equivalent to the condition
E(esR) = ∞ for all s > 0, which is the usual definition of a (right) heavy-tailed real-valued random
variable R. The distribution of U does not have to be uniform on the unit sphere Sd−1. In fact, the
distribution of U does not even need to have probability mass in every direction. Assumption 2
provides a simplified setting for the study. This assumption could be alleviated by considering a
suitable mode of convergence for the distributions.

Distributions that satisfy the assumptions include random vectors where all the tail distribu-
tions in a given direction remain unchanged for sufficiently large values. The values close to origin
do not affect the analysis. In particular, the proposed model admits the study of typical asymptotic
dependence structures, such as full dependence, strong dependence, and asymptotic independence,
as defined in Lehtomaa and Resnick (2020). Some concrete examples are provided in Section 5.1.

The risk function of R = ‖X‖ is defined as

h(k) = − log(P(R > k)).

The function h provides a benchmark against which risk functions calculated from subsets
can be compared. In this sense, the function h indicates what the heaviness of the tail will
be in the set of the riskiest directions S. The logarithmic transformation is used widely in
asymptotic analysis. One reason for the use of this particular transformation of the tail
function instead of some other transformation is that, roughly speaking, the function

x 7→ − logP(R > x)

is concave for heavy-tailed R and convex for light-tailed R. Assumption 1 indicates that we
operate in the heavy-tailed regime.

Here, S is the set{
x ∈ Sd−1 : lim

k→∞

log(P(R > k|U ∈ B(x, ε)))

log(P(R > k))
= 1,

P(U ∈ B(x, ε)) > 0, ∀ε > 0

}
. (4)



Risks 2023, 11, 130 4 of 18

The limit in (4) can be written in equivalent forms.

Lemma 1. Let Assumptions 1–3 hold and P(U ∈ B(x, ε)) > 0. Then,

lim
k→∞

log(P(R > k|U ∈ B(x, ε)))

log(P(R > k))
= lim

k→∞

log(P(R > k, U ∈ B(x, ε)))

log(P(R > k))
. (5)

In addition, the quantity in (5) can be written as

lim
k→∞

log(P(U ∈ B(x, ε)|R > k))
log(P(R > k))

+ 1. (6)

Proof. The proof is based on the properties of the logarithmic function. Since P(U ∈
B(x, ε)) > 0 is a constant, it holds that

log(P(R > k|U ∈ B(x, ε))) = log(P(R > k, U ∈ B(x, ε)))− log(P(U ∈ B(x, ε)))

∼ log(P(R > k, U ∈ B(x, ε))),

as k→ ∞, and the claim of (5) is proven. The other claim follows if we multiply and divide
the probability in the numerator of the latter presentation of (5) by P(R > k).

It is seen that the quantities in (5) are equal. However, the interpretations of the two
forms are slightly different. The form on the left compares the decay rates of two tail
functions. The form on the right does not have a tail function in its numerator, but this form
makes monotonicity arguments and situations where P(U ∈ B(x, ε)) = 0 easier to handle.

If the quantities in (5) equal 1, as they do in the definition of set S, the quantity in (6)
equals 0. So, in principle, there are two ways in which a point can belong to set S. A point
belongs to S if B(x, ε) has a positive probability under the limiting measure of Assumption 2
or if the limiting probability is 0 but the function − log(P(U ∈ B(x, ε)|R > k)) grows to
infinity slowly enough. Since we assume in Assumption 2 that the limit distribution is
obtained after some k0, the latter possibility is excluded by the assumptions.

Next, we prove general properties for the function g defined in (3). To simplify
notation, we denote, in short, that

G(A) = lim
k→∞

g(k, A) = lim
k→∞

log(P(R > k, U ∈ A))

log(P(R > k))
, (7)

where A ⊂ Sd−1 is a Borel set.

Lemma 2. Suppose Assumptions 1–3 hold. Then, the following properties hold for the function g
defined in (3) and for the function G defined in (7). In the statements below, we assume that k > kR
and A ⊂ Sd−1 is a Borel set.

(i) g(k,Sd−1) = 1, G(Sd−1) = 1, g(k, ∅) = ∞ and G(∅) = ∞.
(ii) g(k, A) ≥ 1 and G(A) ≥ 1.
(iii) Function g is monotone in the sense that if A ⊂ D ⊂ Sd−1, where D is a Borel set, then

g(k, D) ≤ g(k, A). In addition, G(D) ≤ G(A).
(iv) Suppose A1, . . . , An ⊂ Sd−1 are Borel sets. Then, G(A1 ∪ . . . ∪ An) = min(G(A1), . . . ,

G(An)). In particular, min(G(A), G(Ac)) = 1.

Proof.

(i) Since P(R > k, U ∈ ∅) = 0, it follows that g(k, ∅) = ∞ and G(∅) = ∞. The statements
for Sd−1 follow from the definition of g.

(ii) Since A ⊂ Sd−1, the statements follow from (iii) and (i).
(iii) A ⊂ D implies log(P(R > k, U ∈ A)) ≤ log(P(R > k, U ∈ D)). Dividing by the

negative term log(P(R > k)) yields the claims.
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(iv) Lemma 1.2.15 in Dembo and Zeitouni (1993) combined with Assumption 3 yields

−G(A1 ∪ . . . ∪ An)

≤ lim sup
k→∞

log(P(R > k, U ∈ A1) + . . . + P(R > k, U ∈ An))

− log(P(R > k))

= max

(
lim sup

k→∞

log(P(R > k, U ∈ A1))

− log(P(R > k))
, . . . , lim sup

k→∞

log(P(R > k, U ∈ An))

− log(P(R > k))

)

= −min
(

lim
k→∞

g(k, A1), . . . , lim
k→∞

g(k, An)

)
= −min(G(A1), . . . , G(An)).

