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Abstract: In this article, we investigate the validity of diversification effect under extreme-value
copulas, when the marginal risks of the portfolio are identically distributed, which can be any one
having a finite endpoint or belonging to one of the three maximum domains of attraction. We show
that Value-at-Risk (V@R) under extreme-value copulas is asymptotically subadditive for marginal
risks with finite mean, while it is asymptotically superadditive for risks with infinite mean. Our major
findings enrich and supplement the context of the second fundamental theorem of quantitative risk
management in existing literature, which states that V@R of a portfolio is typically non-subadditive
for non-elliptically distributed risk vectors. In particular, we now pin down when the V@R is super
or subadditive depending on the heaviness of the marginal tail risk. According to our results, one
can take advantages from the diversification effect for marginal risks with finite mean. This justifies
the standard formula for calculating the capital requirement under Solvency II in which imperfect
correlations are used for various risk exposures.

Keywords: diversification; extreme-value copula; spectral measure; Solvency II; Value-at-Risk

1. Introduction

Measuring the risk of a portfolio of losses is crucial for the computation of total capital
requirement within the Solvency II and Basel II/III regulatory frameworks. In fact, the
Solvency Capital Requirement (SCR) in the framework of Solvency II is calculated by
combining a number of separate risk modules (e.g., market risk, default risk, life risk,
health risk, non-life risk) with linear correlation techniques and corresponds to V@R of
the basic own funds of an (re)insurance undertaking subject to a confidence level of 99.5%
over a one-year time horizon, taking into account the dependencies within and across
risk categories (see Pfeifer and Strassburger 2008; Sandström 2007; Vesa et al. 2007). To
be more specific, if the capital requirement of different risk categories, SCRi, and the
correlation factors, Corri,j, for these risks are provided, together with the intangible asset
risk, SCRintangible, the basic solvency capital requirement (BSCR) can be obtained with the
following formula,

BSCR =
√

∑
ij

Corri,j × SCRi × SCRj + SCRintangible.

The capital requirement of operation risk and an adjustment are then added to BSCR
to obtain the overall SCR. Even though simple models such as correlation matrices are
adopted by Solvency II, the characteristics of V@R under more complicated dependence

Risks 2023, 11, 143. https://doi.org/10.3390/risks11080143 https://www.mdpi.com/journal/risks

https://doi.org/10.3390/risks11080143
https://doi.org/10.3390/risks11080143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0002-4380-0919
https://orcid.org/0000-0001-5096-659X
https://doi.org/10.3390/risks11080143
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks11080143?type=check_update&version=2


Risks 2023, 11, 143 2 of 22

structures are still worth further study. V@R is also the risk measure adopted by Basel II/III
in assessing the market risk, operational risk, and counterparty credit risk. More precisely,
given a collection of d loss random variables, Xi, for i = 1, ..., d, it is of practical interest for
the financial institutions to find the total capital requirement, C, as

C = δ
d

∑
i=1

V@Rp(Xi),

for some δ > 0 and p close to 1. To reflect the effect of diversification, the multiplication
factor, δ, is usually taken to be less than 1. In the Basel III accord, the capital multipliers are
set to be between 3 and 4 to address the issue of model uncertainty.

Under some specific situations, for example, when the risks are elliptically distributed,
V@R is shown to be a coherent risk measure for confidence level p ≥ 0.5; see Embrechts et al.
(2009a) for more details. However, V@R is generally neither subadditive nor superadditive;
this negative result is coined as the second fundamental theorem of quantitative risk
management in Embrechts (2000), which states that V@R is typically non-subadditive for
non-elliptically distributed risk vectors. To fill in a more precise context of this statement,
any sufficient conditions for sub-additivity or super-additivity is much welcome. It is a well-
known fact that comonotonicity warrants the additivity of V@R. Motivated by intensive
discussion concerning the appropriate way to measure the operational risk, Embrechts et al.
(2009b) studied the asymptotic additivity of V@R of multivariate-dependent risks under the
Archimedean copulas, where all the risks are identically distributed with regular variation,
and they showed that either super- or sub-additivity is plausible. It is superadditive when
the regularly varying index is less than one, and subadditive when the index is greater than
one. Hua and Joe (2012) investigated the properties of upper/lower tail comonotonicity
that can be applied to absolutely continuous distributions, and proved the asymptotic
additivity of V@R for random variables that are in the Maximum Domain of Attraction
(MDA) of either Fréchet or Gumbel under the assumptions of tail comonotonicity and
tail equivalence. Cheung et al. (2019) showed the universal asymptotic additivity of V@R
for a portfolio under the upper tail comonotonicity, in which each marginal risk could be
any one having a finite endpoint or belonging to one of the three MDAs, and they are not
necessarily identically distributed nor tail equivalent.

It is challenging to construct multivariate distributions which can properly describe
the dependence structure among a basket of risks. Indeed, while the marginal distributions
are easy to estimate as their data are relatively abundant, the dependence structure among
these variables is much harder to calibrate. People often resort to copulas, especially the
parametric ones with relatively few parameters, to model the dependence structure directly.
Applications of copulas are widely found in various fields, such as actuarial science, quan-
titative finance, econometrics, and environmetrics. In particular, the statistical modeling of
the joint tail distributions attracts most attention, in which multivariate extremes also play
a vital role. Standard general references for copula modeling and studies on multivariate
extremes can be found in the works of Beirlant et al. (2006), Cherubini et al. (2011), de Haan
and Ferreira (1999), Denuit et al. (2005), Falk et al. (2010), Joe (1997), Nelsen (2006), and
Resnick (2013).