On the other hand, G(A1 ∪ . . . ∪ An) ≤ G(Ai) for all i = 1, . . . , n due to (iii). Thus,
G(A1 ∪ . . . ∪ An) = min(G(A1), . . . , G(An)). The fact that min(G(A), G(Ac)) = 1
follows from (i) because the sets A and Ac partition set Sd−1.

In practical applications, the aim is to estimate S from data. Set S is a subset of the
support of U in Sd−1. The following results show that set S is not empty.

Lemma 3. Suppose Assumptions 1–3 hold and G(D) = 1 for a closed set D ⊂ Sd−1. Then,
D ∩ S 6= ∅.

Proof. Suppose P1,P2, . . . is a sequence of finite partitions of D. Assume further that all
sets of the partitions are Borel sets and, for n ≥ 1, Pn+1 is a refinement of Pn such that the
maximal diameter of the sets in Pn converges to 0, as n→ ∞. For example, we could use
dyadic partitions intersected with D.

Suppose n ≥ 1 is fixed and consider the partition Pn = {Pn,1, Pn,2, . . . , Pn,mn} where
the number of sets in Pn is denoted by mn. Based on Part (iv) of Lemma 2, we know
that min(G(Pn,1), . . . , G(Pn,mn)) = G(D) = 1. That is, there is in ∈ {1, . . . , mn}, such that
G(Pn,in) = 1.

The partitionPn+1 is assumed to be a refinement ofPn. So, set Pn,in is possibly partitioned
into smaller sets, and there is a subset, say Pn+1,in+1 ⊂ Pn,in , where in+1 ∈ {1, . . . , mn+1},
which satisfies G(Pn+1,in+1) = 1. Recall that the maximal diameters of the partitioning sets
are assumed to converge to 0. We see that there is a sequence of sets P1,i1 ⊃ P2,i2 ⊃ . . .,
where Pj,ij ∈ Pj and G(Pj,ij) = 1, for all j = 1, 2, . . . . Because Sd−1 equipped with the
geodesic metric is a complete metric space, there must be a limit point in the sequence of
the sets. Let us denote the limit point by x. Because set D is closed, the limit point x ∈ D.

Suppose ε > 0 is fixed. Suppose n is so large that the maximal diameter of the sets
in Partition Pn is less than ε. Then, by construction, there exists set Pn,in ∈ Pn, such that
Pn,in ⊂ B(x, ε). Then, by the monotonicity property (iii) of Lemma 2, we reveal that

G(B(x, ε)) ≤ G(Pn,in) = 1,

and the claim is proven because x belongs to set S by the definition of S.

Corollary 1. Set S defined in (4) is not empty.

Proof. Taking D = Sd−1, it holds that G(D) = 1 by Part (i) in Lemma 2, and thus, set S is
not empty by Lemma 3.

We make an assumption on the form of set S to rule out technically challenging cases
that have little impact on practical applications.
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Assumption 4. Firstly, we assume that there exists an open set in Sc. Secondly, we assume that S
in (4) can be written as

S = T1 ∪ T2,

where T1 is an open subset (possibly empty) of Sd−1 and T2 is a finite collection of individual points
(possibly empty) of Sd−1. We assume that each point in T2 contains positive probability mass of the
limit distribution of U | R > k, as k→ ∞.

Remark 2. Assumption 4 implies that not all directions have the same riskiness. The assumption
also ensures that S does not contain continuous subsets in lower dimensions than d− 1. It admits
directly, e.g., distributions where the riskiest direction is concentrated to a cone or a single vector.
Even if the original distribution of X does not satisfy Assumption 4, it is possible to construct a new
approximating distribution by adding a small independent continuous perturbation to vector U to
obtain a new distribution that satisfies Assumption 4. The perturbation could be, for example, a
random variable that has the uniform distribution on a small ball.

If there exists a joint density of (R, U), or if U is discrete, we can write the conditional
risk or hazard function as

h(k, x) = − log(P(R > k | U = x)),

where h(k, x) is a positive increasing function for fixed x ∈ Sd−1. The notation admits
presenting the conditional risk function in the following simplified way in typical cases.

Example 1.

1. If the random vector X is elliptically distributed with R = ‖X‖2 and U = X
‖X‖2

, its conditional
risk function can be written as

log(P(R > k | U = x)) = c(x)h(k).

Here, c : Sd−1 → R is a function such that c(v) = c(−v) holds for all v ∈ Sd−1. The
function c is a continuous map of Sd−1 to an interval. In general, we set h(k) such that
min c(x) = 1, so h(k) is the risk function in the riskiest direction. In the special case, where
the distribution of X is spherical c(x) is constant.

2. There can be different tail behaviour in different subsets of Sd−1. If there exists a finite partition
A1, . . . , Am of Sd−1, such that the risk function does change given x ∈ Aj, we can write

h(k, x) =
m

∑
j=1

hj(k)1(x ∈ Aj),

where hj(k) refers to the risk function in the direction of set Aj.

2.2. Subsets of the Unit Sphere

For x, y ∈ Sd−1, we define the geodesic metric dist(x, y) as

dist(x, y) = {length of the shortest geodesic connecting x and y}.