After various financial crises, researchers and practitioners became more aware of the
significance of modeling the dependence in the joint tails using appropriate copulas. For
example, Pfeifer and Ragulina (2018, 2021) proposed different copula models generating
the unfavourable V@R scenarios that can be used in the stress tests under Solvency II.
The joint probability of defaults would be underestimated if one uses copulas that cannot
capture the usual tail dependence, which may cause large losses at the portfolio level
and adversely affect the solvency of financial institutions; more details can be found in
some empirical studies and aftermath analyses of the financial crises, e.g., Alm (2016),
Poon et al. (2004). Along with the strict requirements of Solvency II and the increasing
complexity of (re)insurance products, flexible enough copulas with sufficient mathematical
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tractability and the ability of capturing a wide range of tail dependence structures are
much desired in both academia and industry. As a representative example, the family
of extreme-value copulas forms a rich enough semi-parametric yet manageable class of
copulas with positive association; see Beirlant et al. (2006). These copulas originate from the
dependence structures of multivariate generalized extreme value (GEV) distributions. They
stand for the limiting distributions of the component-wise maxima of the marginal random
vectors after normalization. The first monograph of multivariate extreme-value dependence
can date back to the work of Galambos (1978). Extreme-value copulas have been studied
extensively in Beirlant et al. (2006), in which they described both parametric and non-
parametric techniques of the estimation of the multivariate extreme-value dependence
structure. Decent summaries on bivariate and multivariate extreme-value copulas can also
be found in Gudendorf and Segers (2010), Joe (2014), and Kotz and Nadarajah (2000).

To name a few commonly used extreme-value copulas, for instance, the Gumbel–
Hougaard copula is the only one which is also Archimedean (Genest and Rivest 1989).
Some other examples include the Galambos, the Hüsler–Reiss, and the t-EV copulas. In
particular, the Galambos copula was obtained by Galambos (1975) as an extreme-value limit
of the multivariate Pareto distribution, with the Clayton copula as a survival copula. The
t-EV copula is the limiting copula of the component-wise maxima of t-distributed random
vectors (Demarta and McNeil 2005). The Hüsler–Reiss copula is the limiting extreme-value
copula of multivariate t-copulas as its degrees of freedom tend to infinity (Nikoloulopoulos
et al. 2009). Plenty of works are devoted to the construction of other parametric families
of extreme-value copulas. For example, Asimit and Jones (2007) constructed an extreme-
value copula by considering the limiting upper copula of bivariate elliptical distributions.
Hua (2017) proposed a two-parameter bivariate copula family which has a full-range tail
dependence for both upper and lower tails, and also obtained the corresponding extreme-
value copula. Other similar constructions with extension can be found in Su and Hua
(2017).

Generally speaking, an extreme-value copula is characterized by its Pickands depen-
dence function, which is a function on the unit simplex subject to certain shape constraints
(refer to Equation (5) for the explicit form) that arise from an integral transform of the
underlying spectral measure (see Beirlant et al. 2006 for more details). The non-parametric
estimator of the Pickands dependence function was developed in Pickands (1981), while its
extensions can be found in Hall and Tajvidi (2000). Extreme-value copulas are of increasing
practical interest in finance and insurance. For the risk management in the fields of finance
(McNeil et al. 2005) and insurance (Frees and Valdez 1998), the computation of V@R is
demanded by the regulations in accordance with Solvency II and Basel Accords II/III; this
is crucial for financial stability and is the focus of this article.

In this paper, we aim to investigate the validity of the diversification effect for de-
pendent risks by extending the study of the asymptotic sub/super-additivity of V@R. We
focus on risks with identical distribution belonging to one of the three MDAs or having
a finite endpoint, and their dependence structure is specified by extreme-value copulas.
More specifically, we show that V@R is asymptotically subadditive for risks with the
common distribution coming from the Gumbel and Weibull MDAs. Moreover, we prove
that whether V@R is asymptotically subadditive, additive, or superadditive depends on
the value of the regularly varying index if the common distribution is from the Fréchet
MDA. In general, the diversification effect is confirmed for the marginal risks with finite
mean. While these results are a kind of folklore in the fields of extreme value theory and
quantitative risk management, their precise mathematical statements and illustrations
have been absent in the literature due to its non-trivial nature. This article fills this gap by
providing a precise and systematic analysis on the topic. Our key results complement the
second fundamental theorem of quantitative risk management by adding a broad sufficient
condition for sub/super-additivity. It is also worth mentioning that the SCR is calculated
by combining a number of individual risk modules, allowing for diversification credits by
means of correlation matrices or other methodologies. According to our results, one can
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take advantages from diversification for insurable marginal risks with finite mean. This
justifies the standard formula for calculating the capital requirement under Solvency II.

The rest of this article is organized as follows. Section 2 gives a review on some
useful concepts and results related to extreme-value theory and copulas. Section 3 presents
our major theorems, particularly in Sections 3.2–3.4, where we consider the asymptotic
sub/super-additivity for distributions from the Gumbel, Weibull, and Fréchet MDAs,
respectively. Several comprehensive numerical illustrations are provided in Section 4.
These simulation studies demonstrate that the effect of the common marginal distribution
on the tail behaviour of their sum is stronger than that imposed by their dependence
structure. Section 5 concludes our results in the article.

2. Preliminaries
2.1. Overview of Extreme Value Theory

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) non-degenerate
random variables and denote their maximum by Mn := max{X1, . . . , Xn}. Given two
distributions functions, F(x) and G(x), they are of the same type if there exist a > 0 and
b ∈ R such that F(x) = G(ax + b) for all x ∈ R. Here, we introduce an important result of
the extreme value theory.

Theorem 1. Let {Xn} be a sequence of i.i.d. random variables. If there exist norming constants
an > 0 and bn ∈ R, for n = 1, 2, ..., and some non-degenerate distribution function V(x) such that

P(Mn ≤ anx + bn)→ V(x), (1)

then V(x) belongs to one of the following three types of distribution functions: for α > 0,

Gumbel: Λ(x) = exp{−e−x}, x ∈ R;

Weibull: Ψα(x) =

{
exp{−(−x)α}, x < 0,
1, x ≥ 0;

Fréchet: Φα(x) =

{
0, x ≤ 0,
exp{−x−α}, x > 0.