In this metric, open balls are subsets of Sd−1 denoted by B(x, r), where vector x ∈ Sd−1

is the centre of the open ball and r > 0. So, B(x, r) = {y ∈ Sd−1 : dist(x, y) < r}. The
corresponding closed ball is denoted by B(x, r). Note that the shape of the ball B(x, r)
depends on the used norm.

Definition 1. For any set A ⊂ Sd−1, we call set

Aδ =
{

x ∈ Sd−1 : dist(x, A) < δ
}
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the geodesic δ-swelling of set A. Here, dist(x, A) is the geodesic distance of x to set A, dist(x, A) =
infa∈A dist(x, a).

By

distH(A, B) = max

{
sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)

}
,

we denote the Hausdorff distance, where dist(a, B) is defined as in Definition 1.

3. Minimal Set of Riskiest Directions

Our aim is to find the riskiest directions. We search for the minimal set that dominates
the tail behaviour of the random vector X in the sense of (4). To this end, we need to identify
sets A ⊂ Sd−1 for which, given δ > 0, the inequality

log(P(R > k, U ∈ A)) > log(P(R > k, U ∈ (Aδ)c))

holds for all values of k large enough. The inequality demands a positive probability
measure of A.

For the next result, we define the collection A of testing sets A ⊂ Sd−1 as follows. Set
A is an element of A if A is a finite union of open balls, such that for all x ∈ Ac and for
all ε > 0, the open ball B(x, ε) contains an open ball B that belongs to Ac. Note that point
x does not have to be in set B. In particular, this guarantees that Ac does not contain any
isolated points.

Theorem 1. Let X = RU ∈ Rd, d ≥ 2, be such that Assumptions 1–4 hold.

S̃ = ∩
{

A ∈ A : lim
k→∞

g(k, A) < lim
k→∞

g(k, Ac)

}
. (8)

Then, S = cl(S̃), where S is as in (4), and cl refers to the closure of the set. Furthermore, for all
δ > 0,

lim
k→∞

log
(
P(R > k, U ∈ S̃δ)

)
log(P(R > k))

= 1 (9)

and

lim
k→∞

log
(
P(R > k, U ∈ (S̃δ)c)

)
log(P(R > k))

> 1. (10)

Proof. The proof of the theorem is performed in steps.

1. WE CLAIM S ⊂ cl(S̃).
Recall that under Assumption 4, set S can be written as the union of int(S) and a finite
number of individual points. We have two cases to cover.
First, we study the case where set T2 of Assumption 4 contains a point. Suppose there
is an individual point x ∈ Sd−1, such that

1 = lim
k→∞

log(P(R > k|U = x))
log(P(R > k))

= lim
k→∞

g(k, {x}), (11)

where the latter equation follows from Lemma 1. Then, x cannot belong to Ac for any
set A ∈ A that satisfies the inequality in (8). To see this, assume, on the contrary, that
x belongs to Ac for some set A ∈ A. Then, due to monotonicity mentioned in (iii) of
Lemma 2,

lim
k→∞

g(k, Ac) ≤ lim
k→∞

g(k, {x}) = 1

by Equality (11). Since limk→∞ g(k, A) cannot be strictly less than 1 by Part (ii) of
Lemma 2, the inequality cannot be true if x is in the complement of a testing set A ∈ A.
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We conclude that x must belong to all testing sets A ∈ A that satisfy the inequality
in (8). So, x ∈ S̃.
Next, we consider the case where set T1 of Assumption 4 contains a point. Suppose
x ∈ int(S). Then, there is a number ε > 0 such that B(x, ε) ⊂ int(S). Let A ∈ A. We
show that x cannot be in Ac for a set A that satisfies the inequality in (8). Assume, on
the contrary, that x ∈ Ac. In this situation, we can find a small ball that is entirely in
the intersection B(x, ε) ∩ Ac. To see this, let ε′ = ε/2. By the definition of the testing
sets in A, the ball B(x, ε′) contains another open ball, say, B(x′, ε′′), which is contained
in Ac. Since B(x, ε′) ⊂ B(x, ε), we see that B(x′, ε′′) ⊂ B(x, ε) ∩ Ac ⊂ int(S) ∩ Ac. So,
because x′ ∈ S, the limit in (4) applied for radius ε′′ states that

lim
k→∞

log(P(R > k|U ∈ B(x′, ε′′)))

log(P(R > k))
= lim

k→∞
g(k, B(x′, ε′′)) = 1.

So, due to the monotonicity mentioned in (iii) of Lemma 2,

lim
k→∞

g(k, Ac) ≤ lim
k→∞

g(k, B(x′, ε′′)) = 1.

In conclusion, any testing set A ∈ A that does not contain x cannot satisfy the
inequality in (8). So, all testing sets that satisfy the inequality must contain x. So,
x ∈ S̃.
The above deductions imply, using the notation of Assumption 4, that int(S)∪ T2 ⊂ S̃,
which implies cl(int(S) ∪ T2) = S ⊂ cl(S̃), and the claim is proven.