These three distributions are called extreme value distributions. We say that a random
variable, X, belongs to the Maximum Domain of Attraction (MDA) of the extreme value
distribution, V = Λ, Ψα, or Φα (Gumbel, Weibull, or Fréchet distribution, respectively),
if there exist constants an > 0, bn ∈ R, for n = 1, 2, ..., such that (1) holds. We also write
it as X ∈ MDA(V). The three MDAs cover essentially all the distributions that are of
interest in finance, insurance, and quantitative risk management. As a brief introduction
of the characteristics of the three MDAs, distributions in MDA(Φα) have the heaviest tail.
Distributions in MDA(Λ) are the intermediate cases, which can have a finite or an infinite
endpoint. Distributions in MDA(Ψα) are light-tailed and have a finite endpoint. Through
out this paper, we use xF to denote the endpoint of a distribution for easy communication,
i.e., the distributoin has a measure of 0 whenever x > xF.

Furthermore, the underlying distribution function of the risk can also be used to
identify the class of MDA to which it belongs. Denote the survival function of F by F. A
distribution, F, lies in MDA(V) with norming constants an > 0 and bn ∈ R if and only if
limn→∞ nF(anx + bn) = − ln V(x) for any x ∈ R, where the right-hand side is interpreted
as ∞ if V(x) = 0.

For a non-decreasing function, h on R, we denote the generalized inverse of h by

h←(t) := inf{u ∈ R : h(u) ≥ t}.

Then, we can have the following choices of the norming constants. Their derivations can
also be found in Embrechts et al. (2013) and Resnick (2013).
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Proposition 1. For a distribution F ∈ MDA(V), the norming constants can be chosen as:

1. if V = Λ, take an = a(bn) and bn =
(
1/F

)←
(n), where the function a is

a(x) =
∫ xF

x

F(u)
F(x)

du, x < xF;

2. if V = Ψα, take an = xF −
(
1/F

)←
(n) and bn = xF;

3. if V = Φα, take an =
(
1/F

)←
(n) and bn = 0.

These representations of norming constants will be used in our proofs of the main results.

2.2. Copulas

Copula has been a popular tool in financial and insurance industries and can be used
to identify the potential statistical arbitrage opportunities in the financial markets and
the dependence structure among various risks faced by the insurance companies. More
applications can be found in standard references for quantitative risk management, such
as McNeil et al. (2005). In this subsection, we provide a quick review on the theory of
copulas, especially the extreme-value copula, which motivates our work in the coming
section. More details on the theory of copulas and extreme-value copulas can be found in
Gudendorf and Segers (2012), Joe (1997), and Nelsen (2006).

A d-dimensional copula is a multivariate distribution on [0, 1]d with the standard
uniform marginals. For a d-dimensional distribution function, F, with the marginals
F1, . . . , Fd, in accordance with Sklar’s theorem (see Theorem 2.10.9 in Nelsen 2006), one
can find a d-dimensional copula C such that for all x = (x1, . . . , xd) ∈ Rd, we have an
alternative representation of:

F(x1, x2, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd) = C(F1(x1), F2(x2), . . . , Fd(xd)). (2)

For any copula C satisfying (2), we call it a copula of F or a copula of random vector
X. In addition, if all the marginal distributions, F1, . . . , Fd, are continuous, the copula C is
unique. From the expression of Equation (2), we can see that the copula demonstrates the
dependence structure between the underlying random variables.

Equation (2) focuses on the joint distribution of the lower tail. Here, we introduce
its upper tail counterpart, which is relevant to our discussion on upper tail dependence
structure. It is known as the survival copula. For any random vector, X, we define the
survival copula of X by Ĉ, where

Ĉ(F1(x1), . . . , Fd(xd)) := P(X1 > x1, . . . , Xd > xd), x ∈ Rd.

For the survival copula Ĉ, we further have Ĉ(u1, . . . , ud) = C(1− u1, . . . , 1− ud) where

C(u1, . . . , ud) := 1 + ∑
J⊂{1,...,d}

(−1)|J |CJ (ui, i ∈ J ),

and CJ is the J -margin of the copula C with |J | being the cardinality of the subset J .

Now, we introduce the family of extreme-value copulas, whose first construction dates
back to Deheuvels (1984) and Galambos (1978). The following definition and representation
of extreme-value copulas are adapted from Gudendorf and Segers (2010, 2012).

Definition 1. A copula C is called an extreme-value copula if there exists a copula CF such that

Cn
F(u

1/n
1 , . . . , u1/n

d )→ C(u1, . . . , ud) as n→ ∞, (3)

for all (u1, . . . , ud) ∈ [0, 1]d. Moreover, the copula CF is said to be in the domain of attraction of C.
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A d-dimensional copula C is max-stable if it satisfies C(u1, . . . , ud) = Cm(u1/m
1 , . . . , u1/m

d )

for all integers m ≥ 1 and all (u1, . . . , ud) ∈ [0, 1]d. A max-stable copula is in its own domain
of attraction and so is an extreme-value copula itself. To show that extreme-value copulas
are max-stable, consider a fixed integer, m ≥ 1 and n = mk; clearly n → ∞ as k → ∞.
Moreover,

Cn
F(u

1/n
1 , . . . , u1/n

d ) = Cmk
F (u1/mk

1 , . . . , u1/mk
d )→ Cm(u1/m

1 , . . . , u1/m
d ) as k→ ∞, while

Cn
F(u

1/n
1 , . . . , u1/n

d )→ C(u1, . . . , ud) as n→ ∞.

Hence, a copula is an extreme-value copula if and only if it is max-stable.
To introduce more on the properties of extreme-value copulas, let Sd−1 = {(w1, . . . , wd) ∈

[0, ∞)d : ∑j wj = 1} be the unit simplex in Rd. We provide an alternative expression of the
extreme-value copula given by Gudendorf and Segers (2012), where the result is in turn
adapted from de Haan and Resnick (1977) and Pickands (1981).

Proposition 2 (Theorem 2.2 of Gudendorf and Segers 2012). A d-dimensional copula C is an
extreme-value copula if and only if there exists a finite Borel measure H on Sd−1, called spectral
measure, such that

C(u1, . . . , ud) = exp(−l(− ln u1, . . . ,− ln ud)), (u1, . . . , ud) ∈ (0, 1]d,

where the tail dependence function, l : [0, ∞)d → [0, ∞), is given by

l(x1, . . . , xd) =
∫
Sd−1

d∨
j=1

(wjxj)dH(w1, . . . , wd), (x1, . . . , xd) ∈ [0, ∞)d. (4)

The spectral measure, H, is arbitrary, except for the following d moment constraints∫
Sd−1

wjdH(w1, . . . , wd) = 1, j ∈ {1, . . . , d}. (5)

This expression will be used in deriving the our main results in Section 3.

3. Model Setting and Main Results
3.1. Dependence Structure

Let X1, . . . , Xd ≥ 0 be loss random variables defined on a probability space (Ω,F ,P)
for a fixed d ≥ 2. We assume that X1, . . . , Xd have the same continuous marginal distribu-
tion function, F, and their dependence structure is specified by a d-variate extreme-value
copula. Some examples of extreme-value copulas can be found in Table 1. In general, when
the risks are not identically distributed, the risk with the heaviest tail dominates the others
and determines the tail characteristics of the aggregated risk (see Cheung et al. 2019 for
more details).

For any random variable, X, with distribution function F, its Value-at-Risk V@Rp(X)
at the level p ∈ (0, 1) is defined as

V@Rp(X) := inf{t ∈ R : F(t) ≥ p}.

For a given limiting point, t∗ ∈ [−∞, ∞], we write h(t) ∼ g(t) if limt→t∗ h(t)/g(t) = 1.
Denote Sd := X1 + · · ·+ Xd as the finite sum of d random variables and the subscript d in Sd
will be discarded without any cause of ambiguity. We also use the notation N := {1, 2, . . .}.

It is a popular research topic to study the tail distribution of a portfolio with similar
dependent risks. For instance, Bäuerle and Müller (1998) provided some natural models for
travel insurance or health insurance portfolios with the same marginal distributions and
compared two portfolios with different dependence structure with respect to their stop-loss
premiums. Frey and McNeil (2001) considered the modelling of dependent defaults in
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large credit risk portfolios using latent variable models and mixture models. Kremer (1998)
established the upper bounds for the largest claims reinsurance premiums under different
kinds of claims dependence. In the following, we shall study the portfolios of risks from
different MDAs.

Table 1. Examples of extreme-value copulas.

Name of Copula d-Variate Form C(u1, . . . , ud) Note

Gumbel–Hougaard exp
[
−
(
(− ln u1)

α + · · ·+ (− ln ud)
α)1/α

]
α ∈ [1, ∞]

Galambos exp
[

∑I⊂{1,...,d}(−1)|I|
(

∑i∈I |ln(ui)|−α
)−1/α

]
α ∈ (0, ∞)

Hüsler–Reiss 1 exp[−lHR(− ln u1, . . . ,− ln ud)] αi ∈ (0, ∞)
t-EV 2 exp

[
− lt(− ln u1, . . . ,− ln ud)

]
—

1 Consider i, j, k ∈ {1, . . . , d}. Given a correlation matrix, Σ = {ρi,j}, and a positive scale vector, ααα := (α1, . . . , αd).

Let ûi := − ln ui , ûuu := (û1, . . . , ûd), and then lHR(ûuu; Σ, ααα) := ∑d
i=1 ûiΦd−1

(
ηi,j
2 + η−1

i,j ln
(

ûi
ûj

)
, j 6= i; Γi

)
, where Φd

is the d-dimensional standard normal distribution function. For j 6= i, ηi,j =
1

α1αj

(
α2

i + α2
j − 2ρi,jαiαj

)1/2
and

ηi,i = 0 for all i. The (d− 1)× (d− 1) partial correlation matrix, Γi , is given by Γi =
{

ρj,k;i
}

j,k 6=i , where ρj,k;i =

η2
i,j+η2

i,k−η2
j,k

2ηi,jηi,k
for j, k 6= i. 2 Consider i, j, k ∈ {1, . . . , d}. Let wi := − ln ui , ûuu := (û1, . . . , ûd) and then lt(ûuu; Σ, ν) :=

∑d
i=1 ûiTd−1,ν+1,Ri

(
√

ν+1√
1−ρ2

ij

[( ûj
ûi

)− 1
ν − ρij

]
, j 6= i

)
, where Td,ν,Σ denotes the d-variate t-distribution function with

degree of freedom ν and dispersion matrix Σ = {ρi,j}. Ri is the (d− 1)× (d− 1) partial correlation matrix where

Ri =
{

ρj,k;i
}

j,k 6=i and ρj,k;i =
ρj,k−ρi,jρi,k√
1−ρ2

i,j

√
1−ρ2

i,k

for j, k 6= i.

3.2. Across the MDA of Gumbel with an Infinite Right Endpoint

In this subsection, we assume that Xi lies in the MDA of the Gumbel distribution with
an infinite right endpoint, i.e., for x ∈ R,

lim
n→∞

nF(anx + bn) = e−x, (6)

where an = a(bn), a(x) =
∫ ∞

x
F(u)
F(x)

du, bn = F←(1− 1/n).
Here, we show that V@R is asymptotically subadditive. That is, there is diversification

for these risks from Gumbel.

Theorem 2. Suppose that X1, . . . , Xd are identically distributed and X1 ∈ MDA(Λ) with infinite
right endpoints, we have

lim sup
p→1

V@Rp(S)

∑d
i=1 V@Rp(Xi)

≤ 1.

Proof. Under the assumption that X1, . . . , Xd are identically distributed and they lie in the
MDA of the Gumbel distribution, by Theorem 1.1.2 in de Haan and Ferreira (1999),

lim
s→∞

sP(Xi > ā(s)t + b̄(s)) = e−t, t ∈ R, (7)

where ā(s) := a[s] and b̄(s) := b[s], with [s] being the integer part of s. Here, we discard the
subscripts of the common marginal distribution function, Fi, and survival function, Fi, of
the random variables for simplicity. Note that

s · P
(

d

∑
i=1

Xi > dā(s)t + db̄(s)

)
≤ s · d · F(ā(s)t + b̄(s)), t ∈ R.
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Hence,

lim sup
s→∞

s · P
(

d

∑
i=1

Xi > dā(s)t + db̄(s)

)
≤ d · e−t, t ∈ R. (8)