2. WE CLAIM cl(S̃) ⊂ S.
The claim is equivalent to Sc ⊂ cl(S̃)c. Let x ∈ Sc. Then, by the definition of S in (4),
either there exists ε > 0, such that P(U ∈ B(x, ε)) = 0, or there exists ε > 0, such that

1 < lim
k→∞

g(k, B(x, ε)). (12)

In the latter case, Inequality (12) also holds when ε is replaced by any ε′ < ε due to
the monotonicity; see (iii) in Lemma 2.
In order to show that x ∈ S̃c, it suffices to find one testing set A ∈ A, such that x ∈ Ac

and A satisfies the inequality of (8). This is because set S̃ is the intersection of all
testing sets that satisfy the inequality.
Let the number ε be such that P(U ∈ B(x, ε)) = 0 or (12) holds. Now, formally setting
A′ = Sd−1\B(x, ε) fulfils the inequality of (8), but this A′ is not a member of the
collection A. However, we can construct a set A ∈ A using a finite number of open
balls, such that A covers set Sd−1\B(x, ε) but does not intersect set B(x, ε/2).
With this set A, we have

lim
k→∞

g(k, A) < lim
k→∞

g(k, Ac) (13)

because Ac ⊂ B(x, ε). More precisely, by monotonicity,

lim
k→∞

g(k, Ac) ≥ lim
k→∞

g(k, B(x, ε)) > 1.

The limit limk→∞ g(k, A) equals 1 according to (iv) of Lemma 2 and so Inequality
(13) holds. In conclusion, x belongs to the complement of this A and consequently
x ∈ S̃c. We have shown that Sc ⊂ S̃c, which is equivalent to S̃ ⊂ S, which implies
cl(S̃) ⊂ cl(S) = S.

3. WE CLAIM THAT (9) AND (10) HOLD.
Let δ > 0 be fixed. Through Parts 1–2 of the proof, we know that

S ⊂ S̃δ. (14)
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Assume, on the contrary, to Claim (10) that

lim
k→∞

log
(
P(R > k, U ∈ (S̃δ)c)

)
log(P(R > k))

= 1. (15)

In particular, set (S̃δ)c is closed, so it must contain a point of S by Corollary 1. This is
impossible by (14), and thus (15) cannot hold as an equality. So, Inequality (10) and,
consequently, by (iv) of Lemma 2, Equality (9) holds.

In the case of elliptically distributed random vectors, the minimal set that dominates
the tail behaviour of the random vector might consist only of singletons that do not have
probability mass. One can still approximate the distribution using the method of Remark 2.
In this example, we use the l2-norm.

Example 2. Let the random vector X be elliptically distributed, such that h(k, u) = c(u)h(k),
where c is a continuous function on Sd−1 that achieves its minimum only at x and −x ∈ Sd−1, and
assume that x and −x are points in set T2 of Assumption 4. Then, for all ε > 0, it holds that

lim
k→∞

g(k, (B(x, ε) ∪ B(−x, ε)) ∩ Sd−1) < lim
k→∞

g(k,Sd−1\(B(x, ε) ∪ B(−x, ε))).

So, S = {x,−x}. Choosing the risk function of R to be h(k), the minimum min c(v) equals one.

Corollary 2. Let X = RU be such that Assumptions 1–4 hold and A ⊂ Sd−1 is a Borel set. If
there exists δ > 0 such that S̃δ ⊂ A, it holds that

lim
k→∞

g(k, A) < lim
k→∞

g(k, Ac). (16)

Proof. The claim follows from (9) and (10) together, with the monotonicity of the
function g.

4. Towards Estimators

In this section, we introduce procedures that can be used to form estimators for
set S based on data. We do not present such estimators explicitly here, but the results
can be used as a theoretical basis for this work. Throughout the section, we use the l2-
norm, so the geodesic distance or great ball distance on the unit sphere Sd−1 is defined
as dist(x, y) = arccos(x · y), where x · y is the dot product of x and y. The metric dist is
discussed in detail, for instance, in Proposition 2.1 of Bridson and Haefliger (2013).

The following lemmas are auxiliary results for Theorem 2.

Lemma 4. Let Sd−1 be the unit sphere of Rd equipped with the l2-norm, and for x, y ∈ Sd−1, let
dist(x, y) = arccos(x · y) be the geodesic distance or the great ball distance on Sd−1. We define
B(x, 0) = {x} for x ∈ Sd−1.

Then, for fixed x ∈ Sd−1 and 0 < r ≤ π, the balls B(x, r) and B(−x, π − r) partition the
unit sphere.

Proof. Since x ∈ Sd−1, it holds 1 = ‖x‖2 = ‖ − x‖2 so −x ∈ Sd−1. To prove the claim,
we show that B(−x, π − r) is the complement of B(x, r) in Sd−1. Since B(x, r) = {y ∈
Sd−1 : dist(x, y) < r}, its complement is set {y ∈ Sd−1 : dist(x, y) ≥ r}. The condition
dist(x, y) ≥ r is, by definition,

arccos(x · y) ≥ r. (17)

Due to the fact that for all x ∈ [−1, 1], arccos(x) + arccos(−x) = π, the condition (17) is
equivalent to arccos(−x · y) ≤ π − r because x and y are unit vectors. The last expression
can be written as dist(−x, y) ≤ π − r. So B(−x, π − r) is the complement of B(x, r) in
Sd−1.
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Lemma 5. Let Sd−1 be the unit sphere of Rd equipped with the l2-norm, and for x, y ∈ Sd−1, let
dist(x, y) = arccos(x · y) be the geodesic distance.

Then, for x, y ∈ Sd−1, x 6= y, x 6= −y there exists δ > 0 such that the intersection
B(y, dist(x, y) + δ/2) ∩ B(x, δ) contains an open set of Sd−1 and B(y, dist(x, y) + δ/2)c ∩
B(x, δ) contains an open set of Sd−1.