With Equation (8), fix any t0 > 0, let δ > 0 be arbitrary, we define ε := e−t0 /(1 + δ) > 0.
Then, there exists T∗1 (t0, δ) > 0 such that for all s ≥ T∗1 (t0, δ),

P
(

d

∑
i=1

Xi > dā(s)t0 + db̄(s)

)
≤ d · e−t0 + ε

s
=

ε

s
((1 + δ)d + 1) =:

ε

s
D. (9)

On the other hand, by (7), there exists T∗2 (t0, δ) such that for all s ≥ T∗2 (t0, δ) and i ∈
{1, . . . , d},

P
(
Xi > ā(s)t0 + b̄(s)

)
≥ e−t0 − ε

s
=

ε

s
δ. (10)

Using (9) and (10), for all s ≥ T∗1 (t0, δ) ∨ T∗2 (t0, δ), we have

V@R1− εD
s

(
d

∑
i=1

Xi

)
≤ dā(s)t0 + db̄(s) ≤ dV@R1− εδ

s
(X1). (11)

By Lemma 2.4 of Asimit et al. (2011), we know that

lim
s→∞

V@R1− εδ
s
(X1)

V@R1− εD
s
(X1)

= 1. (12)

For any s > 0, define

p(s) := 1− εD
s
→ 1 as s→ ∞, and

q(s) := q(p(s)) = 1− δ

D
(1− p(s)) = 1− εδ

s
→ 1 as s→ ∞.

Let R(p) := V@Rp(S)

∑d
i=1 V@Rp(Xi)

. If lim supp→1 R(p) > 1, for any k ∈ N, there exists sk > 0 such

that p(sk) ∈ (1 − 1
k , 1) and R(p(sk)) ≥ 1 + ζ for some ζ > 0. We have sk → ∞ and

p(sk)→ 1 as k→ ∞. By (11) and (12),

1 + ζ ≤ lim sup
k→∞

R(p(sk)) = lim sup
k→∞

V@Rp(sk)
(S)

d V@Rp(sk)
(X1)

= lim sup
k→∞

V@R1− εD
sk
(S)

d V@R1− εD
sk
(X1)

≤ lim sup
k→∞

V@R1− εδ
sk
(X1)

V@R1− εD
sk
(X1)

= 1,

which leads to a contradiction, and hence lim supp→1 R(p) ≤ 1.

Note that the proof above does not require any assumption on the dependence struc-
ture, and hence the theorem holds true for all copulas.

3.3. Marginals with a Finite Right Endpoint

In this subsection, we investigate the case when the random variables Xi’s have a finite
right endpoint. Examples include those belonging to the MDAs of Weibull or Gumbel with
a finite right endpoint. For these random variables, we prove that V@R is asymptotically
additive.
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Theorem 3. Suppose that X1, . . . , Xd are random variables with the same marginal distribution
and finite right endpoint, xF. If their dependence structure is specified by an extreme-value copula,
then we have

lim
p→1

V@Rp

(
d

∑
i=1

Xi

)
= lim

p→1

d

∑
i=1

V@Rp(Xi) =
d

∑
i=1

xF.

Proof. We follow the proof of Theorem 4.9 in Cheung et al. (2019). It suffices to prove that

∑d
i=1 Xi has an upper endpoint, ∑d

i=1 xF. Denote I
i1,...,i|J|
|J| :=

∫
Sd−1

∨
i∈J

widH(w1, . . . , wd) and

J(1)k , . . . , J
(Cd

k )

k to be the index sets when |J| = k, then

P
(

d

∑
i=1

Xi >
d

∑
i=1

xF − ε

)

≥ P
(

d⋂
i=1

{Xi > xF − ε/d}
)

= Ĉ
(

F(xF − ε/d), . . . , F(xF − ε/d)
)

= 1 + ∑
J⊂{1,...,d}

(−1)|J|CJ(F(xF − ε/d), . . . , F(xF − ε/d))

= 1 + ∑
J⊂{1,...,d}

(−1)|J| exp

− ∫
Sd−1

∨
i∈J

(
− wi ln F(xF − ε/d)

)
dH(w1, . . . , wd)


= 1 + ∑

J⊂{1,...,d}
(−1)|J|F(xF − ε/d)I

i1,...,i|J|
|J|

=: G(F(xF − ε/d)).

Consider the slope of G(x) when x = 1,

dG(x)
dx

∣∣∣∣∣
x=1

=
d

∑
k=1

(−1)k ∑
J⊂{1,...,d},|J|=k

Ii1,...,ik
k

=
∫
Sd−1

d

∑
k=1

(−1)k
Cd

k

∑
i=1

(
∨

j∈J(i)k

wj)dH

= −
∫
Sd−1

d∧
i=1

widH < 0,

where the last equality follows the maximum–minimum identity. Together with the fact
that G(1) = 0, we can conclude that P

(
∑d

i=1 Xi > ∑d
i=1 xF − ε

)
> 0. Therefore, ∑d

i=1 xF is

the right endpoint of ∑d
i=1 Xi.

3.4. Across the MDA of Fréchet

In this subsection, we assume that for each Xi, the tail distribution, F = 1− F, is
regularly varying at infinity with index −β < 0, i.e.,

lim
x→∞

F(tx)
F(x)

= t−β.
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This assumption is equivalent to saying that each Xi lies in the MDA of the Fréchet distri-
bution, i.e., Xi ∈ MDA(Φβ). Here, we define ∆(β) to be the ratio of the tail distribution of
the sum S to that of the individual random variable Xi (if the limit exists), that is

∆(β) := lim
x→∞

P(S > x)
P(Xi > x)

. (13)

From Barbe et al. (2006), we notice some important and useful information for our further
analysis. When Xis are mutually independent, ∆(β) = d; at the other extreme when Xis are
comonotonic, i.e., X1 = · · · = Xd almost surely, ∆(β) = dβ. In particular, when X′i s exhibit
multivariate regular variation of index −β, we have

∆(β) =
∫
Sd−1

(w1/β
1 + · · ·+ w1/β

d )β H(dw). (14)

We first show that the joint distribution with an extreme-value copula and identical
Fréchet-type marginals exhibits multivariate regular variation.