Proof. Since y 6= −x and y 6= x, it holds that 0 < dist(x, y) < π due to the definition of the
great ball distance. Take δ < dist(−x, y). By the choice of δ, B(y, dist(x, y) + δ/2), B(x, δ)
and B(y, dist(x, y) + δ/2)c are proper subsets of the unit sphere. Since all three sets are
open, it remains to show that there is a point in each of the intersections of the claim. We
recover the points explicitly.

Since arccos(x) + arccos(−x) = π, it holds π = dist(x,−x) = dist(x, v) + dist(−x, v)
for any v ∈ Sd−1. For y 6= x, y 6= −x there exists a unique minimising geodesic between x
and y. For all points z that lie on this minimising geodesic between x and −y we have that
dist(x,−y) = dist(x, z) + dist(z,−y).

Taking z on this geodesic such that dist(z, x) = 1
4 δ, it holds, by definition, that z ∈ B(x, δ).

Because

dist(y, z) = π − dist(z,−y) = π − (dist(x,−y)− dist(x, z))

= dist(x, y) +
1
4

δ < dist(x, y) + δ/2,

we also have z ∈ B(y, dist(x, y) + δ/2). In conclusion, z ∈ B(y, dist(x, y) + δ/2) ∩ B(x, δ).
On the other hand, taking z′ on the same minimising geodesic between x and −y,

such that dist(z′, x) = 3
4 δ, it holds by definition that z′ ∈ B(x, δ). By similar calculations as

above, it holds that

dist(y, z′) = dist(x, y) + dist(x, z′) > dist(x, y) + δ/2,

so z′ ∈ B(y, dist(x, y) + δ/2)c and hence z′ ∈ B(y, dist(x, y) + δ/2)c ∩ B(x, δ). Thus, both
intersections contain a point, and therefore, an open set.

Algorithm

In this section, we present an algorithm to find the minimal set S that dominates the
tail behaviour of the studied random vectors under suitable assumptions. To this end, we
study the function G defined in (7) for different sets. Due to Theorem 1, the minimal set S in
(4) that dominates the tail behaviour of the random vector is contained in the intersection of
all testing sets that fulfil the inequality in Condition (8). We present a theoretical procedure
for finding the set of the riskiest directions.

We define for Algorithm 1 below a map v 7→ Av, where Av is an open set and v is an
element on the unit sphere Sd−1. The algorithm for finding the minimal set S that dominates
the tail behaviour of the random vectors is presented in two steps. In the theoretical setup,
we perform Step 1 for all v ∈ Sd−1. In practice, we must use a finite collection of vectors
v ∈ Sd−1.

Algorithm 1. The algorithm has two steps.

1. Let v ∈ Sd−1.
If, for some r < π, it holds that G(B(v, r)c) > 1 and G(B(v, r)) = 1 then define
Av = B(v, rv), where rv is the smallest radius fulfilling the condition

lim
k→∞

g(k, B(v, rv)
c) > 1. (18)

In other words,
rv = inf{r > 0 : lim

k→∞
g(k, B(v, r)c) > 1}
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and B(v, rv) is the smallest ball centred around v that contains S.
If G(B(v, r)c) = 1, for all 0 < r < π, set Av = Sd−1 and if G(B(v, r)c) > 1 for all
0 < r < π, set Av = ∅.

2. Set

Ŝ =
⋂

v∈Sd−1

Av.

The sets Av = B(v, rv) are open balls and belong by definition to the set of testing sets
A. Furthermore, the entire unit sphere and the empty set are open sets as well and thus
belong to A. Due to Lemma 4, B(v, rv)c = B(−v, π − rv), Equation (18) can be rewritten in
equivalent form

lim
k→∞

g(k, B(−v, π − rv)) > 1.

So, rv is the smallest radius such that G(B(−v, π− rv)) > 1. The condition that G(B(v, r)c) > 1
for all 0 < r < π implies that the neighbourhood of v does not belong to S and S contains
only of the point v.

The following lemma shows the connection between the choice of set Av and vector
−v, which points to the opposite direction of v.

Lemma 6. Suppose Assumptions 1–4 hold. Then, it holds for any v ∈ Sd−1 and its corresponding
set Av defined in Algorithm 1 that Av = Sd−1 if, and only if, −v ∈ S.

Proof. To prove Av = Sd−1 is equivalent to −v ∈ S, we show that −v ∈ S implies
Av = Sd−1 and −v /∈ S results in Av ( Sd−1.

Let−v ∈ S. Then, by the definition of S for all ε > 0, it holds that P(U ∈ B(−v, ε)) > 0,
and

lim
k→∞

log(P(R > k|U ∈ B(−v, ε)))

log(P(R > k))
= 1,

which is equivalent to G(B(−v, ε)) = 1 due to Lemma 1. As a consequence, the algorithm
chooses Av = Sd−1 because ε > 0 does not exist, such that G(B(−v, ε)) > 1 and B(−v, ε) =
B(v, π − ε)c by Lemma 4.

On the other hand, let −v /∈ S. Then, either P(U ∈ B(−v, ε)) = 0 for some ε > 0, or
for all ε > 0 it holds that P(U ∈ B(−v, ε)) > 0 and there exists ε′ > 0 such that

lim
k→∞

log(P(R > k|U ∈ B(−v, ε′)))

log(P(R > k))
> 1. (19)

In the first case, P(U ∈ B(−v, ε)) = 0 implies G(B(−v, ε)) > 1, and in the second case,
Inequality (19) is equivalent to G(B(−v, ε′)) > 1 by Lemma 1. Due to Lemma 4, B(−v, ε′) =
B(v, π − ε′)c so G(B(v, π − ε′)c) > 1 and by Lemma 2 it holds that G(B(v, π − ε′)) = 1.
Hence, rv ≤ π − ε′ and Av = B(v, rv) ( Sd−1 or Av = ∅.