Proposition 3. Suppose that for a multivariate distribution, F, its copula CF is an extreme-value
copula and has identical marginal distributions, Fi ∈ MDA(Φβ), then F is multivariate regularly
varying with index −β.

To prove Proposition 3, we introduce two lemmas which are adapted from Li (2013)
and Beirlant et al. (2006), respectively.

Lemma 1. Suppose that G is a d-dimensional extreme-value distribution with all marginals Gj =
Φβ, and F is another d-dimensional distribution with identical marginals, then F is multivariate
regularly varying if and only if there exist constants an,j > 0, bn,j for all j, such that

Fn(an,1x1 + bn,1, ..., an,dxd + bn,d)→ G(x) as n→ ∞, for all x.

That is, F ∈ MDA(G).

Lemma 2. If G is a d-dimensional extreme-value distribution with marginals Gj and copula CG,
then F ∈ MDA(G) if and only if there exist constants an,j > 0 and bn,j for all j, such that

lim
n→∞

Cn
F(u

1/n
1 , ..., u1/n

d ) = CG(uuu), uuu ∈ [0, 1]d, and

Fn
j (an,jxj + bn,j) → Gj(xj) as n→ ∞.

Proof of Proposition 3. Since Fj ∈ MDA(Φβ) for all j, there exist constants an,j > 0 and
bn,j, such that

Fn
j (an,jxj + bn,j)→ Φβ(xj) for all j, as n→ ∞.

Moreover, the extreme-value copula CF is max-stable, hence,

lim
n→∞

Cn
F(u

1/n
1 , ..., u1/n

d ) = lim
n→∞

CF(uuu) = CF(uuu), uuu ∈ [0, 1]d.

With Lemma 2, we have F ∈ MDA(G), where G has copula CF and identical marginals Φβ,
which further implies that F is multivariate, regularly varying by Lemma 1.

We have shown that Equation (14) holds with identical Fréchet-type marginals and
an extreme-value copula dependence structure. Now we provide more essential results
related to ∆(β) based on (14).
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Lemma 3. For a multivariate distribution, F, with identical marginals, Fi ∈ MDA(Φβ), if its
dependence structure is specified by an extreme-value copula, then the following properties hold true
for H and ∆:

(i) H(·)/d is a cumulative distribution function on Sd−1;
(ii) ∆(β) is increasing in β;
(iii) ∆(1) = d; and
(iv) min(dβ, d) ≤ ∆(β) ≤ max(dβ, d).

Proof. We provide a proof with a similar structure as in Lemma 3.1 of Embrechts et al.
(2009b).

(i) By Equation (5) and the condition of ∑i wi = 1 on Sd−1, we have H(Sd−1)/d = 1 for
the measure H. Thus, the statement follows.

(ii) Denote λ(β) := (w1/β
1 + · · ·+ w1/β

d )β, then

λ′(β) =

(
d

∑
i=1

w1/β
i

)β−1[( d

∑
i=1

w1/β
i

)
ln

(
d

∑
i=1

w1/β
i

)
−

d

∑
i=1

w1/β
i ln(w1/β

i )

]
≥ 0.

Hence, λ(β) is an increasing function of β and so is ∆(β).
(iii) With Equation (14), when β = 1, note that

∫
Sd−1

wi H(dw) = 1 for i ∈ {1, . . . , d} and
∑i wi = 1 on Sd−1; adding all these d equations gives the result.

(iv) From (ii) and (iii), ∆(1) is an upper bound of ∆(β) for β ≤ 1, while there is a lower
bound of it for β ≥ 1. On the other hand, by Jensen inequality, dβ is the lower bound of

d
(

∑d
i=1 w1/β

i

)β
for β ≤ 1 while there is an upper bound of it for β ≥ 1. Since H(·)/d

is a cumulative distribution function on Sd−1, we can combine the two bounds for
both ranges and obtain the inequalities.

Lemma 3 leads to our main result for this subsection: when all the identically dis-
tributed losses Xi ∈ MDA(Φβ) and their dependence structure is specified by an extreme-
value copula, whether V@R is asymptotically subadditive or superadditive depends on β.
We find that diversification remains valid for the marginal risks with finite mean (β > 1).

Theorem 4. Suppose that X1, . . . , Xd are identically distributed with X1 ∈ MDA(Φβ) and their

dependence structure is specified by an extreme-value copula, denote L := limp→1
V@Rp(S)

∑d
i=1 V@Rp(Xi)

,

then

(i) for β > 1, L ≤ 1, V@R is asymptotically subadditive;
(ii) for β < 1, L ≥ 1, V@R is asymptotically superadditive;
(iii) for β = 1, L = 1, V@R is asymptotically additive.

Proof. We first show that limp→1
V@Rp(S)
V@Rp(Xi)

= (∆(β))1/β. The result of Barbe et al. (2006)

ensures the existence of the ∆(β). Then, by the regularly varying property of Fi and (13),
for any i,

1 = lim
x→∞

P(S > x)
∆(β)P(Xi > x)

= lim
x→∞

P(S > x)
P(Xi > (∆(β))−1/βx)

= lim
x→∞

P(S > x)
P((∆(β))1/βXi > x)

.
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With Lemma 3.3 of Cheung et al. (2019), we have

lim
p→1

V@Rp(S)
V@Rp(∆(β)1/βXi)

= 1,

and so

lim
p→1

V@Rp(S)
V@Rp(Xi)

= (∆(β))1/β.

Therefore, limp→1
V@Rp(S)

∑d
i=1 V@Rp(Xi)

= (∆(β))1/β

d .

From Lemma 3, we know that ∆(β) ≤ dβ for β ≥ 1, ∆(β) ≥ dβ for β ≤ 1 and ∆(1) = d.
Hence, the claim follows.

Using the same technique as the proof of Theorem 2, we can derive a rough upper
bound for the V@R ratio (the V@R of the sum to the sum of the V@Rs) for random variables
with distribution within the MDA of Fréchet.

Theorem 5. Suppose that X1, . . . , Xd are identically distributed and X1 ∈ MDA(Φβ), then we
have

lim sup
p→1

V@Rp(S)

∑d
i=1 V@Rp(Xi)

≤ d1/β.

Proof. For random variable Xi’s lying in the MDA of the Fréchet distribution, by Theorem
1.1.2 in de Haan and Ferreira (1999),

lim
s→∞

sP(Xi > ā(s)t) = t−β, t > 0, (15)

where ā(s) := a[s] with [s] being the integer part of s. We discard the subscripts of the
common marginal distribution function, Fi, and survival function Fi of the random variables
for simplicity.

By using a similar approach as in Theorem 2, for any fixed t0 > 0, let δ > 0 be
arbitrary, we define ε := t−β

0 /(1 + δ) > 0. Then, there exists T∗(t0, δ) > 0 such that for all
s ≥ T∗(t0, δ), we have

V@R1− εD
s

(
d

∑
i=1

Xi

)
≤ dā(s)t0 ≤ dV@R1− εδ

s
(X1). (16)

Applying Proposition 0.8(v) in Resnick (2013), we know that F←(1− 1/s), as a function of

s, is regularly varying with index 1/β. Hence

lim
s→∞

V@R1− εδ
s
(X1)

V@R1− εD
s
(X1)

=

(
D
δ

)1/β

. (17)

For any s > 0, define

p(s) := 1− εD
s
→ 1 as s→ ∞, and

q(s) := q(p(s)) = 1− δ

D
(1− p(s)) = 1− εδ

s
→ 1 as s→ ∞.
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Let R(p) := V@Rp(S)

∑d
i=1 V@Rp(Xi)

. If lim supp→1 R(p) > d1/β, for any k ∈ N, there exists sk > 0

such that p(sk) ∈ (1− 1
k , 1) and R(p(sk)) ≥ d1/β + ζ for some ζ > 0. We have sk → ∞ and

p(sk)→ 1 as k→ ∞, by (16) and (17),

d1/β + ζ ≤ lim sup
k→∞

R(p(sk)) = lim sup
k→∞

V@Rp(sk)
(S)

d V@Rp(sk)
(X1)

= lim sup
k→∞

V@R1− εD
sk
(S)

d V@R1− εD
sk
(X1)

≤ lim sup
k→∞

V@R1− εδ
sk
(X1)

V@R1− εD
sk
(X1)

=

(
D
δ

)1/β

=

(
d
(

1 +
1
δ

)
+

1
δ

)1/β

→ d1/β as δ→ ∞,

which leads to a contradiction, and hence

lim sup
p→1

V@Rp(S)

∑d
i=1 V@Rp(Xi)

≤ d1/β.

4. Numerical Results

In this section, we present several numerical examples to illustrate our main results.
We consider some popular extreme-value copulas in the following cases:

(i) the risks are Gumbel-type random variables: Exp(1), Half-Normal(1);
(ii) the risks have finite right endpoints: Beta(2, 3);
(iii) the risks are Fréchet-type random variables with different regularly varying parame-

ters: Fréchet (0.5), Fréchet (1), Fréchet (2).

We use the R package “evCopula” to simulate the extreme-value copula with these
given marginals. By generating 107 data points from the corresponding distributions, we
plot the V@R ratios in the cases above under different extreme-value copulas.

4.1. Gumbel–Hougaard Copula (Logistic Model)

The Gumbel–Hougaard copula is both an Archimedean copula and an extreme-value
copula. For the bivariate case, it is defined as

C(u1, u2; α) = exp
[
−
(
(− ln u1)

α + (− ln u2)
α)1/α

]
, 0 ≤ u1, u2 ≤ 1,

where α ≥ 1. The parameter α measures the degree of dependence, ranging from indepen-
dence (α = 1) to complete dependence (α = ∞). In our simulation, we set α = 1.5.

We first consider the portfolios with two risks for the three cases. In Figure 1 for
the Gumbel cases, asymptotic sub-additivity is observed as the V@R ratio is less than 1,
which verifies the result in Theorem 2. In Figure 2 for the Weibull case, the V@R ratio
is approaching 1, which demonstrates asymptotic additivity, as shown in Theorem 3. In
Figure 3 for the Fréchet cases with β = 0.5, 1, and 2, we see that the V@R ratios are greater
than 1, goes to 1, and less than 1, respectively, as p approaches 1. The results manifest
asymptotic super-additivity, additivity, and sub-additivity, as shown in Theorem 4.
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Figure 1. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks is less than 1.
The dependence structure is specified by a Gumbel–Hougaard copula with the marginal risks being
Gumbel.
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Figure 2. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks is less than 1.
The dependence structure is specified by a Gumbel–Hougaard copula with the marginal risks being
Weibull.

One desirable characteristic of the Gumbel–Hougaard copula is that it can be extended
to a dependence structure of a higher dimension. Here, we study the numerical results
on the three-dimensional case using the Gumbel–Hougaard copula and test the effect of
the dependence on the asymptotic additivity of V@R for risks in the three MDAs. For the
trivariate case, the Gumbel–Hougaard copula has the following form:

C(u1, u2, u3; α) = exp
[
−
(
(− ln u1)

α + (− ln u2)
α + (− ln u3)

α)1/α
]
, 0 ≤ u1, u2, u3 ≤ 1,

where α ≥ 1. We consider the Gumbel–Hougaard copulas with parameter α equal to 1, 2, 3
and 4.
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Figure 3. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks depends on the
value of β. The dependence structure is specified by a Gumbel–Hougaard copula, with the marginal
risks being Fréchet with parameter β.