The estimator does not detect all possible sets. Recall that, in general, we assume
in Assumption 4 that S = T1 ∪ T2, where T1 is an open subset of Sd−1 and T2 is a finite
collection of individual points. For example, if S = T2 or S = T1 ∪ T2, and T2 is not empty,
Algorithm 1 will not detect set T2. If S contains only a singleton, so S = {v} for some
v ∈ Sd−1, it holds that G(B(v, ε)) = 1 and G(B(v, ε)c) > 1 for all ε > 0. Then, the algorithm
sets Av = ∅ so the estimator is empty. In general, it can be seen that the algorithm does not
detect any finite number of individual points in S. However, the procedure described in
Remark 2 can be used to modify data sets in order to avoid problems in practice.

Estimator Ŝ has the capacity to detect sets S that are not necessarily convex or even
connected. Set S can be, for example, a disjointed union of open sets.
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Example 3. A classical football is made of 12 black pentagons and 20 white hexagons. Assume
that the directions U of the random vectors are uniformly distributed on the surface of the foot-
ball. Furthermore, assume that random variables R connected with open black pentagons have
a much heavier tail then random variables R connected with closed white hexagons, such that
G(white part of football) > 1 and G(black part of the football) = 1. If we choose v ∈ S2, such that
−v points towards the centre of a black pentagon, it holds that G(B(−v, ε)) = 1 for any ε > 0,
so the algorithm sets Av = S2. If we choose v ∈ S2, such that −v points in the centre of a white
hexagon, it holds for its closed inscribed circle B(−v, r) that G(B(−v, r)) > 1, so Av does not
contain this closed inscribed circle, and thus Ŝ does not contain it. If we choose v ∈ S2, such that
−v is the centre of an edge of two white hexagons, it holds that G(B(−v, r)) > 1, where r is half
of the length of the edge. Therefore, the edge is not included in set Av, and thus, the edge is not
included in Ŝ. All in all, the intersection of sets Av, where v are such that −v points either in the
direction of the centre of a white hexagon or in the direction of the centre of an edge between two
white hexagons, returns a set that is not connected. Regarding the intersection over all v ∈ S2,
Algorithm 1 would return the union of the closed black pentagons as Ŝ.

To avoid the problem with individual points, we propose a simplifying assumption
for S.

Theorem 2. Suppose Assumptions 1–4 with S = T1. In particular, set S does not contain any
individual points.

Then, it holds that
S = cl(Ŝ),

where Ŝ is as in Algorithm 1.

Proof. The proof of the theorem is performed in steps.

1. We claim S ⊂ cl(Ŝ).
We show that x ∈ int(S) implies x ∈ cl(Ŝ), and then take the closure of the sets to
prove the claim.
Note first that, by Assumption 4, S is a proper subset of Sd−1. Let x be in the interior
of S. Then, there exists some δ > 0 such that B(x, δ) ⊂ S. Furthermore, for all ε > 0, it
holds that

lim
k→∞

log(P(R > k|U ∈ B(x, ε)))

log(P(R > k))
= 1,

which is equivalent to G(B(x, ε)) = 1 due to Lemma 1.
We need to show that x ∈ Av for all v ∈ Sd−1. In the algorithm, set Av can be the
empty set, the unit sphere, or an open ball with centre v. If Av = Sd−1, it contains x
by default.
Let v ∈ Sd−1 be fixed. We show that x ∈ Av. There are different cases to consider.

(a) If v = x, set B(x, δ/2)c contains an open subset of S since

∅ 6= B(x, δ/2)c ∩ B(x, δ) ⊂ B(x, δ) ⊂ S,

so G(B(x, δ/2)c) = 1, and thus, rx ≥ δ/2. It follows that Ax cannot be empty
and x ∈ Ax.

(b) If v = −x, it holds that Av = Sd−1 according to Lemma 6, so x ∈ A−x.
(c) If v ∈ B(x, δ), v 6= x, there exists some δ′ > 0 such that B(v, δ′) ⊂ B(x, δ), so

both sets B(v, δ′) and its complement contain an open subset of S, and thus,
rv ≥ δ′, so Av 6= ∅.
It holds, according to Lemma 5, that both sets B(x, δ) ∩ B(v, dist(x, v) + δ/2)
and B(x, δ) ∩ B(v, dist(x, v) + δ/2)c are not empty. By the monotonicity of G,
it holds that G(B(x, δ) ∩ B(v, dist(x, v) + δ/2)c) ≤ G(B(x, δ)) = 1, so rv ≥
dist(x, v) + δ/2 and x ∈ Av.
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(d) If v /∈ B(x, δ), v 6= −x, there exists, according to Lemma 5, a number δ′ <
min(δ, dist(−x, v)) such that the intersections

B(v, dist(x, v) + δ′/2) ∩ B(x, δ)

and
B(v, dist(x, v) + δ′/2)c ∩ B(x, δ)

are not empty, and, in particular, both contain an open subset. Since B(x, δ) ⊂ S,
it holds that Av cannot be empty. With a similar deduction as in Part 1c, it
follows that x ∈ Av.