We have similar observations on all the three MDAs in the trivariate cases as those we
have obtained in the bivariate cases. In Figures 4 and 5, we observe that the V@R ratios are
less than 1. In Figure 6, the results show that whether V@R is asymptotic sub/superadditive
depends on the value of the Fréchet parameter, β. V@R is asymptotic subadditive for risks
with a finite mean and asymptotic superadditive for risks with an infinite mean. In addition,
for all the risks, the V@R ratios exhibit a tendency to be closer to 1 when α increases. This
is because V@R is additive when the risks are comonotonoic (α = ∞), and in that case the
V@R ratio equals 1. In general, we observe that the effect of diversification diminishes,
which is demonstrated by an increasing V@R ratio when the risks are more positively
associated. We have shown that it is true for risks with a finite mean but not for risks with
an infinite mean. As shown in Figure 6, for Fréchet risk with parameter β = 0.5, the V@R
ratio is highest when α = 1, which refers to the case that the risks are independent, and
they have the lowest level of association. This is counter-intuitive but consistent with our
results in Theorem 4.
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Figure 4. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks exhibits a
tendency to increase with α. The dependence structure is specified by a Gumbel–Hougaard copula of
different parameters, with the marginal risks being Gumbel. (a) Gumbel–Hougaard copula parameter
α = 1; (b) Gumbel–Hougaard copula parameter α = 2; (c) Gumbel–Hougaard copula parameter
α = 3; (d) Gumbel–Hougaard copula parameter α = 4.
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Figure 5. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks exhibits a
tendency to increase with α. The dependence structure is specified by a Gumbel–Hougaard copula of
different parameters, with the marginal risks being Weibull. (a) Gumbel–Hougaard copula parameter
α = 1; (b) Gumbel–Hougaard copula parameter α = 2; (c) Gumbel–Hougaard copula parameter
α = 3; (d) Gumbel–Hougaard copula parameter α = 4.
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Figure 6. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks exhibits a
tendency to be closer to 1 when α increases. The dependence structure is specified by a Gumbel–
Hougaard copula of different parameters, with the marginal risks being Fréchet with parameter β

where the red, the black, and the blue curves represent the case of β = 0.5, 1, and 2, respectively.
(a) Gumbel–Hougaard copula parameter α = 1; (b) Gumbel–Hougaard copula parameter α = 2;
(c) Gumbel–Hougaard copula parameter α = 3; (d) Gumbel–Hougaard copula parameter α = 4.

4.2. Hüsler–Reiss Copula

The Hüsler–Reiss copula is another extreme-value copula. In the bivariate case, it is
defined as

C(u1, u2; α) = exp
(
−û1Φ

[
1
α
+

α

2
ln
(

û1

û2

)]
− û2Φ

[
1
α
+

α

2
ln
(

û2

û1

)])
, 0 ≤ u1, u2 ≤ 1,

where û1 = − ln u1, û2 = − ln u2, Φ(·) is the standard normal distribution function, and
α ∈ (0, ∞). It refers to the case of independence when α approaches 0 and to the case of
complete dependence when α approaches infinity. We set α = 1 in the simulations. Again,
Figures 7–9 verify our results in Theorems 2–4.
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Figure 7. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks is less than
1. The dependence structure is specified by a Hüsler–Reiss copula, with the marginal risks being
Gumbel.
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Figure 8. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks is less than
1. The dependence structure is specified by a Hüsler–Reiss copula, with the marginal risks being
Weibull.
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Figure 9. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks depends on
the value of β. The dependence structure is specified by a Hüsler–Reiss copula, with the marginal
risks being Fréchet.

4.3. The t-EV Copula

The t-EV copula is also an extreme-value copula. The name t-EV comes from Demarta
and McNeil (2005), where the bivariate t-EV copula is derived; the multivariate t-EV copula
is derived in Nikoloulopoulos et al. (2009).

Let Tν be the cumulative distribution function of the univariate t-distribution with
degree of freedom ν > 0. For the bivariate case, with the correlation coefficient ρ = ρ12 ∈
[−1, 1] and the degree of freedom ν, the copula is defined as

C(u1, u2; ρ, ν) = exp[ln(u1u2)B(ln u1/ ln(u1u2); ρ, ν)], for 0 ≤ u1, u2 ≤ 1,

where

B(w; ρ, ν) = wTν+1

( √
ν + 1√
1− ρ2

[(
w

1− w

)1/ν

− ρ

])

+(1− w)Tν+1

( √
ν + 1√
1− ρ2

[(
1− w

w

)1/ν

− ρ

])
.
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We set ρ = 0.8 and ν = 4, and obtained the results in Figures 10–12, which again verify our
main results.

In addition, the figures for the three extreme-value copula examples show a similar
pattern and comparable values in all Gumbel, Weibull, and Fréchet cases. This gives a
clue to support that the tail distribution of the common marginal distribution of random
variables has a stronger effect than their dependence structure on the tail behaviour of their
sum, which echoes and supplements the work of Embrechts et al. (2009b) for extreme-value
copulas.
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Figure 10. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks is less than 1.
The dependence structure is specified by a t-EV copula, with the marginal risks being Gumbel.
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Figure 11. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks is less than 1.
The dependence structure is specified by a t-EV copula, with the marginal risks being Weibull.
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Figure 12. The ratio of V@Rp of aggregated risk to the sum of V@Rp of individual risks depends on
the value of β. The dependence structure is specified by a t-EV copula, with the marginal risks being
Fréchet.

5. Conclusions

In this paper, we have shown the asymptotic sub/super-additivity of V@R under
extreme-value copulas when the marginal risks are identically distributed and belong to
one of the three MDAs of the extreme value distribution. V@R is asymptotic subadditive
for risks with finite mean. Typically, the insurable risks are considered to have a finite
mean so that insurance can be offered profitably with a finite premium. The result echoes
the existing works in this area which show that the sub/super-additivity of V@R highly
depends on the nature of risks (see, for example, Alink et al. 2004 and Embrechts et al.
2009b). It also justifies the standard formula used in Solvency II, where the effect of
diversification is introduced by the imperfect correlations between various risk categories.
V@R is asymptotic superadditive when the risks have a very heavy tail with Fréchet
parameter less than 1. This means the pooling of risks cannot reduce the risk exposure.
Extremely heavy-tailed risk is now catching the attention of the experts in the field of
risk management. For example, Cui et al. (2021) studied the benefit of diversification for
insurance of catastrophic risks with limited liability. The development of risk management
tools and concepts is essential for the well-being of the society and the financial security of
different industries, especially the general insurance industry. Our proofs can be extended
to identify a bound for the V@R ratio of risks in the MDA of the Fréchet. The bound also
depends on the value of Fréchet parameter. It provides us with another angle to understand
the nature of the aggregated risk.
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