2. We claim cl(Ŝ) ⊂ S.
Let x /∈ S. We show that there exists v, such that x /∈ Av. More specifically, we can
choose v = −x.
If P(U ∈ B(x, ε)) = 0 for some ε > 0, it holds that G(B(x, ε)) > 1. Additionally, if
P(U ∈ B(x, ε)) > 0 for all ε > 0, it holds, by the definition of S in (4), that there exists
some ε > 0 such that

lim
k→∞

log(P(R > k|U ∈ B(x, ε)))

log(P(R > k))
> 1. (20)

Inequality (20) is also equivalent to G(B(x, ε)) > 1. According to Lemma 2, it holds, in
both cases, that G(B(x, ε

2 )) > 1. Set A−x is of the form B(−x, r−x) with r−x ≤ π− ε/2,
and it is not set Sd−1. Thus, x /∈ Av when v = −x.

5. Applications and Examples

In practical applications, one has only a finite number of observations. Thus, an
approximation based on a theoretical algorithm is required. Next, we present a starting
point for the formulation of estimators, and study how they perform with data. The
algorithm can be performed with general multidimensional data. Here, we consider
two-dimensional data to keep the results easily presentable.

We define an empirical version of the function g defined in (3). Given observations
x1, x2, . . . , xn in Rd, the empirical version of g is denoted by

ĝ(k, A) =
log
(
]{i : ‖xi‖ > k, xi

‖xi‖
∈ A}/n

)
log(]{i : ‖xi‖ > k}/n)

, (21)

where k > 0 is the user-defined threshold and A is a Borel set on the unit sphere.
In general, if

ĝ(k, A) > 1 + c (22)

holds for set A and some c > 0, it provides evidence for A being in the complement of S. If

ĝ(k, A) < 1 + c, (23)

we gain evidence for A containing at least some subset of S. Since we can calculate the
values of ĝ for any set, the challenge is to perform the calculations in a systematic way and
combine the results to form an estimate for S. The most practical choices for sets A appear
to be open balls centred around a given point on the unit sphere.

5.1. Simulation Study

A simulation study with n =800,000 observations was performed. Assumptions 1–4
are valid by construction. A two-dimensional data set was produced where heavy-tailed
observations are possible in all directions, but some directions are heavier than others. The
space was split into 8 equally sized cones. More specifically, the directional components
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were uniformly sampled within each cone, and each direction was assigned a radius vector
independently. The distribution of the radius was allowed to depend on the cone, but
within each cone, all the radii are i.i.d. random variables. The idea is that, in some of the
cones, the radii are heavier than others, and the objective is to identify such cones.

The original data set is presented in Figure 1a. The red lines indicate how the space
is split. Two of the sectors have heavier Pareto-distributed radial components and the
rest have lighter Weibull-distributed components. In Figure 1a, the cones with Pareto-
distributed radial components are the ones with the largest number of observations, mea-
sured in the l2-norm.

(a) (b) (c)
Figure 1. Illustration of simulated data. The original data set is presented in (a); (b) illustrates which
directions are accepted into or rejected from the final estimate; (c) illustrates the preliminary estimate
for S based on numerical data. The estimate is a projection of two cones onto the unit sphere, even
though the numerically produced image consists of finitely many points.

The idea presented in Inequalities (22) and (23) was studied numerically. The testing
sets D were chosen to be open balls of the form B(v, sv). The radius sv was selected to
be the smallest number such that 10% of all observations had directional components in
B(v, sv). Figure 1b presents the tested directions on the unit sphere. Each point corresponds
to a fixed value of v. We selected a fixed collection of approximately uniformly distributed
points from the unit sphere to be used in place of vector v in the first step of the algorithm.
The red dots are the directions that were rejected, i.e., the value ĝ(k, B(v, sv)) of (21) is too
high given the tolerance c, so that (22) holds. The blue triangles are the accepted centres of
cones from which the final estimate is formed. In the final estimate, we have removed all
open balls that were rejected for some direction v. The values of the parameters were set to
be c = 0.5, and k was such that the top 0.5% of the observations were chosen in l2 norm.

In Figure 1c, the preliminary estimate for S is presented on the unit sphere. The
method correctly identifies the heaviest directions. The estimate seems to be most accurate
near the centres of the cones, and less accurate near the edges between heavier and lighter
radial components.

5.2. On the Detection Accuracy with Pareto Tails

We used the same algorithm as in Section 5.1 to analyse a similar data set, except that
all the radial components have a Pareto distribution. The Pareto index is the heaviest in the
same cones as earlier. The remaining directions have lighter Pareto tails.

The heaviest tail has an index of 2 and the lighter tails have tail index values of 2.3, 2.4,
2.5, and 3 in Figure 2a–d, respectively. The same random seed is used in all simulations.

When the lighter tail parameter is very close to the value of the heavier parameter 2,
the algorithm cannot recover the set of riskiest directions with the given sample size and
selected threshold c, see Figure 3. When the lighter tail parameter is 2.5 or larger, the
produced estimate is rather accurate.
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(a) (b) (c) (d)

Figure 2. Projected original data with Pareto-distributed radial components. The heaviest tail has an
index of 2 and the lighter tails have tail index values of 2.3, 2.4, 2.5, and 3, from left to right.

(a) (b) (c)

(d)

Figure 3. The estimates for the riskiest directions of the data presented in Figure 2a–d are presented
in Figure 3a–d.

5.3. Example with Real Data

We use the algorithm with the same parameters as in Sections 5.1 and 5.2 to study
an actual data set. The data set contains the daily changes in the prices of gold and silver
over a time period ranging from 3 December 1973 to 15 January 2014. It is the same data
set that was used in Section 4.5 of Lehtomaa and Resnick (2020), and, consequently, the
same modifications to the raw data were made. In particular, we used the logarithmic
differences of daily prices in order to obtain a sequence of two-dimensional vectors that are
approximately independent and identically distributed when we study the largest changes.

We studied only the negative changes in daily prices, i.e., when both the prices of
silver and gold declined. Since only the days when both prices moved down are selected
from the data set, the observations are concentrated into two cones. Thus, the coordinates
indicate the size of the daily price drop. This decision was made in order to make the
results comparable with the earlier results. In fact, the data set studied here is the data
set pictured in Figure 9a of Lehtomaa and Resnick (2020), except it contains a few more
observations. For background, the data of Lehtomaa and Resnick (2020) were gathered
from the London Bullion Market Association. In the data set, the price of one ounce of gold
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or silver is recorded each day during the time period from 1973 to 2014. Only complete
cases where the price information was available for both gold and silver were accepted as
part of the data set.

Figure 4b shows the estimate for the riskiest directions. The estimate is consistent
with the earlier result obtained in Lehtomaa and Resnick (2020) in the sense that the
riskiest observations appear to concentrate on a cone, and the riskiest observations are
more concentrated above the diagonal than below it. It should be noted that the analysis
here was performed using Euclidean distance, while the analysis of Lehtomaa and Resnick
(2020) used the l1 distance and diamond plots.

(a) (b)
Figure 4. A preliminary estimate for S in a real data set based on daily changes in the prices of gold
and silver is presented on the right. The left subfigure (a) is a plot of the original data set.

In conclusion, a result that is consistent with the earlier study was obtained, but with-
out the need to verify the assumptions of the multivariate, regularly varying distributions.

6. Conclusions
6.1. On the Interpretation of Estimates

In practice, we only have access to a finite amount of data. In addition, the user must
select suitable values for the parameters c and k in (22) and (23). These seem to be the
main challenges in the accurate detection of the directional components with heaviest tails.
Typically, the parameter values are found by experimentation. One can fix k and increase
the tolerance until some directions are accepted into the final estimate of S.

We state that tail function F1 is heavier than F2 if there exists a number x0 such that

F1(x) > F2(x) (24)

for all x ≥ x0. The problem with real data is that the number x0 can be very large. Conse-
quently, the largest observed data points might not be produced by the heaviest tails if the
size of the data set is not sufficiently large. For example, a lognormal distribution has a
heavier tail than a Weibull distribution with parameter β ∈ (0, 1). If β is close to 0, a typical
i.i.d. sample from these distributions could produce data where the points from a Weibull
distribution appear to be larger. In the multidimensional setting, the direction can affect
the heaviness of the R-variable. For this reason, the interpretation of the estimates is the
following. The estimator recovers the heaviest directional components with respect to the size of
the data set. It does not exclude the possibility that there exist even heavier directional components
than what is detected, and which remain undetected due to the limited number of data points. To
summarise, the estimator detects the directions in which heaviness comparable to that of
one-dimensional data produced by normed observations is obtained.
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6.2. Further Remarks

It seems plausible that the theoretical result in Theorem 1 could be used to create sta-
tistical estimators for set S. For example, given an estimate for the set of riskiest directions,
an insurance company with heavy-tailed total losses could find the root cause of heavy-
tailedness. Here, the cause is found by identifying individual components or interactions
between multiple components that add heavy-tailedness to the total loss. If the company
understands the set of riskiest directions, it is possible to formulate hedging or reinsurance
strategies that potentially mitigate the largest risks. In this sense, understanding the set of
riskiest directions tells us why the entire vector is heavy-tailed, and offers a strategy for
reducing risk.

The presented results offer a starting point for creating rigorous statistical estimators
with a clear workflow that can be implemented as a computer algorithm. At first, one
checks for the heavy-tailedness of the observations by calculating the empirical hazard
function of the normed observations that produce a one-dimensional data set. Once the
heaviness of this one-dimensional data set has been established and the empirical hazard
function turns out to be concave, we can search the directions where the heaviness of
the observations corresponds to the heaviness of the one-dimensional data. A way to
implement the method is to study cones around fixed points and determine the size of
each cone based on a given portion of the total observations, e.g., we can find the smallest
cone that contains 10% of the observations, as in the presented examples. This avoids
the problem encountered with grid-based methods, where the space is divided into cells
of equal size, and where it is possible that some of the cells remain sparsely populated
with observations.

As the examples with simulated and real data show, an algorithm can be also imple-
mented in the case where there are directions with only few observations or no observations
at all. Furthermore, the data do not have to be transformed or pre-processed before apply-
ing the method, but it gives an idea of where the riskiest directions are in the case where,
for instance, some components have different Pareto indices than other components.

Detecting small differences requires a large amount of data. To us, this means that
there must be more data if the tails associated with different directions are almost equally
heavy. The presented idea works best if there exists one or more directions where the tail is
substantially heavier than in other directions. As in earlier models, the practical application
of the method requires some parameters to be set by the user. In particular, choosing the
threshold k is not easy, but this is a well-known problem that exists in different forms in
most heavy-tailed modelling strategies (Nguyen and Samorodnitsky 2012).
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